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ABSTRACT

This paper presents some research on the use of dense range data for the automatic inspection of mechanical parts
that have free-form surfaces. Given a part to be inspected and a corresponding model of the part, the first step
towards inspecting the part is the acquisition of a range image of it. In order to be able to compare the part
image and its stored model, it is necessary to align the model with the range image of the part. This process,
called registration, finds the rigid transformation that superposes model and data. After the registration, the actual
inspection uses the range image to verify if all the features predicted in the model are present and within tolerance.
Free-form surfaces are particularly interesting in that few inspection processes can inspect surface shape across the
whole surface.

We focuses in the inspection of free-form surfaces and present some results concerning the extraction of nominal
shape models from dense range data using B-splines and the use of B-spline models of free-form surfaces for the
purposes of registration.

1 INTRODUCTION

An essential contribution to the success and growth of manufacturing industries is the control of the quality of their
products. This situation creates a great demand for cheap and reliable automatic inspection systems able to replace
human inspection, who are not ideal for many reasons:

o The performance of humans in inspection is subject to many fluctuations due to human fatigue and tedium.
o The necessity of performing inspection in hazardous environments in many circumstances.

o Some situations, as in the case of hot steel slabs !2, in which the high throughput and accuracy required make
use of human inspectors completely impossible.

We are investigating the use of dense range data for the inspection of mechanical parts. The main idea behind
our research is the comparison between the three dimensional geometric information present in the range image and
descriptions or models of ideal parts stored previously by the system.

Given a part to be inspected and a corresponding model of the part stored in the model data base, the first step
of inspecting the part is the acquisition of data corresponding to the part which in our case means the acquisition
of a range image of it. In order to be able to compare the part image and its stored model, it is necessary to align
the model with the range image of the part. This process, called registration, finds the rigid transformation that
superposes model and image. After the image and model are registered, the actual inspection uses the range image
to verify if all the features predicted in the model are present and have the right pose and dimensions. As the
manufacturing and measurement processes are never error free, the feature’s pose and dimensions should be within
specific tolerances, which means that the inspection models must convey explicit information about the acceptable
variances of the part around the nominal value.

In many cases not all the features to be inspected are visible in one view of the object, and it is necessary



{o acquire other images of the part being inspected. Therefore, an important element in the inspection process 1S
the planner, which takes account of the current position of the part (known after the first registration), the model
of the shape of the part, the model of the sensors, and the list of features to be inspected to guide the acquisition
of images corresponding to different views of the object.

Most of the time the model data base will be built by using information about the shape of the ideal parts
and the tolerances associated with these parts supplied by the part manufacturer. However, there may be situa-
tions in which this information is not available and one has just physical examples of good and bad parts. In these
cases, a very interesting characteristic of an ideal system would be its ability to learn models of the part to be
inspected just from the images of the good and bad parts.

From all the considerations above, we can envisage a diagram of a general inspection system, given in Fig-
ure 1, composed by the following modules: data acquisition, model data base, registration, inspection, planer and
model learning. In this paper we start by discussing the acquisition of range images in Section 3. Then we present
some results concerning the extraction of B-spline models from range images in Section 4. The problem of regis-
tering free-form surfaces is discussed in Section 5. Our finals comments and conclusions are presented in Section
6.

MODEL
LEARNING
DATA —
ACQUISITION PLANNER
MODEL  DATA
REGISTRATION S ASE
INSPECTION
INSPECTION
DIAGNOSIS

Figure 1: General system diagram

2 DATA ACQUISITION

One of the most common ways of acquiring 3D information for inspection involves tactile sensing, using co-ordinate
measuring machines (CMM) (see 7 for an example of an application). CMMs machines are able to produce very
accurate and precise results but, despite their popularity CMMs have some important drawbacks related to their
slow rate of data capture and the difficulties of programming them for inspection tasks.

Among the non-contact techniques for producing range images the most important ones are (see ! and & for
extensive reviews):
o Radars: based in the emission and reception of electromagnetic waves, the most common types are the time
of flight, amplitude modulation and frequency modulation.



o Shape from shading: surface orientation is recovered using a model of surface reflectance, knowledge of light
source position and making the assumption of surface smoothness.

o Photomeiric stereo: uses knowledge about surface reflectance and multiple light source positions to recover
surface orientation.

e Passive triangulation: pairs or more 2-D images obtained from different viewpoints are combined to determine
the depth of surrounding surfaces. The depth calculation is based on finding the correspondences between the
2-D images’ features and then using these correspondences and geometric principles (triangulation).

o Active triangulation: emission of some form of structured light (e.g. stripes, coded binary parts) and use of
geometric principles for the calculation of depth. Depth is recovered using a camera model and knowledge
about the geometry of the structured light.

o Moiré techniques: range measurements are obtained through the modulation and demodulation of light using
special gratings, the working principle being based in the interference phenomena.

The radar techniques, in general, are very expensive and are applied to measuring big depth values. Moire
techniques are extremely accurate, but are also very slow and involve quite a lot of processing in calculating the
depth information. Passive triangulation techniques suffer the burden of establishing the correspondence between
the 2-D images, which is a very complicated and ill-posed problem. Shape from shading and photometric stereo
do not recover depth information explicitly and depend on a large number of assumptions about the environment.
Considering these facts and the difficulties involved in using CMMs, we decided to use a range finder based in the
active triangulation principle. More specifically, we propose to investigate the viability of using a system like the
Edinburgh’s laser striper 2, which consists of a pair of cameras and a plane of laser light used to project stripes on
the object.

3 EXTRACTING B-SPLINES FROM RANGE DATA

We extracted uniform B-splines from range data using the following procedure:

Smoothing: Application of conservative and average smoothing to the range image in order to eliminate outliers.

Thresholding: Thresholding of the original image for separating background and foreground and delimiting holes.
Holes were delimited by thresholding the range image only in a window containing the hole. The thresholding
was used for producing a bitmap indicating the interesting points in the range image.

Fitting: Fitting of a uniform B-spline to the interesting points indicated by the bitmap produced by the thresh-
olding. The fitting was done using a algorithm proposed by DeeBoor 2 that minimises the average square
distance between the spline model and the image points.

Resuits of the spline fitting are shown in Figures (4) and (5) that show spline models of the test objects 1 and
2 shown in Figures (2) and (3). The average distance between model points and data points in both cases were in
the order of tenths of millimiters (withing image noise standard deviation equal to 15 mm). As one would expect
the bigger errors happened near the discontinuities of the image. This fact explains the better results obtained with
the test object number 2 which presents less discontinuities than the test object number 1.

4 REGISTERING FREE-FORM SURFACES

Given a range image of a free-form surface, which describes the shape of this surface in the sensor coordinate system,
and a model of the same surface in a different coordinate system, the problem of registering model and data consists
in finding the rigid transformation (rotation and translation) that aligns or superposes both.

Some of the first research into matching free-form surfaces was done by Faugeras and Hebert 8. They pre-
sented a matching algorithm able to successfully match a Renault auto part, but their algorithm had the drawback
of depending on the existence of planar regions in the object being matched. Potmesil 3 developed a system for



Figure 3: Range image of Test object number 2

modelling the complete surface of a object from different range images. The different range images were matched
through heuristic search in the 6-D space of the translation and rotation. Chen and Medioni !! also developed an
algorithm for registering overlapping range images of an object. They assume an a priori knowledge of an estimated
pose aligning the different range images and approximate one of the surfaces being matched using its tangent planes.
Besl and McKay proposed the ICP (Iterative Closest algorithm) 10 for registering free-form surfaces using only the
3-D points on the surface of the object. Zhang 15 proposed an algorithm very similar to the ICP in which an a
priori approximation of the registration is assumed to be known and is used to accelerate the convergence of the
algorithm and make it more robust to outliers. Recently Stein 14 advocated the use geometric hashing together
with an IT (Interpretation Tree) ° for recognizing and aligning objects in range and gray level images.

We assume that the object being registered does not present any salient features (e.g. planar regions) that
could help guiding the registration process and concentrate solely on the use of the 3-D points for obtaining the
registration. We also assume the e prior: knowledge of an approximation of the pose aligning model and data and
investigate the use of algorithms as the ICP for improving the accuracy of the registration.

The final accuracy that can be obtained using only 3-D points on the data and model surface depends crit-
ically on the calculation of the pose aligning sets of correponding 3-D points on the surfaces of model and data.
Therefore we start by evaluating the accuracies that can be achieved using sets of corresponding 3-D points in
Section 4.1. In Section 4.2 we discuss the ICP algorithm in detail and present some extensions for improving the
robustness of the algorithm.

4.1 Registering two sets of corresponding 3-D points

Consider a set of data points D = {d,},_, y and a set of corresponding model points M = {m;},_, y such that D
and M are related by a rigid transformation corresponding to a translation T and a rotation R as defined in the
equation (1).

d;
E[w]

R-m+T+uw (1)
0o o (2)
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Figure 8: As Figure (5) but for test object number 2

3. Calculate new estimates of T and R by assuming the points d; and m*; correspondent, and applying Horn’s
algorithm (or equivalent).

4. Repeat 1 to 3 till convergence (Ep stops decreasing).

In our experiments the model shape M was extracted from a B-spline model of the surface being registered. The
models were obtained as described in Section 3. Because the evaluation online of the points on the spline would
be too computationally expensive, we used as the model shape M a dense grid of points extracted offline from the
spline model.

A crucial step in the algorithm consists of finding the closest point to the point d¥; on the model shape M.
Zhang !5 uses K-D trees. In our implementation we used a multiscale search for finding the closest point. This
approach can occasionally fail when the region containing the real closest point is not detected during the coarse
scale search. In our experiments this never happened because we start the search at a scale small enough to avoid
this problem. Also, due to the consistency checks we added to the ICP algorithm (see below), occasional failures to
find the true closest point do not degrade the performance of the algorithm. Figures 7 and 9 show that an accuracy
of the order of a tenth of millimeter (i.e. approaching the noise variance) can be achieved using only 1000 points.
Therefore, we could subsample the data points (range image) which reduced considerably the number of points to
be considered. The sampling of the model and data shape together with the use of the multiscale shape allowed
us to achieve a good speed without the use of K-D trees. As suggested by Figures 7 and 9, better accuracies can
be achieved by running an extra iteration of the ICP algorithm with more data points, after its convergence using
coarser grids of data points.

In our experiments with the ICP algorithm using the object tests, we verified most of the properties described
by Besl 1. Clearly, the biggest problem with the ICP is the problem of converging to a local minimum of Eps that
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does not correspond to the right registration between model and data. This problem may not be very significant
with objects that have a large radius of convergence for the global minimum (e.g object test 1 to which the ICP
will always converge to the right answer as long as the model is rotated less than 100 degrees around any axis),
because is only necessary to run the ICP a few times using different initial estimates of R and T. But this fact is 2
very serious problem in the case of objects like the object test 2 that has a very small radius of convergence due to
the existence of other local minima near the desired global minimum.

A interesting aspect of the problem of the initial estimate is the influence of the original estimate of trans-
lation. As said in 1%, when the data set is a subset of the model which covers a reasonable portion of the model,
the ICP performance is reasonably insensitive to the original estimate of translation. However the final accuracy of
the the registration found by the algorithm can change considerably as illustrated in Figure 10 (a). The situation
becomes even worse when the data covers only a small part of the model as in Figure 10 (b).
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Figure 10: Variation of translation error (JIT - T||) of ICP with the value of the initial estimate of translation -
Test object 1. Initial estimates of translation vary between -2 and 2 times the dimensions of the object. Part (a)
covers the complete model and part (b) uses data from a subset of the model.

Another problem with the ICP is the fact that it can not cope with situations in which the data points are not a
subset of the model points. This is a considerable limitation in applications such as model acquisition and inspection
in which this assumption does not hold. In order to make the method more robust to outliers we altered the original
algorithm and eliminated the pairs (d;, m*;) that did not satisfy a few consistency tests. The first of these tests,
essentially used by Zhang '® though in a different way, eliminates pairs of points (d;, mF;) if the distance between d;
and mF; is bigger than three times the value of Eps found so far. We also used two local geometric constraints for
rejecting wrong pairs: the distance between points in the grid and the angles between between the vectors joining
pairs of points in the grid. Because of the surface sampling, a matching for a data point d; is any model point m;
such that after the alignment between model and data m; belongs to the portion of the data surface D that d;
represents. We approximated this region associated to d; by a cuboid centered in d; with the faces parallel to the



planes xy, xz and yz of the sensor coordinate system and dimensions corresponding to the size of the sampling grid.

The maximum values of distances and angles associated with the points d; were calculated considering the
angles and distances between the cuboids associated with each of the data points. Figure 11 illustrates the cal-
culation for the 2-D case when the cuboids are rectangles. All the calculation of minima and maxima was done
offline. In execution, whenever the relative distance between pairs of data points or relative angles between triples
of data points was inconsistent with their corresponding model points, the correponding pair of data points and
model points were rejected.
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Figure 11: Local geometric constraints

These alterations make the method more robust to outliers but impose a couple drawbacks. All the tests
proposed can only be used when the algorithm starts from a reasonable estimate of R and T. Besides that, the
consistency tests make the algorithm lose its monotonicity in the presence of outliers, i.e. the value of Ep may
increase sometimes. This happens because the tests may fail to eliminate all the outliers in some iterations. However,
in our experiments with the modified ICP, the algorithm always found the right registration.

5 CONCLUSIONS

We discussed the problem of inspecting free-form surfaces and presented some results concerning the acquisition of
B-spline models of free-form surfaces, as well as the use of such models for the purposes of registration. Despite
some initial promising results there are still many issues to be further investigated: evaluating the robustness to
outliers of the modified version of the ICP, investigating further on the monotonicity of the modified ICP algorithm,
studying the use of techniques as the Hough Transform and search to obtain initial estimates of registration and,
most of all, producing the final inspection diagnosis after the registation between model and data.
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