EXPERIMENTS WITH A NETWORK-BASED
GEOMETRIC REASONING ENGINE

Robert B Fisher
Mark J L Orr

DAI RESEARCH PAPER NO. %31

Paper submitted to IJCAI-S9. Detroit.

Copyright (c) R B Fisher & M J L Orr, 1989.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH
5 FORREST HILL
EDINBURGH EHL 2QL
SCOTLAND UK

Experiments with a Network-Based Geometric Reasoning Enginc

Robert B. Fisher

Mark J. L. Orr

Dept. of Artificial Intelligence, University of Edinburgh, :
5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom

Abstract

Fisher and Orr (1988) described a geometric reasoning engine
based on a value passing constraint network. This paper reports
on more recent results from this research: several experiments
on detecting inconsistency between constraints, how to bind de-
grees of freedom in a revolute joint, some resuits on propagation
of error in the networks, and performance on a large three di-
mensional reasoning problem involving three revolute joints.

Keywords: geometric reasoning, three dimensional scene analysis

1 Introduction

Fisher and Orr (1988) described a geometric reasoning engine based
on value passing constraint networks. The networks are created based
on an underlying algebraic description of three-dimensional geomet-
ric relations and transformations. These networks implement the five
key visual geometric reasoning functions: locate, predict, transform,
inverse and merge (Orr and Fisher 1987). The networks also produce
tighter bounds than simply using symbolic algebra and are have greatly
improved efficiency (over, e.g. ACRONYM (Brooks 1981)).

Moreover, we observed that the forms of the algebraic constraints
tended to be few and repeated often, and hence standard subnetwork
modules could be developed, with instances allocated as new geometric
constraints were identified during model matching. For example, net-
work modules exist for constraints like: “a model vector is transformed
to a data vector” and “a data boundary must lie inside a transformed
model boundary®.

This paper describes and discusses some recent experiments and
results obtained using the networks. In particular, we describe:

e experiments with detecting inconsistency between constraints,
e how one can bind degrees of freedom in a revolute joint,

e some results on propagation of error in the networks, and

e performance of a large network with three revolute joints.

These are described individually in sections 4 through 7. We start with
a brief review of the main concepts behind the network-based geometric
reasoner:

1. evaluating algebraic constraints in a value-passing network,
2. specifying the geometric problem as algebraic constraints and

3. partitioning the networks into prototypical modules.

Acknowledgements

This work was funded by the University of Edinburgh and Alvey Grant
GR/D/1740.3. I'd like to thank J. Hallam and M. Cameron-Jones for
help with the text and work.

2 Numerical Constraint Networks

The computation implemented by an algebraic network is given by a
set of algebraic equalities and inequalities (determined by the problem
being solved). Because we are interested in estimating upper (SUP)
and lower (INF) bounds on all variables, the arithmetic relationships
are reformulated into interval form (Alefeld and Hersberger 1983).

We must then estimate the bounds on the variables, given the alge-
braic relationships in which they play a part. ACRONYM’s constraint
manipulation system (Brooks 1981) used a symbolic algebra technique
to estimate bounds on all quantities. Because this symbolic algebra
method was slow and did not always give tight bounds, a new network
approach was designed. The construction and evaluation of these net-
works was described in Fisher and Orr (1988), but a quick overview is
given now.

The basis of the network was the propagation of updated bounds,
through functional units linked according to the algebraic problem spec-
ification. A simple example is based on the inequality:

AL<B-C

By the SUP/INF calenlus (e.g. Brooks 1981), the upper bound of A is
constrained by:

SUP(A) < SUP(B) - INF(C)
as are the lower bound of B and upper bound of C:
INF(B) > INF(A) + INF(C) SUP(C)< SUP(B) - INF(A)

Thus, one can use the value of SUP(B) — INF(C) as an estimated
upper bound for A, etc. These reiationships are used to create the
network for this single inequality, which is shown in Figure 1. As new
bounds on B are computed, perhaps from other relationships, they
propagate through the network to help compute new bounds on A and
C.

There are two advantages to the network structure. First, because
values propagate, local improvements in estimates propagate to help
constrain other values elsewhere. Even for just local problems, con-
tinued propagation until convergence produces better results than the
symbolic methods of ACRONYM. Second, these networks have a nat-
ural wide-scale parallel structure (e.g. 1000+) that might eventually
lead to extremely fast evaluation. One disadvantage is that all bound-
ing relationships must be pre-computed as the network is compiled,
whereas the symbolic approach can be opportunistic when a fortuitous
set of constraints is encountered.

For a given problem, the networks can be complicated, particularly
since there may be both exact and heuristic bounding relationships.
For example, the network expressing the composition of two 3D refer-
ence frame transformations to give a third contains about 2000 function
nodes (of types '+, '-*, ‘**, ¢/*, ‘sqrt’, ‘max’, ‘2’, ‘if’, etc.}. Though the
network is formulated for parallel evaluation, simulated serial evalua-
tion is also fast, because small changes are truncated to prevent trivial
propagations, unlike in other constraint propagation approaches (see
Davis 1987). Convergence is guaranteed (or inconsistency detected)
because bounds can only tighten (or cross) and there must be a mini-
mum change for propagation to occur.

3 Geometric Reasoning Networks

The key geometric reasoning data type for high-level computer vision
is the position, that represents the relative spatial relationship between
two visual features (e.g. world-to-camera, camera-to-model, or model-
to-subcomponent). A position consists of a 3-vector representing rela-
tive translation and a unit quaternion (4-vector) representing relative
orientation (of the form (cos(6/2), sin(8/2) @) for a rotation of § about
the axis).

Figure 1: Small Constraint Network Example

The key geometric relationships concern relative position and have
two forms - exact and partially constrained. An example of an exact
form is: let object A be at global position T,—a = (Fa,ta), (rotation
Ta and translation ¢4) and object Bbeat Ty_g5 = (Fap,tap) relative
to A. Then, the global position of B is:

Tyop=Ty_a*Ta_p =(rapera,rapeta srip +tap)

where « is the quaternion multiplication operator and “’” is the quater-
nion inverse operator.
A partially constrained position is given by an inequality constraint:

taz 2 50

which means that the z component of A’s global position is at least 50.
Such a constraint might arise from some a priors scene knowledge, or
from observation of a fragment of a surface.

Other relationships concern vectors or points linked by a common
transformation, as in T0 = th, or the proximity of points or vectors:

[B1— P2l <e

Sets of these constraints are generated as recognition proceeds.

Next, we would like to estimate the values of the constrained quan-
" tities {e.g. object position) from the known model and data values and
their relationships from a set of constraints. Alternatively, we would
like to determine that the set of constraints is inconsistent, so that the
hypothesis can be rejected.

A complication is that each data measurement may have some error
or uncertainity, and hence the estimated values may also have these.
Or, a variable may be only partially constrained in the model or by a
prioriscene information. Hence, each numerical quantity is represented
by an interval and is bounded using the network methodology described
in section 2.

The creation of the networks is time-consuming, requiring a sym-
bolic analysis of the algebraic inequalities. Fortunately, there is a nat-
ural modular structure arising from the types of problems encountered
during scene analysis, where most geometric constraints are of the type
described above. Hence, it is possible to pre-compile network modules
for each relationship, and merely connect a new instance of the module
into the network as scene analysis proceeds. To date, we have identified
and implemented network modules for:

S8 - two scalers are close in value

PP - two points are close in location

VYV . two vectors point in nearly the same direction
DOTS - the dot product of two 3-vectors is above a scaler

UNITS - enforcing a unit 3-vector constraint

UNITA - enforcing a nnit 4-vector constraint

TP - a transformation links a pair of points

TV - a transformation links a pair of vectors

TV2 . a transformation links two pairs of vectors

TT - a transformation maps from one position to a second
by a third relative position

P2V - a vector can be defined by two points

QWY - a quaternion is equivalent to an axis and an angle

For example, the UNITS module is defined by the following con-
straints between the components of a vector (P24 Pys p:):

pi = (1-p? - pd)/p;

[pi|<\/1-p3-p?
[pi IS 1.7321- |p, | — | p |
| pi |< 1.4143— | p; |

I'n <1

We now include a simple example of network use. Suppose sub-
components B and C are rigidly connected to form object A. Given the
estimated positions of the subcomponents in the global coordinate sys-
tem, T,_p and T,_¢, and the transformations between the object and
subcomponent coordinate systems, Ta_p and Ty_.;, then these can be
used to estimate the global object position, T,_ 4, using two instances
of the “TT" module listed above. Figure 2 shows this network. Notice
that each subcomponent gives an independent estimate of Ty—a, g0
that the network keeps the tightest bounds on each component of the
position. Any tighter resulting bounds then propagate back through
the modules to refine the subcomponent position estimates.

Rigid Subcomponent Hierarchy Corresponding Geometric Network

A T,
\\
A\
Ta_p \\.\ Taze Ta_o TT| |TT Ta_r
\\
B c Tg]— o T,,_,;

Figure 2: A Simple Geometric Reasoning Network

4 Binding Degrees of Freedom

Binding degrees-of-freedom is a typical visual geometric reasoning prob-
lem, such as finding the positional parameters, as above. Another ex-
ample is estimating an intrinsic linear degree-of-freedom, as in a pris-
matic robot joint. Its underconstrained position can be modeled by
using a variable in the reference frame translation. Then, bounds on
this variable can be estimated by using the network method to compute
its reference frame relationship relative to its main object.

The more difficult case is a rotational degree-of-freedom, as in a
robot revolute joint, which we now consider in more detail. The prob-
lem with this case is that there is no element of the rotation specification
that exactly corresponds to the degree-of-freedom (unlike the transia-
tion case). Fortunately, the cos(6/2) component of a quaternion can
be related to a joint's rotation. Figure 3 shows how to exploit this
cos(8/2) relationship in a subnetwork that solves the problem.

The key subcomponents are B and D, with their estimated global
positions T,_p and-T,_p. From the model, we know which vector
in each of their local reference frames is the axis of rotation (azssb
and azisd). Also, from the model we have reference vectors, refb and
refd, such that when they are aligned, the rotation is sero. These two

positions and four vectors are inputs into the joint angle subnetwork,
at the top of figure 3. .

The two TV2 modules at the top map each pair of model vectors
to a corresponding pair of scene vectors. Two of these map to the
common axis vector. From these we can estimate the joint rotation
in quaternion rotation form. This is done by the third TV2 module
in the middle of the network. It rotates the global outrefb vector to
the global outre fd vector, while maintaining the direction of the global
axis vector jotntazis.

Finally, to extract the joint angle itself, we use a QW& module that
maps a rotation quaternion to a (§,&) axis-angle form. Here, vector @
is also the same as the global rotation axis jotntazis, so this helps the
module. (The angular output is given in the form cos(6)).

The following is an example of the joint network:

aztisb = azisd = (0,-1,0)

refb=refd = (1,0,0)

T,_p = ({0.20, —0.61, -0.45, —0.61), (0,0, 0))
T,-p = ((0.31, ~0.43, -0.39, -0.75), (0,0, 0)}

with very small intervals (0.00001 width) correctly gives an estimated
rotation: cos{d) = [0.863, 0.864].

"f‘_J P;-o avnd amb P8 by
(r. (V3 a’p 1)

e N S

TZT TI7

| S— —_—

| TV2 i Tva
i e
anteld - B il

! _“ hal¥2 Y w .

Pieat

Q

Qo —— w
&

Figure 3: Revolute Joint Subnetwork

~ a —
v ,-a e
\% o bl
a8 . ¥ /
v
n
rd jod ~
S z
Ao }6 - //
4% a v
2
£ NETWORK
> aw - ~ a &
- =
3 4 2 THEQORY
< :/ ”
T ..
v o] - -
(o) ~
& z
¢/
2o/
ne 12 e 76 5.8 1.c
| FROR /eaDIANS)

Figure 4: The probability of consistency as a function of ¢

5 Detecting Inconsistency

The bound estimation algorithm is an incomplete decision procedure.
If a network is inconsistent (INF(V) > SUP(V) for any variable V)
then there is definitely no solution. However, a consistent network
does not guarantee that a solution exists. This is a problem because
the network’s ability to detect inconsistent sets of constraints relates to
the vision program’s ability to reject incorrect hypotheses. We would
therefore like to investigate two questions about sets of constraints that
have no solution but that nevertheless lead to consistent networks: (1)
how likely are such problems and (2) typically *how close to being
soluble” are they.

As our test case we take the problem of finding the rotation that
maps a pair of 3D model direction vectors into a corresponding pair of
3D image vectors. This is not only a typical problem in geometric rea-
soning but also a basic one in that other constraints involving multiple
matched pairs of directions and locations can be soived by decomposing
them into one or more problems of this sort. For our present purposes
we assume that the model vectors are known precisely while the image
vectors are known only within certain errors. We further assume the
errors are isotropic, that is, a nominal vector & is enclosed within an
error cone of internal angle ¢ to yield the interval vector < g,e>;p.

A solution exists only if the model vectors can be rotated to lie
within the error cones of their corresponding image vectors. Let o,
and % be the (exact) model vectors and < #,¢ >; and < U5,€ >y
be the (inexact) image vectors with isotropic error ¢ radians. Then a
solution exists if:

cos T o) - 2¢ < cos™ T o By) < cos™H{T) o Ty) + 2¢

For different values of ¢ we estimate the probabilities that randomly
chosen vectors, will result in a soluble problem and consistent network
by performing many trials. The results are shown in the graph of figure
4. The squares show the probability of network convergence while the
dots show the probability of generating a soluble problem. The latter
can be calculated analytically and is shown by the curve in figure 4
which is the function:

p(() = ;('Z - 2503(2() + (7" - 25)3"‘(2£”

The probability of the network being inconsistent given that the prob-
lem has a solution is sero for any value of ¢, but the probability of the
network being consistent when no solution exists is significant as figure
4 shows.

We now define:
|6 4]

2e
as a measure of “distance from solution”. The problem is soluble iff
s < 1. For values of s larger than but close to 1 the problem is “only
just” insoiuble. By again performing many trials {for fixed ¢ = 0.1)
we compiled histograms of values for s in trials that were predicted by
the above to have no solution and led to a network state that was (a)
inconsistent or (b) consistent. The results are shown in figure 5.

Figure 5 part (a) shows that there is a wide distribution of s values
between s = 1 and s = 12 for insoluble problems correctly detected
by the network. On the other hand. part (b) shows that insoluble
problems that the network could not detect are concentrated mostly
between s = 1 and s = 2 and are consequently close to being solu-
ble. We therefore conclude that the network will not give misleading
results when problems are far from solution and that in practice the
incompleteness problem has only a limited effect.

6 Propagation of Uncertainty

Because each numerical quantity is represented as an interval, and be-
cause most geometric calculations involve several arithmetic functions,
it is poesible for error intervals to grow as they propagate through the
network. lence, we examine some of the numerical performance of the
network modules. This section discusses resuits for two key modules,

™R L) e Ty UG

no |
r - (@)

%0
[}

|
0 - R

(6)

) m
0 !

0.0 2.0 %.0 60 3.0 0.0 12.0

Figure 5: The distribution of s for insoluble problems with (a) incon-
sistent and (b} consistent networks

By examining the algebraic relationships involved in the compos:-
tion of reference frame module (TT), it can be shown analytically that
if each orientation component of a random position T—p has error &
and each orientation component of a random position Tp—c has error ¢,
then each component of the resulting position Ty = Ty_p * To—c has
(statistical) error:

16(6 + ¢)
3r
assuming that both § and ¢ are small. This result has been verified by
simulation. Figure 6 shows the empirical results, which taper off as the
maximum error volume is reached. In essence, the resuits mean that
the output error width is about 1.7 times the input error width.

A similar analysis of the transformation of a location (TP module)

shows that each translation component has output error:

16Le
g

where ¢ is the input rotation quaternion error on each component, and
L is the distance of the input point from the origin. This is sensible,
because small rotation errors amplify along a long baseline, to produce
larger translation errors. This result has also been verified empirically.

We have not found an analytic form for the error in joint angle

estimation, as a function of input position error, but empirical results

T T T
2 1 n

PREDICTED

| 277 zLoptier

OBSERVED

Log-tog Plit ot Quiput Versus Inpot B reor

fogtthuty = 4*loglny + 2 IoetItidpo

Il 1 1

Fienre & TT antnut anaternion error volume versus input error

show that the output error varies approximately linearly with input
error and has magnitude about 5.5 times as big. The results were
generated by perturbing each component of Ty_p and T,_p by an
error ¢ for a randomly chosen rotation, and then looking at the output
error of the cos(f) rotation estimate. The resuits also show that the
error reaches a maximum when the input error reaches about ¢ = 0.18,
so the input positions need to be somewhat constrained for joint angle
estimation to work.

Figure 6 also show that there is some variability in the results (be-
sides the underlying trend) which is undesirable. One contributor to
the problem is several special cases to the TV2 module that solve for
the rotation using a different set of bounds from the main case, and
hence have different numerical properties.

7 A Large Network Example

Figure 8 shows the full network generated for analyzing the position
of a robot in a test scene. As before, the boxes represent transfor-
mations, but there are more types used here. The TPn boxes stand
for n instances of a TP module. The circular “Jn” boxes represent
three identical instances of subnetworks allocated for transformations
involving joint angles, which are omitted to simplify the diagram (each
contains 7 network modules). The core of the subnetworks was shown
in figure 3, but some additional modules are added to align reference
frames. The relative positions of objects are given by the T structures,
such as T,_pr, which represents the position of the robot in the global
reference frame. These are linked by the various transformations. Links
to model or data vectors or points are represented by the unconnected
segments exiting from some boxes.

The top position T,_. is the position of the camera in the global
coordinate system, and the subnetwork to the left and below relates
features in the camera frame to corresponding ones in the global co-
ordinate system. Below and right is the position Ty_p of the robot
in the global coordinate system and the position T>—_r, of the robot
in the camera coordinate system, all linked by a TT position trans-
formation module. Next, to the bottom left is the subnetwork for the
cylindrical robot hody T,_g. The “J1” node connects the robot posi-
tion to the rest (“link”) on the right, whose position is Ty_px. Its left
subcomponent is the rigid shoulder ASSEMBLY (SH) with its subcom-
ponents, the shoulder body (SB) and the small shoulder patch (SO). To
the right, the “J2" node connects to the “armasm” ASSEMBLY (UA}),
linking the upper arm (U) to the lower arm (L), again via another joint
angle (J3). At the bottom are the modules that link model vectors and
points to observed surface normals, cylindrical axis vectors, and central
points, etc. Altogether, there are 61 network modules containing about
96,000 function nodes.

The network structure closely resembles the inodel subcomponent
hierarchy, and only the bottom level is data-dependent. There, new
nodes are added whenever new model-to-data pairings are made, pro-
ducing new constraints on feature positions.

Evaluating the complete network from the raw data requires about
1,000,000 node evaluations in 800 “clock-periods” (thus implying over
1000-way parallelism). Given the simplicity of operations in a node
evaluation, a future machine should be able to support easily a 1 mi-
crosecond cycle time. This suggests that an approximate answer to this
complicated problem could be achieved in about one millisecond.

Because the resuiting intervals are not tight, confidence that the
mean interval value is the best estimate is reduced, though the bounds
are correct, and the mean interval values provide useful position es-
timates. To tighten estimates, a post-processing phase progressively
shrinks the bounds on the intervals. Each position variable was ex-
amined to see if its interval was tight. If not, it was reduced in size
by 10% and the new bounds were then allowed to propagate through
the network. For the robot example, this required an additional 12,000
cycles, implying a total solution time of about 13 milliseconds on our
hypothetical parallel machine.

Using the geometric reasoning network, the numerical results for
the whole robot in the test scene are summarised in Table 1. Here, the
values are given in the global reference frame rather than in the camera
reference frame.

Table 1: Measured And Estimated Spatial Parameters
PARAMETER MEASURED ESTIMATED
X 488 (cm) 487 (ecm)
Y 89 (cm) 87 (cm)
A 654 (cm) 560 (cm)
Rotation 0.0 (rad) 0.038 (rad)
Slant 0.793 (rad) | 0.702(rad)
Tilt 3.14 (rad) 2.97 (rad)
Joint 1 2.24 (rad) | 2.21 (rad)
Joint 2 2.82 (rad) 2.88 (rad)
Joint 3 4.94 (rad) 4.57 (rad)
Figure 7: Recognized Complete Robot Using Network Method
Tr-p i Th-Lk
Tyt Ty-rk
/\\
Trx-tra

Ty-sn

e el

gUA

Tira- 177 % Tya-L
I, To-e

Ty_s0 -

U
V2 ITP2I

Figure 8: Robot Scene Geometric Reasoning Network

‘TP3

The results of the position estimation can been seen more clearly if
we lock at Figure 7, that shows the estimated robot position overlaying
the original scene. Now, we are using the camera position of the whole
robot assembly plus the estimated joint angles from above. While the
positions of the individual components are reasonable, the accumulated
errors in the position and joint angle estimates cause the predicted
position of the gripper to drift somewhat from the true position. The
iterative bounds tightening procedure described above produced this
result, which was slightly better than the one-pass method.

8 Discussion

We have seen how the network methods can detect inconsistency and es-
timate degrees-of-freedom. From the examples given, it is obvious that
this network approach can solve complex geometric reasoning problems,
has an incremental modular structure and has potential for wide-scale
parallelism. Unfortunately, after experience with use of the network
approach, it has become obvious that there are also problems, partic-
ularly when working with noisy data.

One inherent problem concerns the ambiguity in the quaternion ro-
tation representation, as the rotation (go, 91, 92, q3) is equivalent to the
rotation (—go, —q1, =92, —q3). When coupled with the interval arith-
metic, sometimes the bounds on terms cannot choose between alterna-
tives, producing unnecessarily large bounds. For example, the go term
may acquire a bound |—a — ¢, +a + €|, when the bound [+a — €, +a + ¢
may be equally satisfactory. It is not possible to require that go > 0
always, because the composition of some rotations satisfying this con-
dition may produce a rotation that violates this (using the standard
quaternion rotation formulation). A related problem also occurs with
a tolerance ¢ about gn terms near one, creating intervals {1 — ¢, 1] and
[=1,-1+¢|.

These problems suggest that the model-based reasoning program
may have to analyze the resuits and occasionally split or introduce al-
ternative cases, given an understanding of the representation problems.

While the error analysis given in section 6 showed that errors usually
do not grow too quickly, when we look at the robot network (Figure
8), we still ind a problem. In particular, it turns out that the chain of
reference frame transformations from the robot in the global reference
frame (T,_p) to the data vectors involved in the lower arm position
(below T,_.) involve ten TV2 and three TT modules. Assuming each
has an output interval width of 1.7 times the input interval width means
that the combined contribution of the lowerarm evidence to the robot
has an error interval width of (1.7)!% = about 1000 times the input
error interval. As the maximum output interval can be only [-1,+1] for
the rotation, this implies that the input uncertainity can be at most
about 0.01, which is unreasonably strict.

However, this error analysis must also consider that many of the
reference frame transformations are the identity transformation, which
create little error (and need not even be introduced into the network).
Further, though the estimates may not propagate all the way to the
robot global position node, they will help constrain more closely linked
structures.

It should be noted that geometric reasoning involving a multipie
joint articulated object is a genuinely complicated problem, whereas
most object recognition problems have a much flatter model hierarchy,
involving fewer compound degrees-of-freedom, if any at all.

A final problem posed by the interval approach is that of finding the
d4hest” estimate for a parameter, when the intervals are large, partic-
ularly with rotation parameters. While integrating enough randomly
distributed errors will cause the widths of the intervals to converge to
a “correct” answer, we seldom have more than a few measured values
(e.g. surface normals, curvature axes). Consequently, a statistical tech-
nique (e.g. Durrant-Whyte 1987) or a final least-squared error position
refinement step also seems attractive, though they might have problems
handling rotational degrees-of-freedom.

Though research on the efficient use of these networks is continu-
ing, problems overcome by the new technique included the bounding
of transformed parameter estimates and partially constrained variables
and effective detection of geometric inconsistencies. The network mod-
ule decomposition means that networks can be constructed incremen-
tally as scene analysis proceeds. The network also has the potential for
large scale parallel evaluation. This is important because a consider-
able portion of the processing time in three dimensional scene analysis
is spent doing geometric reasoning.

Bibliography

1. Alefeld, G. and Herzberger, J., 1983, Introduction to Interval
Computations, Academic Press.

2. Brooks, R.A., 1981, “Symbolic reasoning among 3-D models and
2-D images”, Artificial Intelligence, Vol 17, p285.

3. Davis, E., 1987, “Constraint Propagation with Interval Labels”,
Artificial Intelligence, Vol 32, p281.

4. Durrant-Whyte, H.F., 1987, “Uncertain geometry in robotics”,
Proceedings of the IEEE Conference on Robotics and Automa-
tion, vol.2, p851.

. Fisher, R.B., 1989, From Surfaces to Objecta: Computer Vision
and Three-Dimensional Scene Analysis, John Wiley and Sons,
London, 1989.

(%23

6. Fisher, R. B., Orr, M. J. L., 1988, “Solving Geometric Constraints
in a Parallel Network”, Image and Vision Computing, Vol 6, No
2.

7. Orr, M.J.L. and Fisher, R.B., 1987, “Geometric Reasoning for
Computer Vision”, Image and Vision Computing, Vol 5, p233.

