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Abstract

The general principles of geometric reasoning for computer vision are discussed, and some previous
attempts at implementing reasoners reviewed. A new implementation is proposed that involves interval
arithmetic to cope with uncertainties and has a network structure that promotes efficiency from parallelism
and accuracy from feedback. Typical constraints from a 3D model/3D image vision system are discussed

and used to evaluate the network performance.

1. Introduction

Reasoning about geometry is a key process in visual perception. Not only is the discovery of
geometric facts often the goal of a perceptual act (where is the chair?) but such facts can be used to aid
the attainment of other goals such as identification (this is a chair because it has four legs and a seat in
the correct configuration). A geometric reasoner inside a vision system is a type of "quantity knowledge
base” in the terms of (Davis 1987), receiving constraints from the vision system along with requests to

draw inferences from them.

The design of a geometric reasoner for computer vision can be split into three stages (Omr and Fisher
1987). The first stage consists in identifying the tasks to be delegated to the reasoner by the vision system.
The second is the design of abstract data types and the associated operations that can realize these tasks,

The third and final stage is an implementation of the abstract types.



This paper reports our work using this design methodology. In Section 2 we discuss the kinds of
tasks done by vision systems that require geometric reasoning and review some previous attempts to imple-
ment them. The next section introduces a new parallel method of doing interval arithmetic which is the
basis of our own implementation. Section 4 shows how the reasoner was tailored to deal with constraints
typical of 3D model matching, which are then used in Section 5 to evaluate the performance of the net-

work.

We follow the notation of Alefeld and Herzberger (1983) using lower case letters (a, b, ¢, - - ) for
real variables and capitals (4, B, C, - - - ) for interval variables. An interval A is identified with its bounds
(infinum and supremum):

A = [inflA), sup(A)] where inflA) < sup(A)
Bold letters are used for vector quantities such as locations and directions (with three components)

and quaternions (four components).

2. Tasks and Previous Implementations

We start by considering the types of tasks that seem appropriate for a vision system to delegate to a

geometric reasoning package.

Before proceeding we should mention that we make certain assumptions about the model and image
entities used by the parent vision system. We assume that object models are built up from primitive
geometric features (such as points, curves, surfaces and volumes) placed in a coordinate frame belonging to
the model. We further assume that models are structured hierarchically, that is, complex models are built
out of simpler ones by specifying the placing of the subcomponents in a reference frame linked to the
aggregate. The key point about images is that they should contain entities that can correspond with the
entities in the models at all levels: features (to correspond with model features), clusters of features (with
simple models) and clusters of clusters of features (with complex models). How image segmentation into
clusters is achieved or how model to image entity matches are hypothesised does not concern us here.
Although we deal with images having 3D information (depth images) our method can be adapted to 2D

images where the constraints are weaker but the principles of manipulating them are the same.



2.1 Tasks

The geometric reasoning component within a vision system is characterised by the tasks that it is
expected to perform (Orr and Fisher 1987). Exactly which tasks come under the heading of geometric rea-
soning is debatable, but some stand out as obvious candidates. Included in these are establishing position

estimates and image feature prediction.

Every identified feature in an image can be used to form position constraints, first because it is visi-
ble, and second by its measurable properties (location, shape, dimensions and so on). Take, for example,
the identification of a point in the image with a point belonging to some object model. This hypothesis
constrains the translation of the object relative to the line of sight to the visible point, and some orienta-

tions of the object are excluded as they would cause the point to be obscured.

Having established a set of constraints on the position of a model from its individual features, the
next step is to attempt to merge them into a single position estimate. The attempt can fail because of
inconsistent constraints, the detection of which is necessary to eliminate false hypotheses (formed, for
example, by erroneous feature identifications). Even if a consistent estimate can be found it may contain
degrees of freedom (e.g. rotationally symmetric objects), and there may be more than one estimate (mirror
symmetric objects).

In a similar way, position estimates for subcomponents have to be aggregated into an estimate for the
parent object, but with one important difference. Feature positions refer to the placement of the objects
that own them while subcomponent positions refer to their own placement. Therefore the subcomponent
positions must first be transformed, using their known positions relative to the parent object, into positions

for the parent.

Having established a position estimate for an object the next step is to predict the appearance and
location of its features. This allows a critical comparison between the predicted and observed features and
affords a basis for reasoning about occlusion effects. Additionally, image prediction can be used to search
for features not already found in the image and to subsequently refine the position estimate of the object
using any new information obtained. As an example, suppose an estimate of the position of a bicycle is

obtained from the positions of two coplanar wheels at the correct distance apart, and then used to predict



the location and appearance of the saddle and handle bars. Using this prediction, the image can then be
searched for these subcomponents with the following questions in mind. If found, are they where they
should be and can they be used to refine the position already obtained? If not found, can their absence be
explained?

Two points need mentioning here that complicate matters. First, predicted features are not neces-
sarily pixel entities. Although observed features are derived from pixel-based information, they are nor-
mally described as symbolic entities such as points, lines, surfaces and so on. We believe image prediction
should handle both types of description. Second, real images are formed from objects that have exact posi-
tions in the world, but prediction involves objects whose positions are only estimated and should therefore

be able to generate descriptions that reflect this uncertainty.

To summarize, the primary geomeltric reasoning tasks can be described by the following set of opera-
tions:
LOCATE - for forming primitive position constraints
MERGE - for combining position constraints
TRANSFORM - for changing constraints from one reference frame to another

PREDICT - for estimating image features using previously deduced positions

2.2 Previous Implementations

Our own vision system IMAGINE (Fisher 1989) uses 3D image data and 3D models. Its current
geometric reasoning engine is described below in Sections 3 and 4, The old version used intervals for the
six position paramelers to represent uncertainty. MERGES were done by intersecting the intervals.
TRANSFORMs were achieved by partitioning the intervals of the argument positions, replacing the sub-
intervals by their mid-points, combining all pairing of the partitioned positions by matrix multiplication and
then finding the smallest rectangular box enclosing the resultant positions in six dimensional parameter
space, thus producing another set of six intervals. Problems were encountered with the use of slant and tilt
for rotations because when zero was contained in the range of slant angles, the tilt angle became

unbounded (we now use quaternions for representing rotations). Other problems concerned the implemen-



tation of LOCATE which did not handle data errors well, could only operate on surface patches and required

the location of the patch central point so that difficulties arose when a patch was partially obscured.

ACRONYM (Brooks 1981) is a vision system that uses 2D data and 3D model primitives. Positions
are represented by interval variables, one for each of the six degrees of freedom. Constraints on positions
are formed by relating expressions in the variables to uncertain quantities measured from the image. A
constraint manipulation system (CMS) processes multiple constraints symbolically leading to bounds on the
individual position parameters. The operations MERGE, TRANSFORM and PREDICT (Sections 2.4, 2.5 and 2.6)
are achieved by, respectively, unioning restriction sets, simplifying symbolic compositions of positions and

bounding expressions in variables.

RAPT (Popplestone, Ambler and Bellos 1980) is an off-line programming language for planning
robot assembly tasks. Embedded in RAPT is a geometric reasoner that takes assertions about the relative
positions of bodies from the programming language and infers their Cartesian positions. In the program-
ming language, relations are stated similarly to how a human might state them, e.g. face I of body A is
against face 2 of body B. Internally, however, a relation is represented by a symbolic composition of
translations and rotations that may involve variables to represent the unconstrained degrees of freedom. A
graph is formed whose nodes are the bodies in the assembly task and whose arcs are the relations between
the bodies. If at least two independent paths can be found between two nodes then there is an equation
that relates two or more independent expressions for the body’s position and some or all variables (degrees
of freedom) can be eliminated. The difficulties with RAPT relations for our purposes are the absence of
any mechanism for incorporating uncertainty and the restriction to relations that lead to algebraic equalities

and not to inequalities.

Faugeras and Herbert (1983) used models and images that have features but are unstructured. The
features (model and image) are planar surface paiches characterised by surface normal and distance from
the origin. The problem is to find the transformation that best maps the model features into the image
features and is interpreted in a least squares fashion and elegantly solved by reducing it into the problem of
finding the eigenvalues of a symmetric 3 by 3 matrix. Their work can be viewed as an implementation of

LOCATE and MERGE for a particular class of feature.



An alternative way of treating uncertain positions has come out of work in stochastic geometry.
Durrant-Whyte (1988a) tackles the problem of applying (exact) coordinate transformations {0 uncertain
positions. Uncertainty is represented by a probability distribution in parameter space, and its functional
form is chosen to be Gaussian because the transformation of a Gaussian distribution is also approximately
Gaussian. Thus, all that is needed to specify an uncertain position are the mean parameter values and a
covariance matrix. The latter may be transformed by multiplication with the matrix representing the (exact)
relation between the two coordinate frames. As it stands, the method is not a full implementation of the
TRANSFORM function since the transforming position must be exact, though it seems likely that the method

can be extended to overcome the limitation.

In another article Durrant-Whyte (1988b) discussed the problem of integrating information from mul-
tiple sources. His analysis results in separate modcls' for observers (e.g. raw sensor plus noise), observer
dependencies (e.g. relative sensor reference frame positions) and observer states (e.g. changes of sensor
positions over time). In this way', eslimating geometric quantities (e.g. positions) can be reduced to a sla-

tistical estimation problem and thus the Kalman filter is often used.

More specific applications of the statistical approach can be found in Ayache and Faugeras (1988)
and Porrill (1988). These projects improved feature and observer position estimates by linearizing parame-
ter relationships about an initial estimate, and then applying statistical methods to integrate information
from multiple observations. In particular, these were applied 10 the problem of estimating scene positions
from stereo imagery. Additionally, linearizing the effects of perturbations from estimated positions allows
one to exploit constraints between features to reduce the uncertainity in comrelated perturbations. Porrill
exploited this to develop constraints on lines for orthogonality, intersection, equality and maintenance of

rigidity under transformation.

The last three mentioned articles, and several others, can be found in a special issue of the Interna-

tional Journal of Robotics Research Volume 7 Number 6, 1988.

Linearizing small perturbations (or rotations) to simplify geometric relationships has also been
applied successfully to symbolic algebra constraints (as in this paper) by Fleming (1988), who analyzed

toleranced part relationships when in assemblies.



Although a normal probability distribution might give a more realistic representation of typical errors
than intervals, we wanted to investigate the latter because of their relative computational simplicity (i.e.
avoiding the use of covariance matrices). However, we see no theoretical reason why the modular parallel
approach described below cannot be applied instcad to an uncertainity representation scheme based on
means and variances. Indeed, a likely advantage of this extension is the ability to estimate a "best” esti-

mate, as well as the range of allowable values.

3. A Network Implementation

Of the various implementation alternatives discussed above algebraic inequalities of the type used in
the CMS of ACRONYM (Brooks 1981) have several desirable properties. They provide a uniform
mechanism for a variety of relationships including a priori relationships (e.g. the position of the camera),
and model variations (variable dimensions or flexible attachments). Such constraints involve known
(modeled or observable) and unknown quantities and estimates are sought for the unknowns. To find such
estimates the CMS symbolically combines and simplifies multiple constraints until the expressions they
bound reduce to single quantifiers. This has drawbacks of a high cost for symbolic processing and an ina-
bility 10 properly handle non-linear constraints. Below we describe a new implementation of this method
that confronts these problems. (The description given in this section is an updated version of the work
reported in Fisher and Orr (1988)).

The basic constraint solving method we use is Bledsoe’s SUP/INF algorithm (Bledsoe 1975), later
refined by Shostak (Shostak 1977) and Brooks (Brooks 1981). Constraints are expressed in the form:

x;Sfi or ;28
where the x; are members of a set {x;, X, ** - x,)} of variables and f; and g; are values or expressions
involving some or all x;, A solution of the constraints would be a substitution of real values for the vari-
ables that maintained the truth of each inequality. The goal of the algorithm, for a given set of constraints,
is:
(1) to decide whether the set of possible solutions is empty,
(2) to find bounds on the value that given expressions (involving some or all x;) can attain over the solu-

tion set.



The algorithm is based on the recursive application of the functions SUP and INF on the expression
10 be bounded and its sub-expressions. SUP returns an upper bound (supremum) and INF a lower bound

(infinum).

In ACRONYM the simplification of constraints and the application of SUP and INF was handled by
symbolic manipulation at run time. We present a new implementation of the SUP/INF method that
transfers the cost of symbolic manipulation from run-time to compile-time, improves the performance of

the algorithm for non-linear constraints and has a natural parallel structure.

An example of how the network can iterate to better bounds over non-linear constraints than the sin-

gle pass method of the CMS is the following:

xSl+—l-, y21+—1-
y X
xe X=1[01,10], ye Y =[0.1, 10]

ACRONYM'’s CMS (somewhat simplified) finds:

Ly —1—
inflY) 1+ 1
sup(X)
When the CMS reaches the embedded sup(X) it recognizes the recursion and then uses the numerical

supX) =1+

bound 10 to produce:

1
sy =1+ 1001~

However, our network computation iterates to the (analytically) best supremum:

191

supX) = 1.62 = ﬂ—;—\lé)-

Much of the work of analysing the constraints is done once through a compilation of prototypical
algebraic constraints. Then, as new constraints are formed at run-time, the compile-time results can be re-

used, with the appropriate numerical values from the image and model data substituted.

3.1 Structure of the network

The implementation uses a network of nodes and connections. There are two types of nodes: value

nodes and operation nodes. The value nodes acquire numerical SUP and INF bounds on their associated



algebraic variable or expression. The bounds are computed from connections with other value nodes or
with operation nodes that receive inputs from other value or operation nodes. Each time new bounds are
computed the change propagates over the network causing other nodes to acquire new bounds. The
changes become smaller as the bounding intervals shrink and the network converges asymptotically to a
stable state in which the desired bounds on variables or expressions of interest can be extracted from the

associated value nodes.

Operation nodes execute a simple unary or binary function and take their inputs from value nodes
and other operation nodes. The operators are: "+", "-", "*", "[".unary_minus, sup_of_max, sup_of _min,
inf_of_max, inf_of_min, extract_sup, extract_inf, constant, cos, sin, sqrt, abs, "<", "S", ">", "2", and, or,

not, select, delay, guard and enable.

3.2 Network Creation

A network is constructed by linking together several network fragments or modules. Each module
represents a particular instance of a prototypical constraint type and there may be more than one module of
the same type in the network. The structure of modules is defined by an off-line compilation process.
Consequently the on-line program that uses the network only has to connect instances of the modules in an

appropriate way to solve the problem at hand.

A module is compiled from a list of algebraic inequalities such as:

xSy+z
The inequalities are written by a human programmer after due consideration of the problem that the
module solves. An example from geometric reasoning is finding the rotation that maps one pair of direc-
tion vectors to another. The relations between all the variables occurring in the problem are expressed as
inequalities (equalities being split into pairs of inequalities). Products such as:
x*y<z
are split into four inequalities involving the signed reciprocal (srecip) function:
x < z * srecip(y)

y € z * srecip(x)



x 2 -z * srecip(~y)
y 2 —z * srecip(~x)

This function has the definition:

) 1/x ifx>0
srecip(D) =\ yndefined if x <0

and consequently has the effect of turning off and on constraints according to the sign of its argument.
Explicit conditionals are also possible such as:
if(z=0)thenx<y
meaning;
if (inf(z) < 0 < sup(z)) then sup(x) is bounded by sup(y)
Recursive constraints are allowed such as:
221-y

which becomes:

x2 (1 - y) * srecip(x)

x < (y? - 1) * srecip(-x)

A parallel network-based case construction is needed because some operations produce different out-
put according to conditions on their input. Two special operation types were used for introducing a case
structure. One is the enable operation, a function of a test argument and a result argument whose output is
the result only if the test is true. The other is the select operation that returns the first of its arguments to
become defined. Using these, the enable operation turns on and off results according to their applicability
(as determined by the test argument), and the select operation passes through the first defined value. The
logical value of the test argument is generated by using a numerical comparison operator (eg. "< ora
logical operator (e.g. and). The enable operator is used with guards and delays to ensure correct synchroni-
sation.

Ordinarily, an operator will not be evaluated until all arguments have values. This causes problems
when using operators that may not evaluate, such as the srecip function. A problem also occurs at initial
startup, because not all operators have all arguments ready, which may block the evaluation of other nodes,

which may in turn block the evaluation of the operator, resulting in deadlock. The problem occurs often

10



because the bounds on each value node are computed by finding the maximum and minimum of (typically)

many arguments.

To solve this problem, the maximum and minimum computations are evaluated differently according
to whether the SUP or INF is desired. The sup_of_max (inf_of_min) operator does not evaluate until all
arguments are ready, because increasing the upper (decreasing the lower) bound may be necessary as other
arguments become ready, and the SUP (INF) bound is only allowed to decrease (increase). However, the
inf_of_max (sup_of_min) operator can evaluate when one argument is ready, because if the other argument

then acquires a value later, either there is no effect or the bound improves.

3.3 Network Compilation

The compilation process consists of translating real inequalities such as:

xsf
x2g
into constraints on the bounds of the corresponding interval variables:
sup(X) < sup(F)
infiX) 2 inf(G)
If f and g are expressions then the SUP and INF functions must be recursively distributed inside until they
are applied only to individual variables. Additionally, the compiler must create the network structure from
the processed equations. Value nodes are created for all variables occurring in the constraint list. These
are connected to various operator nodes that extract values from value nodes or other operators. (In an ear-
lier version of the compilation (Fisher and Orr 1988) we used a version of ACRONYM’s CMS to obtain
initial simplified bounds on the variables. However, since normally all variables are uninstantiated at com-
pilation, this step had little effect and was also time-consuming. Hence, we now just compile directly from

the constraints.)

The following is a list of the actions taken by the compiler when it encounters the specified expres-
sion type:
constant:

An operation node (with no inputs) is created that supplies the given constant.

11



variable:

An operation node is created that extracts the SUP (or INF) of the associated value node.

add:

An operation node is created that adds the results of the recursively compiled sub-expressions.

subtract:

An operation node is created that subtracts the results of the recursively compiled sub-expressions. If
sup(A-B) is desired then sup(A)-inflB) is the result and if inf{A-B) is desired the result is
inf{A)—sup(B).
max (or min):

sup(max(list)) is compiled to be max(sup(list)) (analogously for inf() and min). Thus subfragments
for each sub-expression in the list are created and linked to a series of connected binary max (or
min) nodes. Network evaluation is different for max (or min) nodes created from SUP or INF in
their use of defaults when not all arguments are evaluated (which may arise from timing delays or
alternative expressions being undefined). The INF max function returns a value if at least one argu-

ment is evaluated; the SUP max function only returns a value when all arguments are evaluated.

multiplication:
sup(AB) is expanded to:
max(inflA)inf(B), inf(A)sup(B), sup(A)inf(B), sup(A)sup(B))
and then compiled. The same for inf(AB) except max is replaced by min.
recip(E) (where E is an expression):
An enable and select expression is required for the reciprocal function. The expression selects its

output according to a test defined at compile-time and carried out at run-time. If SUP is the desired

bound, the construction is:

if infiE) > 0 or sup(E) < 0

1
infE)

then else =

If INF is the desired bound then:

12



if inflE) > 0 or sup(E) < 0

1
sup(E)

then else —oo

srecip(E) (where E is an expression):
This is the signed reciprocal function where:
) 1/x ifx>0
srecip(®) =\ undefined if x <0
If SUP is the desired bound, a network fragment is created selecting:

1
inf(E)
If INF is the desired bound then the construction is:

if inf(E) > 0 then else undefined

if inf(E) > 0 then else undefined

1
sup(E)
vt (V is a variable and n is an odd number):

A sequence of x operation nodes are created and linked to the SUP (or INF) of the variable. The out-

put of each x operation becomes the input to the next

\% (V is a variable and n is an even number):
If SUP is the desired bound then sequences of X nodes are created and linked to both the INF and
SUP of the variable and a final max node linked to the output of each sequence. If INF is the

desired bound then an enable and select construction is made:

if sup(V) < 0 then (sup(V))"
else if inf(V) > O then (inf(V))"
else 0
square_root(E) (where E is an expression):

The positive square root is assumed. If SUP is the desired bound then:

if inflE) 2 0 then sqrt(sup(E)) else undefined
If INF is the desired bound:

if inf(E) 2 O then sqrt(inf{E)) else undefined

13



Other standard functions (cos, sin, abs, eic.) are defined in a similar manner.

As the same expressions may be used more than once in different constraints in the same module, the
recursive compiler uses a previous compilation for a expression if one exists, thus avoiding duplication.
Other simplifications occur from the recognition of commutative expressions and the reduction of multiple
constraints to a single min or max function:

vie,vse, '
becomes:
v< rru'n(el, €y, ...)

To illustrate the creation of a network module, suppose we are interested in the problem:

asb-c
which entails the further constraints;

bza+c

c<b-a

Recursively applying the SUP and INF functions symbolically we find:

sup(A) < sup(B) - inf(C)
inf(B) 2 inf(A) + inf(C)
sup(C) < sup(B) — inf(A)

The compiler then produces the network shown in Figure 1. This is a trivial example; in practice

modules are larger (Section 4) and more complicated (Appendix 1).

3.4 Modularisation
The run-time program constructs and evaluates its own networks according to the problems it is
presented with, We assume that problems can be broken down into several parts each of which can be
managed by an instance of some previously compiled module. Suppose we have the following two con-
straints:
xSy-z

ysSz—-w

14



inf | sup

C B
inf | sup inf | sup

\-

Figure 1: The network fora < b ~ ¢.

A network for this problem would be constructed out of two instances of the module defined above
for the constraint type:
asb-c¢c
and connected. The modules can be thought of as black boxes with connections to the outside world. For
the first constraint the connections a—x, b—y and c¢—z are made, while for the second constraint a—y,

b—z and cow.

In practice, the networks generated as a result of geometric analysis are much more complicated.
We have identified several prototypical geometric reasoning relationships and implemented them as
geometric reasoning modules. These are described in more detail in Section 4. Thus, it is possible to
represent a geometric relation like (i.e. the transformed model vector is close to the obscrved data vector):

T(vy "vg2c

by the connection of vector transform and dot produce constraint modules, as seen in Figure 2.

3.5 Network Evaluation

The values at each operator and value node are computed using the values at the connecting nodes.
The SUP (INF) computation chooses the minimum (maximum) of each of its current bounds and its current

value. Including the current value in the calculation ensures that bounds can only get tighter. Thus if:

15
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Figure 2: Two connected modules.
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are the upper bounds on a variable a whose interval estimate is A, at time ¢, then:

sup(Ayy) = min(sup(A), ay, ay, ...)
is the updating function for the supremum of A from time t (o time t+1.

The following defines the evaluation functions for the different operation types (where a denotes the

argument of a unary function and a; and a, the arguments of a binary function).

constant:

returns a constant value

extract_sup (extract_inf):

returns the SUP (INF) of the referenced value

plus:
returns a result if both arguments are initialised:
if @) = +oo & a; = +oo then relum +oo
if @, = —o & ay = —o then retun -
if a; = +oo & a; = —o then indeterminate

if @y = —o & a4, = +oo then indelerminate

16



if only one argument is infinite then return it
else return the sum of arguments
minus:
returns a result if both arguments are initialised:
if @, = 400 & ay = +oo then indeterminate
if @, = —o & a, = —o then indeterminate
if a; = 400 & a, = —oo then return +oo
if @ = —oo & a, = +oo then return -0
if only g, is infinite then return it
if only a, is infinite then retum its negative

otherwise return the difference of arguments

unary_minus:
returns a result if its argument is initialised:
if @ = +o0 (—oo) then return —oo (400)

otherwise return the negative of the argument

times:
returns a result if both arguments are initialised:
fori,je {I1,2),i#]:
if a; = +o0 & a; > 0 then retumn +eo
if a; = +oo & a;= 0 then return 0
if a; = +e & a; < 0 then return -0
if a; = o0 & a@; > 0 then retum -co
if a; = — & a; =0 then return 0
if a; = —o & a; < 0 then retum +eo
otherwise return product of arguments
recip:

returns a result if the argument is initialised:

17



(where € relates to numerical precision)
if @ = +4oo then return +€

if @ = —o then rewm -€

if 0 < a < +¢ then return +oo

if —€ < a < 0 then return -oo

otherwise return 1/a

sup_of_max:

returns max(a;, ay) if both initialised

sup_of_min:

returns the largest of any initialised arguments

inf_of _max:

returns the smallest of any initialised arguments

inf_of_min:

returns min(a,, a@,) if both initialised

sqrt:
returns a result if a is initialised and a = 0:

if @ = +oo then return +oo otherwise return ya

cos (sim):
returns a result if the argument is initialised:

if @ = o then indeterminate otherwise return cos(a) (sin(a))

greater:
returns a result if both arguments are initialised:
if @; = —oo and a,; = —o then indeterminate
if @) = +o0 and a, = +oo then indeterminate
if a, = —oo then return false
if a; = —eo then return true

if a; = +oo then return true

18



and:

if a3 = 4o then return false
if a, > a, then return true
otherwise return false

(similarly for greatereq, less, lesseq)

returns a result if both arguments are initialised:

if both arguments are true, then return true otherwise return false

or:

returns a result if at least one argument is initialised:

if @, is not initialised then return a,

if a, is not initialised then return a,

if @y = true or a; = true then return true otherwise retum false
not:

returns a result if its argument is initialised:

if the argument is true, then return false otherwise return true
delay:

returns its argument if it is initialised:
enable:

returns the value argument if both arguments are initialised and the test argument is true
select:

evaluated synchronously or asynchronously in a MIMD processor with non-local connectivity. Ideally,

each node would be stored in a separate processor, continually polling its inputs and updating its output if

returns the value of any initialised argument (arbitrary if more than one).

The networks of modules are designed to be evaluated in parallel. The whole network could be

appropriate.



So far we only simulate the network serially. To increase efficiency each node contains a list of its
dependent nodes and when its value changes its dependents are put on a list pending evaluation. When the
change at a node drops below a preset threshold its dependent nodes no longer require re-evaluation.
When the pending evaluation list is empty the network has reached a stable state and processing can stop.

Alternatively, the network stops when inconsistency occurs (sup(V) < inf{V) for some variable V).

The purpose of the guard function is to enforce synchronisation when necessary. For example, an
enable node needs to ensure that its test argument is synchronised with its value argument. Otherwise,
problems may occur, such as when a variable in a test expression occurs at a greater expression depth than
in the result expression, thus potentially allowing an invalid result to pass through the guard before the test
disables it. Hence, we use guard nodes to "trap” certain propagating values until all other activity has
ceased, and then propagate all values through the guard nodes synchronously. While this reduces the paral-

lelism inherent in the network, in practice we find that it only adds about 10% to the cycle time.

It is easy to show that the networks must converge asymptotically, that is, not oscillate. At any time
when a new bound becomes available for some variable V, if it is a larger upper bound than the current
SUP or a smaller lower bound than the current INF then it has no effect, as it makes no sense to increase
the width of V. As the bounds can at most be equal (inconsistency occurs if they cross), each bound has a
limit so must converge. In practice, when the change in a value is below a threshold, no change is
recorded, thus forcing finite termination. We varied the propagation threshold from 10'3 1o 10'6, but this

did not significantly affect convergence times.

3.6 Implementing the Geometric Reasoning Functions

The TRANSFORM function is implemented as a network module. Considered as a black box, it has
three sets of ports to the outside world representing three positions (18 parameters in total): the position
being transformed, the transforming position and the transformed position. When operating in the context
of an evaluating network, if any two of the sets of ports receive bounds from outside, the module will
function appropriately by setting new bounds on the third set of ports. Partial bounds on all variables can

also propagate to tighten other bounds.
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The MERGE function is carried out at the nodes linking the ports from different modules. Each port is
saying something about the bounds on some variable and if two or more ports are linked then they either
agree (the bounds intersect and the intersection improves the estimate) or disagree. In the latier case, an

inconsistency has been detected - precisely what the MERGE function was designed to do.

The actions of LOCATE and PREDICT, unlike the other operations, depend on the types of models and

image entities used by the vision system and we postpone their discussion until Section 4.

3.7 Example

We illustrate the above theory with an example of estimating an object’s 3D orientation. Assume the

following (exact) model direction vectors:

m, = (-051, 083, 0.22)
m, = ( 0.68,-0.23, 0.69)

are rotated rigidly into vectors d; and d, that we then observe (without error) as:
d, = (-0.40, 0.91, 0.04)

d, = (-0.52,-0.67,051)
Because these vectors are exact, it can be shown analytically that the rotation (represented as a quaternion)

that maps m, and m; into d; and d; is:
q=(0.73,0.25,-0.62,-0.14)
Now suppose (more realistically) that we observe uncertain data vectors
D, = ([-43,-41],[ 91, 96], [ .03, .07])
D, = ([-53,-49], [-.70,-63], [ 49, 55])

These are the above exact vectors with € = 0.05 radians random error added (see Appendix 2) and
satisfy d; € D;, i = 1, 2. Evaluating a network that consists of a single module for transforming a pair of
vectors leads to the following bounds on rotation:

Q=([ .70, .76], [ 20, 30], [-71,-54], [-17,-11])
The result required 46 network update cycles with an average of 85 operation node evaluations per cycle.
In a true parallel implementation (we can only simulate) the node evaluations in each cycle can be done

simultaneously. As ¢ increases the bounds on Q diverge with q € Q, while as € tends to zero the bounds
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converge and the solution approaches the analytic result.

If we had three pairs of vectors instead of just two, there would be three different ways of pairing
them and therefore the network for this constraint could consist of three modules. This is illustrated
schematically in Figure 3 where the modules are the boxes labelled "TV2" (because the module transforms
two directions and no locations - see Section 4) and the circles are the linking external variables with "Q"
representing the rotation parameters. Adding an extra constraint to the above can only improve the bounds.

Suppose we have:

m; = ( 0.43, 0.62,-0.66)

d; = (0.66, 0.42, 0.62)

and add 0.05 radians random error to dj to obtain:

Dy = ([ .65, .66], [ .39, 46].[ 61, .67])

If we now relax the network in Figure 3 we get the tighter bounds:

Q=([.70,.76], [ 22, 29}, [-69,-55], [-.16,-.11])

A larger example is given in section 4.5.

Figure 3: Network structure for three pairs of vectors.
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3.8 Other Relevant Network Research

The use of algebraic inequalities to represent geometric constraints derives from Brooks’ ACRONYM
(Brooks 1981), as do the symbolic constraint manipulation methods. The network computation is similar to
the many relaxation or constraint satisfaction algorithms that are suitable for parallel processing. However,
it differs from relaxation algorithms in that it is not a probabilistic labelling computation and from con-
straint satisfaction in that there is reduction of an infinite continuous range of values rather than sclection
from a finite set of discrete values. While the network relies on connections between units, the computa-
tion is not in the distributed connectionist form where the results are expressed as states of the network.

Instead, the results are the values current at selected processors.

The work presented here differs significantly from two other network based geometric reasoning sys-
tems. Hinton and Lang (1985) learned and deduced positions of 2D pattemns using a distributed connec-
tionist network, whose intermediate nodes represented object position and gated connections between iconic
image and model representations. Ballard and Tanaka (1985) demonstrated a 3D reasoning network whose
nodes represent instances of parameter values and whose connections represent consistency according to
model-determined algebraic relationships. In both cases, patterns of network activity result, with the dom-
inant pattern accepted as the answer (unlike here, where the result is explicit). Both systems also simul-

taneously select a model, which is treated separately in our vision system.

Davis (Davis 1987) classified the types of constraint propagation systems. Within this framework,
the system described here is an interval label constraint machine applied over full algebraic constraints
(with some transcendental operations). His complexity analysis showed execution times may be doubly
exponential and termination may not even occur (unless forced by truncating small changes, as is done
here). However, the complexity does not appear to be a problem with our networks, presumably because
we use truncation. Davis also raised the problem of disjoint parameter intervals (i.e. where there are two
or more possible non-overlapping parameter ranges). We believe the geometry understanding embedded in
the vision program should detect this in advance (e.g. should understand n-fold symmetry) and create

separate hypotheses with only single intervals.



4. 3D Models and 3D Images

In the previous section it has been shown how SUP/INF networks can be constructed that implement
the geomeltric reasoning operators TRANSFORM, and MERGE and the data type Position. It remains to be
shown how the remaining operators, LOCATE and PREDICT, can be implemented. These operators depend on
the type of models and image data used by the vision system. Our own system has 3D models (Fisher
1986) and 3D images. The implementation of these operators for this and similar systems is the subject of
this section. For 2D images, as in ACRONYM for example (Brooks 1981), the operators must account for
projection from the camera frame onto the image plane as well as transformations from the model frames

to the camera frame.

4.1 General Constraints

Since we are dealing with 3D geometric entities the general position constraint from a match
between a model feature and an image feature involves m matched directions and n matched locations.
However, since any two locations are equivalent to a single location and one direction (plus the distance
between the two locations, which is not used here), an (m, n > 1) constraint can always be reduced to
(m+ n— 1, 1) by pairing up locations. Further, since two directions are enough to constrain rotation, an
(m > 2, n) constraint can be split into m(m — 1)/2 separate (2, n) constraints. Consequently, we lose no
generality if we only have network modules for the constraints (1, 0), (0, 1), (1, 1), (2, 0) and (2, 1).
Three matched vectors and three matched locations, for example, would be dealt with by ten (2, 1)

modules linked together.

An important point to note is that two linked modules representing constraints (m,, ny) and (mg, np)
are not, in general, equivalent to one module representing the constraint (my + my, m + ny). The
equivalence only exists when the separate constraints are individually sufficient to fully constrain the unk-
nown quantity. For example, for PREDICT, two (1, 0) constraints are equivalent to one (2, 0) constraint
because a rotated vector is completely determined by the rotation and the vector to be rotated. However,
for LOCATE, a single pair of matched vectors is mot enough to fully constrain the rotation and so the
equivalence no longer holds. Curiously, a (2, 1) module is equivalent to linked (2, 0) and (0, 1) modules,

even though neither fully constrains position. This works because rotation is fully constrained by the (2, 0)
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module from which it can be exported to the (0, 1) module where it combines with the pair of matched

locations to fully constrain translation.

Thus, to summarise, we can cope with any (m,n) position constraint with some combination of four
types of constraint: (1, 0), (0, 1), (1, 1), 2, 0). (These use the TV, TP, TVP and TV2 network modules

discussed in Section 4.3).

To illustrate the mathematics underlying one module (the TP module transforming a location) see
Appendix 1. Other less crucial modules can also be useful, such as those dealing with isotropic errors, the
conversion between quaternions and other types of rotation representations, dot products and unit vector

constraints (see Section 4.3).

4.2 Particular Constraints

Our implementation of the operators LOCATE and PREDICT depends on a catalogue of constraints
derived from all legal pairings between model and image features. For each pairing the catalogue lists:
1) what vectors to extract from the model,
2) what vectors to extract from the image,

3) what modules to use, how they link to the vectors and how they link with each other.

In PREDICTion, the position of the model (in the Camera frame) is known while some of the data vec-
tors are not. The opposite is true for the LOCATE operaior - the vectors are known and an estimate is

sought for the position. The same network solves both problems because it is inherently bi-directional.

Table 1 lists legal pairings of features in our modeling system with image features, their constraint
types and possible rotation ambiguities. Note that the boundaries of a surface patch are not part of the
patch feature but separate features themselves (as are the curve's endpoints and the volume’s bounding sur-
faces).

Ambiguities are caused by n-fold symmetric features and are handled in the vision system (rather
than the geometric reasoner) by the creation of multiple hypotheses. Each hypothesis receives a position
estimate; the erroneous ones are eventually eliminated by a lack of other hypotheses with which they can

MERGE.
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Table 1
Feature Constraint | Symme
points 0, 1) none
curves
lines (1,0 2-fold
circular arc 1, D 2-fold
ellipses (2, 1) 4-fold
surfaces
plane (1, 0) none
cylinder (1, 0) 2-fold
cone (1,1 none
| torus (1.0 2-fold
volumes
stick (1, 0 2-fold
bent stick (1, 1) 2-fold
plate (1,0 2-fold
bent plate (1,1 none
blob 3G, D 8-fold

4.3 Other Constraint Modules

The constraint modules described above are the most important ones for reasoning with 3D models
and 3D data. However other modules for further constraint types are also useful. A module that converts
pairs of locations into the direction between them (a "P2V" module) is required to reduce an (m, n) con-
straint to an (m + n — 1, 1) constraint as discussed in Section 4.1 above. Figure 11 below shows a network
containing instances of this module. We also use modules that directly handle isotropic errors, both for
directions, based on:

d’ - d 2 cos(e)

and for locations, based on:

P -p<p
where € and p are small and positive (see Appendix 2).

Modules for dealing with constraints from partially obscured features may also be needed. Con-
straints inevitably involve uncertainty in the data features (e.g. because of measurement noise), but con-
straints from obscured features also involve uncertainty about which model features correspond to the data.
For example, suppose a line of length / is observed and identified as a model line of length ly > {, so that

some fraction & = (Iy— )/ I, of the length is obscured. Clearly, there cannot be a direct correspondence



between E, and E,, the measured end-points of the line in the Camera frame, and e; and e, the line’s
end-points in the local model frame. However, the corresponding model points lie in ranges that can be
parameterised as follows: E, corresponds with e; + A(e; — ¢,) and E, corresponds with e, + € - A)e; —ep
for some A € [0, E]. This is an example of what we call type B constraints, that are characterised by
uncertainty about the model features (whereas regular, type A, constraints have no such uncertainty). To
deal with type B constraints special modules could be constructed that manage the various parameterisation
schemes. Alternatively appropriate amounts of uncertainty could be added to the model parameters (which

is the approach we have adopted).

Altogether, we have created geometric reasoning modules for the following relations:
SS - two scalers are close in value
PP - two points are close in location
VV - two vectors point in nearly the same direction
DOTS3 - the dot product of two 3-vectors is greater than or equal a scaler
UNITS3 - enforcing a unit 3-vector constraint
UNIT4 - enforcing a unit 4-vector constraint
TP - a transformation links a pair of points (the (0, 1) constraint)
TV - a transformation links a pair of vectors (the (1, 0) constraint)
TV2 - a transformation links two pairs of vectors (the (2, 0) constraint)
TT - a transformation maps from one position to a second by a third relative position
TVP - a transformation links a pair of vectors and points (the (1, 1) constraint)
P2V - a vector can be defined by two points

QW8 - a quaternion is equivalent to an axis and an angle

4.4 Binding Degrees of Freedom

Binding degrees-of-freedom is another typical visual geometric reasoning problem (Fisher and Orr
1989), such as when estimating an intrinsic linear degree-of-freedom in a prismatic robot joint. Its under-
constrained position can be modeled by aligning the degree-of-freedom with one of the coordinate axes and

then using using a variable in the reference frame translation. Then, bounds on this variable can be
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estimated by using the network method to compute its reference frame relationship relative to its main

object.

The more difficult case is a rotational degree-of-freedom, as in a robot revolute joint, which we now
consider in more detail. The problem with this case is that there is no element of the rotation specification
that exactly corresponds to the degree-of-freedom (unlike the translation case). Fortunately, the cos(8/2)

component of a rotation quaternion can be related to a joint’s rotation.

Suppose the (uncertain) object positions, Py and Py, the (exact) common axis in each model frame, x,
and x,, and two (exact) reference vectors ry and ry, again, in the model frames, are given. The reference
vectors satisfy:

X;T =XT,=0
The problem is to determine the rotation ¢ that maps r) onto rp.

The solution consists of first transforming the vectors into the Camera reference frame by using the
estimated object positions and some TV2 modules, resulting in (uncertain) transformed vectors X, X,, R;
and R,. In the Camera frame the axis vectors X; and X; should be the same (i.e. X; N X, is non-empty)
while the angle between R, and R, defines the joint angle 6. Then, another TV2 module finds the rotation
that maps R, onto R, about the common axis. This rotation is in quaternion form and to find the rotation
angle a QWO module converts the quaternion to a form involving an axis, o, and an angle, 6. This module

is based on the equations:

8 = 2cos™(go)

_ (91, 92 93)
sin(6/2)

q = (cos(8/2), sin(6/2) ®)

Figure 4 shows the network for the joint angle problem. The two TV2 modules at the top map each
pair of model vectors to a corresponding pair of scene vectors. Two of these map to the common axis vec-
tor. From these we can estimate the joint rotation quaternion Q;. This is done by the third TV2 module in
the middle of the network. It rotates the Camera frame R, vector to the Camera frame R, vector, while

maintaining the direction of the global axis vector ®.



Figure 4: Network structure for the joint angle problem.
Finally, to extract the joint angle itself, we use a QW6 module that maps a rotation quaternion (o a
(6,w) axis-angle form. Here, veclor ® is also the same as the global rotation axis, so this helps the

module. (The angular output is given in the form cos(8)).

With the following example

x,=x~(0,~1,0)
r=r+~(1,00)
P5=((0.20,-0.61,-0.45,-0.61),(0,0,0))

Pp=((0.31,-0.43,-0.39,-0.75),(0,0,0))

with small intervals (0.00001 width) the joint network estimates the rotation: cos(6)=[0.863,0.864].

4.5 A Large Network Example

Figure 5 shows the full network generated for analyzing the position of a robot in a test scene (Fisher
1989). As before, the boxes represent transformations, but there are more types used here. The TPn boxes
stand for n instances of a TP module. The circular "Jn" boxes represent three identical instances of subnet-
works allocated for transformations involving joint angles, which are omitted to simplify the diagram (each

contains 7 network modules). The core of the subnetworks was shown in Figure 4, but some additional
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modules are added 1o align reference frames. The relative positions of objects are given by the T struc-

tures, such as T _p, which represents the position of the robot in the global reference frame. These are
linked by the various transformations. Links to model or data vectors or points are represented by the

unconnected segments exiting from some boxes.

P, ¢
tve| [rp| [TT Po_r
11 Tl l
Py_r
Pr_p TT Pp_rk
/P.]—B Py_rx
TV?2 TP3 PLx_sy—"TT JZ PLK—UA
TTTT T /
Pg-—SH Pg—UA
Psg_sp—TT | Psg-so— TT| Pya_v — TT Js Pyua-L
Py;_sB Py_so Py v PyL

A

tve| [Tve| [tP2|[TV2| [TV2| [TPl[TV2| [TV2| [TP2| {TV2||TV2| [TV2||TP3
T TTTF TEIT 10TV T FTTE TTTT FITT TITT TITE W

Figure 5: Network for Robot Scene
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The top position T eC is the position of the camera in the global coordinate system, and the subnet-
work to the left and below relates calibration features in the camera frame to corresponding ones in the
global coordinate system. Below and right is the position Tg—R of the robot in the global coordinate sys-
tem and the position TC—R' of the robot in the camera coordinate system, all linked by a TT position
transformation module. Next, to the bottom left is the subnetwork for the cylindrical robot body Tg—B
The "J1" node connects the robot position to the rest ("link"”) on the right, whose position is Tg—U(' Its
left subcomponent is the rigid shoulder ASSEMBLY (SH) with its subcomponents, the shoulder body (SB)
and the small shoulder paich (SO). To the right, the "J2" node connects to the "armasm” ASSEMBLY
(UA), linking the upper arm (U) to the lower arm (L), again via another joint angle (J3). At the bottom
are the modules that link model vectors and points to observed surface normals, cylindrical axis vectors,
and central points, etc. Altogether, there are 61 network modules containing about 96,000 function nodes

(this version of the modules did not use separate UNIT3 and UNIT4 modules).

Altogether, the network structure closely resembles the model subcomponent hierarchy, and only the
bottom level is data-dependent, where new nodes are added whenever new model-to-data pairings are

made, producing new constraints on feature positions.

Evaluating the complete network from the raw data requires about 1,000,000 node evaluations in 800
"clock-periods” (thus implying over 1000-way parallelism). Given the simplicity of operations in a node
evaluation, a future machine should be able to support easily a 1 microsecond cycle time. This suggests

that an approximate answer to this complicated problem could be achieved in about one millisecond.

Because the resulting intervals are not tight, confidence that the mean interval value is the best esti-
mate is reduced, though the bounds are correct, and the mean interval values provide useful position esti-
mates. To tighten estimates, a post-processing phase progressively shrinks the bounds on the intervals.
Each position variable was examined to see if its interval was tight. If not, it was reduced by 10% and the
new bounds were then allowed to propagate through the network. For the robot example, this required an
additional 12,000 cycles, implying a total solution time of about 13 milliseconds on our hypothetical paral-

lel machine.
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Using the geometric reasoning network, the numerical results for the whole robot in the test scene

are summarized in Table 2. Here, the values are given in the global reference frame rather than in the

camera reference frame.

Table 2: Measured And Estimated Spatial Parameters

PARAMETER | MEASURED | ESTIMATED

X 488 (cm) 487 (cm)

Y 89 (cm) 87 (cm)
z 554 (cm) 550 (cm)
Rotation 0.0 (rad) 0.038 (rad)
Slant 0.793 (rad) 0.702(rad)
Tilt 3.14 (rad) 2.97 (rad)
Joint 1 2.24 (rad) 2.21 (rad)
Joint 2 2.82 (rad) 2.88 (rad)
Joint 3 4.94 (rad) 4.57 (rad)

The results of the position estimation can been seen more clearly if we look at Figure 6, which
shows the estimated robot position overlaying the original scene. Now, we are using the camera position
of the whole robot assembly plus the estimated joint angles from Table 2. While the positions of the indi-
vidual components are reasonable, the accumulated errors in the position and joint angle estimates cause
the predicted position of the gripper to drift somewhat from the true position. The iterative bounds tighten-

ing procedure described above produced this result, which was slightly better than the one-pass method.

5. Performance

In this section we discuss the performance of the network for some typical problems in geometric

reasoning.

5.1 Completeness

The SUP/INF algorithm is an incomplete decision procedure. If a network is inconsistent
(inf(V) > sup(V) for any variable V) then there is definitely no solution to the problem it is solving. How-
ever, a consistent network does not guarantee that a solution exists. This is a problem because the
network’s ability to detect inconsistent sets of constraints relates to the vision program’s ability to reject

incorrect hypotheses. We would therefore like to investigate two questions about sets of constraints that
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Figure 6: Recognized Complete Robot Using Network Method
have no solution but nevertheless lead to consistent networks: (1) the likelihood of such problems arising

and (2) typically "how close to being soluble”™ (defined below) are they.

As our test case we lake the problem of finding the rotation that maps a pair of 3D model direction
vectors into a comresponding pair of 3D image vectors. This is not only a typical problem in geometric
reasoning but also a basic one in that other constraints involving multiple matched pairs of directions and
locations can be solved by decomposing them into one or more problems of this sort (Section 4). For our
present purposes we assume the model vectors are known precisely while the image vectors are known
only within certain errors. We further assume the errors are isotropic, that is, 8 nominal vector v is

enclosed within an error cone of internal angle ¢ to yield the interval vector <v, £>1 (see Appendix 2).

A solution exists only if the model vectors can be rotated to lie within the error cones of their
corresponding image vectors. Let v; and v, be the (exact) model vectors and <v’y, €51 and <v’,, €> be the

(inexact) image vectors with isotropic error € radians. Then a solution exists if:
0'~26<6<6 +2 (ER))
where 6 = cos™!(v;'v,) and 6’ = cos™! (V';'v")

For different values of € we estimate the probabilities that randomly chosen v, and vy, k € {1, 2},

will result in a soluble problem and a consistent network by performing 1000 trials. The results are shown
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in the graph of Figure 7. (Note - this empirical probability is dcpendent on the particular implementation
of the network modules.) The squares show the probability of network convergence while the dots show

the probability of generating a soluble problem. The latter can be calculated analytically and is shown by
the curve in Figure 7 which is the function:

pE) = Y2 — 2cos(2€) + (1t — 2¢)sin(2€)) (5.2)
The probability of the network being inconsistent given that the problem has a solution is zero for any
value of €, but the probability of the nctwork being consistent when no solution exists is significant, as
secn in Figure 7.

We now define:
§= (5.3)

as a measure of "distance from solution”. The problem is soluble iff s < 1. For values of s larger than but
close 10 1 the problem is "only just” insoluble. By again performing 1000 trials (for fixed ¢ = 0.1) we com-
piled histograms of values for s in trials that were predicted by (5.1) to have no solution and lead to a net-

work state that was (a) inconsistent or (b) consistent. The results are shown in Figures 8(a) and 8(b).
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Figure 7: The probability of consistency as a function of €
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Figure 8(a) shows that there is a wide distribution of s values between s =1 and s = 12 for insoluble
problems correctly detected by the network. On the other hand, Figure 8(b) shows that insoluble problems
that the network could not detect are concentrated mostly between s=1 and s=2 and are consequently
close 0 being soluble. We therefore conclude that the network will not give misleading results when prob-

lems are far from solution and that in practice the incompleteness problem has only a limited effect.

5.2 Error Build Up

The evaluation of an expression containing intervals of finite width will always lead to a result that
also has non-zero width. In other words, if the input is uncertain then the output will be too. Since net-
works are effectively expression evaluators, involving feedback and iteration, it is sensible to ask what the
relationship is between input and output errors. We investigated this for geometric reasoning networks,
again using the module for rotating a pair of directions as an initial test case. We choose at random four
real veclors vy, vy, V' and v/, with the condition that v,'v, = v';'v'a. The condition ensures the existence
of a rotation that transforms v, into v'; and v into v’;. We then add errors to the transformed vectors v
to form interval vectors Vi, k € {I, 2). We again use isotropic errors of size € (Appendix 2) so that
V’y = <v’, €. The problem is solved by the network producing a rotation represented as an interval

quaternion Q, the volumetric error of which can be calculated as:
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where d(Q;) = sup(Q) — inflQ), ie (0, 1, 2, 3}, is the width of the ith component of the quaternion.

Results for a range of values for € are shown in Figure 9 for the following choice of vy — vi.ke (1,2):

(-.510, .830, .226) — (-.405, .913, .045)

(.680, ~.230, .696) — (-.524, -.675, .519)
The slope of the line drawn through the points is exactly 4 suggesting, as g is the product of the
widths of four intervals, that the width of each component of Q is lincarly related to the widths of the

input vectors (which are proportional to €). The line in Figure 9 is expressed by the equation:

g =(1.1e)*
Using random errors (Appendix 3) instcad of isotropic errors (V'y = <y, €>5) makes little diffcrence

except the points in Figure 9 are more scattered about

Figure 9 refers to a network that contains only one module and is therefore relatively simple. Figure
10 shows similar results for the more complicated network (shown in Figure 11) that calculates the transla-
tion and rotation between three pairs of interval location vectors: L, and L', ke (I, 2, 3}. Note the use

of "P2V" modules, each of which converts a pair of locations into a direction and a length. The following
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Figure 9: Error function g for two pairs of directions.
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Figure 10: Errors functions g and h for three pairs of locations.

Fig. 11 - see next page.

Figure 11: Network for three pairs of locations.
pairs were chosen by (a) randomly choosing the input vectors, a rotation axis, & rotation angle and a trans-
lation vector and (b) deducing the output vectors by applying the rotation and translation to the input vec-

tors (using matrix algebra).

(727, 1.32, —6.52) - (26.73, —0.18, -8.73)
(7.53, -6.59, 9.32) —» (26.28, 4.70, 8.29)

(-3.30, 1.86, —0.84) — (16.97, 6.25, —5.95)
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Fig. 14
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Isotropic errors of size i were then added to each of the output vectors and the pairs of vectors used as
input to the network of Figure 11 to solve for the rotation and translation. Here W is the radius of the error
spheres surrounding the point locations and is analogous to € for direction vectors (see Appendix 2). The
functions g (equation (5.4)) and k in Figure 10 show the variation of rotation and translation error with p.

The latter function is defined:
w = 1 da

where T, i € (I, 2, 3}, is the jth component of translation. For this network the behaviour is the same as
the simpler example above, namely a linear relation between the uncertainties of the input and output vari-

ables. The two lines in Figure 10 are:

g= 02!

h= (Tu)*
Notice the error magnification for the translation is large. This is a consequence of the way translation is

calculated after rotation depending not only on the input vector uncertainties but also on the derived rota-

tion errors and the length of the vectors being rotated.

By examining the algebraic relationships involved in the composition of reference frame module
(TT), it can be shown analytically that if each orientation component of a random position T _, has error
5 and each orientation component of a random position Tb—c has error €, then each component of the
resulting position T _ . =T, _, *T,__ has (statistical) error:

l(35.—15(8 +€)

assuming both § and € are small. This result has been verified by simulation. Figure 12 shows the empiri-
cal results, which taper off as the maximum error volume is reached. In essence, the results mean that the
output error width is about 1.7 times the input error width.
A similar analysis of the transformation of a location (TP module) shows that each translation com-
ponent has output error:
16,

n
where € is the input rotation quaternion error on each component, and L is the distance of the input point
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see next page

Figure 12: TT output quaternion error volume versus input error
from the origin. This is sensible, because small rotation errors amplify along a long baseline, to produce

larger translation errors. This result has also been verified empirically.

5.3 Non-Optimality

The width of an evaluated interval expression is sometimes larger than it need be. To be more pre-
cise, let f be a real function of a vector of real variables x = (x), X2, ..., x,) and let F be the corresponding
interval evaluation over the interval vector X = (X; X, ..., X,). The strongest statement that can be made
about the range of values of f{x) for all possible choices of x € X and the evaluation F(X) is the following
(Alefeld and Herzberger, 1983):

y=fx)|xe X, ie (1,2,..n}) c FX)
The reason for this is the appearance in the expression of variables that depend on one another, either
because the same variable occurs more than once or because variables are related through other expres-

sions. A simple example is the following (where n = 1):

fix) =

X
1+x

X=1[1,2]
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Figure 12

PREDICTED

| 2.77 =Log(16)

OBSERVED

-10 Log-log Plot of Output Versus Input Error
log(Out) = 4*log(In) + 4*1og(16/3pi)




_ 2 _[2
TLN+0,2 (2,3

{y=f)|xe X) =105, 0.67] c F(X)

= [0.33, 1]

FX)

Some expressions can be rearranged to decrease to one the number of occurrences of a particular

variable. In the above example we can write:

1
fo) = 1+x?

in which case {y = f{x) | x € X} = F(X). But such transformations are not always possible.

The geometric reasoning modules also suffer from this problem as can easily be shown. We take four

real vectors vy, vo, v'; and v, as before where v;-v, = v';-v’; and form four corresponding interval vectors:

vk = <V, 0>l
V=<' e
k e (1, 2). From these we use the network to deduce an interval quaternion for the rotation that maps the

first pair of interval vectors to the second pair. Then we reverse the process and use the same network to
estimate new vectors V", given the quaternion estimate and the unrotated vectors V. Now, if the quatern-
jon had been optimally bounded then V“; = V’; would hold and in particular A(V’,) and h(V”p) would be
identical (k is defined in equation (5.5)). In practice, the quaternion is not optimally bounded and the ratio

of volumetric errors is typically a few hundred:
h(v”k) -
h(V'D
implying a magnification factor of about 7 for the width of each vector component.
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5.4 Termination

On a parallel machine, the speed of the network is roughly proportional to the cycle frequency in our
serial simulation. In each cycle all nodes that require re-evaluation are updated once and it is these
updates that can be done in parallel. Thus the number of cycles taken for the network to terminate is pro-

portional to the run time on a parallel machine.

In practice we find termination time to be more or less independent of (a) the input errors and (b) the

threshold value.



The threshold (a small positive value) determines when termination has taken place. When the
changes between cycles are less than the threshold, evaluation halts. We found that termination time
increased by only one or two cycles (out of 50-100) as the threshold was lowered from 107 1o 107, Davis
(1987) suggested that, for the type of networks dealt with here (interval label constraint machines), termi-
nation may never occur (without a threshold) which would seem to imply that termination time should

increase (to infinity) as the threshold tends to zero.

We find that the time to convergence is mainly determined by the maximum distance between value
nodes in the network. This determines the maximum time for changes to propagate over the network and

is related to the greatest depth in the algebraic expressions whose compilation formed the network.

6. Conclusions

The methodology we have investigated is summarised here. We start with sets of algebraic con-
straints associated with particular geometric relationships. Observables are represented by variables at this
stage. These constraints are compiled into network modules where the structure of the module reflects the
structure of the expressions for the bounds. All these steps are done in an off-line process and need not be
repeated unless new constraint types are added. The on-line program solves geometric problems with net-
works created by connecting pre-compiled modules together according to the structure of each problem.
When observable variables are bound to measured values other variables are forced into consistency as the

network evaluates.

The networks implement the necessary functions of geometric reasoning for computer vision, as
identified in section 2. It has also been successfully used in a vision system to estimate object positions

and detect false hypotheses.

ACRONYM’s CMS was optimal when producing numerical bounds on single variables over sets of
linear constraints. S@nce we reproduce the symbolic reasoning in the network, only substituting data values
later, the network must have the same performance over linear constraint sets. Over non-linear constraints,
as we have here, we cannot expect optimality, but our extensions to the CMS and iterative evaluation in
the network improve the performance. We have shown that although the SUP/INF algorithm cannot

always detect that a given problem is insoluble, this defect may have limited effect in practice.
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While the error analysis given in Section S showed that errors usually do not grow too quickly, when
we look at the robot network (Figure 5), we still find a problem. In particular, it turns out that the chain of
reference frame transformations from the robot in the global reference frame (Tg—R) to the data vectors
involved in the lower arm position (below Tg—L) involve ten TV2 and three TT modules. Assuming each
has an output interval width of 1.7 times the input interval width means that the ultimate contribution of
the lowerarm evidence to the robot has an error interval width of (1.7)1 3= 1000 times the input error
interval. As the maximum output interval can be only [-1,+1] for the rotation, this implies that the input

uncertainity can be at most about 0.001, which is unreasonably strict.

However, this error analysis must also consider that many of the reference frame transformations are
the identity transformation, which create little error (and need not even be introduced into the network).
Further, though the estimates may not propagate all the way to the robot global position node, they will

help constrain more closely linked structures.

It should be noted that geometric reasoning involving a multiple joint articulated object is a
genuinely complicated problem, whereas most object recognition problems have a much flatter model
hierarchy, involving fewer compound degrees-of-freedom, if any at all.
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Appendix 1. The TP module

Here, for illustration, we write out the mathematics underlying one geometric reasoning module and
briefly describe the modifications necessary to enable its compilation into a module. The module
transforms a single location vector by a position. We use bold letters for both quaternions and vectors
leaving the context to distinguish which is meant. A pure vector x=(x,x2,x3) is equivalent to the quaternion
x=(0.%1,%2.%3), while the quaternion q=(¢-41.¢2.43) has scalar part g and vector part ©=(¢:4,43). The
symbols "*" and "" stand for the quaternion operations of multiplication and conjugation, where
I * s=(roSo — ®, * O, @, X @, + rgW, + g0, ((go, @)’ = (0, —©)), and ™" and "x" are, respectively, the
inner and cross vector products.

A position consists of a rotation q and translation t where q * qd=q'*q=1landf{,=0.Letubea

location vector and v be the transformation of u by rotation q and translation t. Then:
v=q*u*q+t (AlD)
It follows from equation Al.l that

t=v—-q*u*q



(Al.2)
u=q *(v-t)*q (Al3)

(v-t*q=q*u
From this last equation we deduce the vector equations:

ou=ov-t) (Al4)
Gv-t-u)=0x((v-t+u) (ALS)

Equations A1.1-5 constitute the underlying mathematics for the module. To prepare this as input to
the network compiler the following must be done:
write each vector (quaternion) equation as three (four) separate scalar equations and
rewrite each equation with an expression on the left as a series of equations with only a single vari-

able or a product of two variables on the left.

For example, equation A1.5 is a vector equation, the first component of which is:
qovi—t1—4y) = qx(ustvs—ts) — qx(ux+va—t)
If we are interested in bounds on o, and noting that the sign of (vi—;—u,) is not known a priori, we use

the srecip function and write:

go = (q2(ustvi—t3)—qs(uztvy—t))srecip(vi—t—uy)

qo = (qs(urrvo—t)—q(ustvy—ta))srecip(ty+u—vi)
Appendix: 2. Isotopic errors

Let v be a real direction vector of unit norm with components v, and V be a interval direction vector
with interval components V = [inf{iV}), sup(V))). If isotropic error of size € 2 0 is added to v to obtain V,
then:
V=<, e
inflV)) = cos(min(r, ¢, + €))

sup(Vy) = cos(max(0, ¢, - €))

where ¢, = cos}(vp € [0, w].
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Similarly, if p and P are real and interval location vectors respectively and if isotropic error of size

M 2 0 is added to p to obtain P then:

P=<p, >
infiPy) = pe — 1
supPY =pe + 10
Appendix: 3. Random errors

Let v be a real direction vector of unit norm with components v, and V be a interval direction vector
with interval components V, = [inf(V)), sup(Vp]. Let ey, ke {1,2,3),je (1, 2}, be randomly generated

numbers in the range [0, €). If random error of size € is added to v to obtain V, then:

V = <v, 5
inflV = max((vi - &), —1)

sup(Vy) = min((vy + €2), 1)
Similarly, if p and P are real and interval location vectors respectively, if p ke (1,2, 3),je (1,

2), are random numbsers in the range [0, p] and if random error of size | is added to p to obtain P then:
P = <p, or
inflPY = px— Mu

sup(Pp = px + M2



