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Abstract

There are various ways of representing a 3-D rotation in Euclidean
space and some of them can be more sensitive to errors than others. We
compare five well known parametrizations under circunstances encoun-
tered in image understanding systems by introducing perturbations on
the parameters of each representation and measuring their influence on
the output rotation. The exponential representation is found to be the
least sensitive to these perturbations.

1 Introduction

In model based Computer Vision the 3-D position and orientation of an object
needs to be represented ideally in the most exact and economic way. A vector
gives the position of the object and its 3-D orientation is given by a rotation
from a fixed reference orientation. Another use of the rotation is in specifying,
along with the translation, the motion between two frames. There are various
ways of representing a rotation. Rotation matrices (3 orthogonal vectors), Eu-
ler angles, unit quaternions, axis-angle pairs, and exponential vectors are most
commonly used in Computer Vision. Other representations used are the Pauli
spin matrices, Gibbs vectors and Cayley-Klein parameters.

The choice of which of these rotation parametrizations to use can be made
more simple and more reliable if their computational properties, especially un-
der the presence of errors, are better understood. The property of error lin-
earity, and error sensitivity have been neglected by the literature covering the
subject. This question is relevant if quantization effects are significant in the
rotation representation (i.e. if a small number of bits are used to represent the
rotation), or if the representation is affected by a fixed quanta of error (e.g.
an arbitrary, but small error is considered). We offer in this paper an analy-
sis of the property of error sensitivity of these five main parametrizations of
rotation, and also discuss other properties such as the presence of duals and
wrap-around, that can incur additional computational complexity. We show



the results of experiments over a large range of perturbations on each of these
representations to point out the differences between them.

2 Representing a 3-D Rotation

Most books in robotics and computer vision give a description of the main
parametrizations used for rotations. A good treatment of these can be seen in
Altmann [1], there is also a book by Kanatani (6], and the papers by Rooney
[8] and Brown [2]. We give below a brief description of the equations for the
five main parametrizations. For more details see, for example, (1].
2.1 3x3 Orthogonal Matrix
A 3x3 orthogonal matrix is formed by three orthogonal vectors related in the
following way
|Irir2rs]| = (ry x ra,ra) = (r2 x r3,ry) = (r3 x r),ra) =1,
and
R= [1‘11‘21‘3].
R represents a rotation if, and only if,
RRT=RTR =1,
IR = 1

A rotation R can be applied to a vector v; resulting in v as

vy = Rv;.

2.2 Euler Angles

There are sixteen ways of choosing three successive rotations about the axes
[1). Each one constitutes a particular set of Euler angles. One such set is the
three angles R, S, and T defined as three successive rotations around the fixed
axes during the transformation:

R is the first rotation around z
S is the second rotation around y
T is the third rotation around z



The rotation matrix related to this particular set of Euler angles is

cosR * cosS « cosT — sinR * sinT  —cosR # cosS * sinT — sinR * cosT cosR * sin§S
R = | sinR+*cosS «cosT + cosR * sinT —sinR % cosS * sinT 4 cosR * cosT sinR «sinS
—s5inS « cosT s5inS * sinT cosS

2.3 Unit axis and angle

A rotation can also be represented using a unit vector in the direction of the
axis of rotation and its angle of rotation. If the angle is ¢ and the unit vector
n = (n;, ny, n,), the rotation matrix is:

p+niv NeMyV — N, T NehV+nyT
R=| nynv+n,7 p+nlv nyn,v—nyT
NN v —nyT NAgY+ T p+niv
where,
B = cos¢

v=1-cos¢

T = sing

2.4 Unit quaternion

A quaternion q can be used to represent a rotation around a unit axis n = (
ng, ny, n; ) by an angle ¢ as follows,

q = (40,9),
where,

g0 = cos(¢/2),

q = sin(¢/2)n,
and,

qa ! = (g0, —q).

the rule of multiplication in quaternion algebra, here shown as “*”, for a
quaternion q and a vector v is,

q*v = (cos(4/2),sin(¢/2)(n x v)).



In order to rotate a vector v, by ¢ around n we have,

vzzqa:v,*q"l.

2.5 Exponential representation

In the case of the exponential representation if n is the axis and ¢ is the angle
of rotation we have,

r = ¢n,
and since, ¢ = ||r|| and ||n|| = 1 Rodrigues’ equation [7] gives
R=1+gH+gH’,

where I is the identity matrix and,

g2 =

2.6 Discussion

The most used representation is the rotation matrix which has nine parame-
ters derived from three orthogonal vectors. The Euler angles are also widely
used and offer a very low redundancy since it needs only three parameters, the
three angles. The quaternions and the axis-angle representations both need
four parameters. However, as the axis n or quaternion q have unit length,
there are still just three degrees of freedom. The quaternions provide a special
algebra as observed by Hamilton [5] and their use as rotation parameters was
first made by Rodrigues [7] (see [1] for some historical facts). The last one, the
exponential representation, is relatively recent in computer vision {3] and uses
only three parameters in the form of a vector in the direction of the axis of
rotation with length equal to the angle of rotation.

Before looking at their behaviour under perturbations we would like to point
out a set of other properties of these parametrizations. Since we are testing
here the representations’ sensitivity to perturbations it seems reasonable to



Representation | par. | n. oper. to rotate v | duals | wrap-around
3x3 ort. matrix 9 9%, 6+ n n
Euler angles 3 25%, 10+, 3sin, Jcos y y
Unit axis and angle 4 33*%, 16+, Isin, 1cos y y
Unit quaternion 4 18*%, 12+ y y
Exponential 3 39*,20+,1,/,1sin,lcos y ' y

Table 1: Some Computational Properties of the Parametrizations

also look at their operation counts, in rotating a vector for example, and the
presence of duals and wrap-around. The operation count is a useful measure
of the time needed to compute a rotation with the representation. Table.1 lists
the number of operations that are needed to rotate a given vector in each rep-
resentation. The presence of duals means that there are two ways of setting
the parameters for the same rotation, and it becomes a problem in averaging
estimates of rotations. A wrap-around is caused when for small changes in a
rotation a big change in the parameter values happens. In this case one has to
work with a range of values and the representation becomes uncertain. Both
count for the presence of error in estimating its final rotated position. These
properties are listed in Table.1 and are indicative of a compromise that has to
be made between the redundancy of the representation, its computational cost,
and also whether it has duals or wrap-around.

One important computational property of the parametrizations is how they
behave under error conditions that can be introduced anywhere in the param-
eters of the rotation? To answer that we have tested their performance with
random noise added to the parametrizations for relatively large variations (e.g.
for the range of values inside the unit sphere). It is possible that after the
perturbation the set of parameters do not represent a rotation anymore. When
this happens a normalization procedure has to be carried out (i.e. keeping the
norm of the quaternion equal to one, the orthogonal matrix still orthogonal
and with determinant equal to one, and also the axis of the axis and angle
representation with length one). The normalization per se can not stop the
perturbation in leading to a wrong result, but it keeps the influence of the per-
turbation within a limit.

We describe below experiments made with each of the representations for a
large range of perturbations added to the rotations.

3 Experiments

We want to test the performance of those representations in the presence of
random noise, in order to measure how sensitive they are to these perturba-
tions. The experiment we did was to generate 5000 sample vectors, uniformly
distributed on a complete unit sphere, to be applied a random rotation based on

lyes, if ¢ € [0,27], no if ¢ € [0,7)



a random angle of rotation, uniformly distributed in [0,27) and a random axis
of rotation also uniformly distributed in all possible directions. Random noise
was then added to each parameter of the representation using a normal distri-
bution with zero mean, and standard deviation a. The steps were the following:

o For noise magnitude o« from 0.0 to 1.0,

¢ Use 5000 samples for each a,

e Pick a random rotation and express it in the five parametrizations,

e Pick a random vector vy,

o Compute the rotated directions v, = Rv, for each of the representations,

o Perturb all the parameters of the representations with noise of size a
giving rotation R, for each representation,

¢ Compute the perturbed directions v3 = Rv,, for each representation,

e Compute the difference (angle and distance) between v, and vj.

After perturbing the rotation a normalizing procedure was carried out to
ensure that the parametrizations would still represent a rotation. This was done
for the rotation matrix, the quaternion, and the axis-angle representation, the
results are shown in Figures 1 and 2. The normalization for the rotation matrix
is the same as in [4], for the quaternion and the axis-angle the procedure was to
keep the norm and axis length equal to one. We used a hundred (100) samples
of different magnitudes a in the range of [0.0,1.0], and for each a the mean
distance and angle between the perturbed and the unperturbed vectors were
computed.

The output measures show a function of the error sensitivity for perturba-
tions going from zero to a complete corruption of the parameters.

4 Conclusions

By adding noise to the parameters of the representations we were looking for
an overall sensitivity of the whole representation, and with that we could com-
pare all of the five representations. It turns out that one has to be careful
with this because the redundancy of the parametrization, i.e. more than three
parameters poses different variations between each of the parameters for each
representation.

However, as can be seen from the curves in Figures 1 and 2 all of the rep-
resentations keep a steady ascendent curve not crossing each other unless of
course for zero perturbation. The curves show that the quaternions for ex-
ample exhibit a poor behaviour under perturbations in comparison with the
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exponential representation, which it is shown to be the least sensitive to noise
added in all the parameters at the same time. The 3x3 orthogonal rotation
matrix also shows a good overall behaviour that can compensate for its large
number of parameters. The Euler angles and the axis angle representation are
not as good as the exponential but they still perform better than the quaternion.

Since normalization of the quaternion and axis-angle form has reduced their
effective error relative to the other representations, their real performance for
comparable errors must be worse. On the other hand, the perturbed rotation
matrix is no longer strictly a rotation matrix, so any normalization to a true
rotation matrix is likely to reduce its relative error. Because of the different
structure of each representation, it is possible that the individual parameters
of the representation may not be equally sensitive. We tested this hypothesis
and concluded that the parameters of the rotation matrix and exponential rep-
resentation are equally important. However, for the quaternion and axis-angle
representations, the parameters that relate to the axis have greater influence,
and for the Euler angle representation, the S angle has greater influence. How-
ever, in any case, after normalization, the difference between the representations
shown in Figures 1 and 2 are more significant than the differing sensitivities in
the individual parameters.

The final choice of which representation to use depends on other considera-
tions also, such as: a) if one needs a more intuitive visualization of the rotation,
or b) if some parameters are more easily extracted from the data or c) the al-
gorithms one is working with favours particular properties. For the purpose
of estimating rotations, the least number of parameters is best because only
with the minimal parametrizations will the variance matrices (the uncertainty
estimates) be non-singular?. This property of lowest redundancy favours also
the exponential representation. However, as far as we can see at present, there
is not yet an authoritative set of criteria to determine a best rotation repre-
sentation for computer vision applications. Meanwhile the more we know the
computational properties of those representations, the better the choice we can
make of which one to use. This paper has presented two additional criteria use-
ful for discriminating between the representations: (1) relative stability of the
different representations and (2) relative importance of individual parameters
in the representations.
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