SURFACE TRACKING WITHIN THREE
DIMENSIONAL DATASETS USING A
GENERALISED MESSAGE-PASSING
SUB-SYSTEM

M G Norman
R B Fisher

DAI RESEARCH PAPER NO. 387

In Developments using Occam. Ed. Kerridge.
I0S Publishers, Amsterdam, 1988.

Copyright (¢) M G Norman & R B Fisher, 1988

Surface Tracking within Three Dimensional Datasets
Using a Generalised Message-passing Sub-System

M.G. Norman R.B. Fisher
Department of Physics Department of Artificial Intelligence
University of Edinburgh University of Edinburgh

Abstract

This paper describes an implementation of an efficient surface tracking operation within three
dimensional medical images on a transputer network. The operation is an instance of a more
general class, where processing is widely localised (but not global) within a dataset that itself
must be distributed across a network of processors, because of size and a need to distribute
processing. The communications strategy used in the program is essentially independent of the
application and has been abstracted to form a general purpose communications harness.

Three dimensional medical images are analogous to two dimensional images stacked on top of
each other. Surface tracking within these images spreads out unpredictably from a seed point
connecting new points according to purely local criteria.

It is not possible to divide the data between processors according to the simple approaches
used in dividing two dimensional images, not least because the images are three dimensional
whereas four-connected transputers tend to form two dimensional networks. In addition the
surface tracking operation is local, and efficient parallelisation requires that many processors
are active when processing is occurring in only a small part of the dataset. The quantity of
data also entails distribution.

The above considerations mean that the distribution of data between processors is relatively
complex. Hence, as the surface tracking (and other actions) occurs, communications must pass
between processors which are not necessarily nearest neighbours in the processor network.

To support this, a double buffered communications harness was developed to route messages
across an arbitrary network of processors. Message routing is performed along the shortest
route(s) across the processor network. Decisions are made locally at each processor, and take
into account the recent loading of the respective channels. There is also a facility to use the
space in the double buffering of the surrounding network if the local buffering at any
processor becomes full.

Each processor generates in parallel a representation of the network during the initial stages of
the program by searching the physical configuration of processors on which the program has
been implemented. It uses this information to route messages between processors, making the
calls to the communications harness completely independent of processor configuration.

Introduction

Over the last few years there has been a great deal of interest in the possibility of three
dimensional graphical presentation of medical images. 1:2:3 This paper concentrates on the data
distribution and interprocessor communication required to solve this problem on arrays of
transputers. Three medical diagnostic tools (magnetic resonance imaging, positron emission
tomography and computerised tomography) produce tomographic or three dimensional images.
These images are analogous to two dimensional images stacked on top of each other, and
correspond to the measured intensity of various parameters within the space being imaged.
Each stacked image is referred to as a section, and image elements (which are considered to
be three dimensional) are referred to as voxels.

Although there are many different ways of generating graphical three dimensional presentations
of such datasets. Our research has concentrated on the approach of identifying surfaces

!

within the dataset and using conventional three dimensional graphicel techniques of polygon
display with hidden surface removel and shading to display the detected surface.

Operators for surface detection within three dimensional datasets have been develo?cd by
extending two dimensional edge detection operators such as the Sobel 3:4.5.6 Canny 7.8 and
Walsh based 9% operators to detect gradients in three dimensions. Such operators measure the
sirength of surface and the orientation of surface at a given voxel within the dataset.

In order to generate a representation of a continuous surface for polygon based display from
such measures of surface intensity it is necessary to track surfaces within the dataset.
Tracking is a purely local process where neigbbours of voxels which have been found to be
on the surface being generated are considered for inclusion in the surface. Neighbours will be
included in the growing surface if:

1. The detected surface strength is greater than some threshold.
2. The detected surface orientation metches the orientation of their parent voxel.

3. The intensity of the deta bounded by the surface is consistent with & locally weighted
average of intensities of bounded data.

There remeins, of course, the problem of determining the first voxel which to be included in
the surface. This is supplied interactively by the user who specifies a voxel which is
considered to be on a surface, and the program finds all the voxels which form a surface
continuous with that voxel.

To simplify the problem of comparing a neighbour with its parent, and also to reduce the
Space requirement for queues etc. every immediate neighbour of a voxel is considered for
inclusion before any more distant neighbour. The result is analogous to a breadth first search
through the dataset for all voxels which are on the surface.

(2102
11l2]
112

o

1]12]
12][2]

NN NI N ITNO

2
1
[1
1
2

NN —IIN

Fig 1: Surface tracking from & point on a flat surface:
Generations of a breadth first search process.

With such a surface tracking algorithm all the processing is local to neighbourhoods of voxels
under consideration. but that initially, at least. processing is restricted to & small part of the
dataset which is close to the seed voxel. In order to visualise the way in which the
processing spreads, it is useful to consider the case of surface tracking of a sphere within the
dataset. Ignoring the discrete nature of the data, the spread of processing may be visualised
&8s a circle moving across the surface of the sphere starting at the seed point. Each point on
the advancing circle may only be determined by consideration of points closer to the seed
point, and the breadth first nature of the tracking process ensures that no part of the circle
may advance at a faster rate than any other point.

S

Distribution of Data

The large size of medical tomographic dataselts mean that in any practical transputer based
syslem, the data must be distributed between processors. Al present there is simply not
enough available RAM on each processor to store the whole dataset. The division of
processing between processors must therefore exploit some form of geometric parallelism.
Simple approaches to geometric parallelism within three dimensional datasets would assign to
each processor & single contiguous portion of the dataset but it is found to be inefficient to
use such a simple data distribution. The surface tracking algorithm is an instance of a
general class of algorithm identified by Fox 10 p¢ asynchronous but spatially connected. where
the flow of processing within a computation space is determined by the processing itself. To
efficiently divide the processing between processors for such a computation more complex
approaches are required.

In determining the optimal assignment of data to processors for & three dimensional image
processing package it was also necessary to consider operations other than surface tracking.
Examples of such operations were global smoothing and thresholding operations where the
whole of the dataset was to be operated upon. And two dimensional display operations where
a single section was to be operated upon. The problems of moving the large datasets among
processors between operations seemed to indicate a single assignment of data should be made
for all the operations which were to be performed upon the data. The approach to distributing
data which was implemented centered around partitioning the dataset and allocating many
spatially separated blocks to the individual processors according to certain constraints

1. The proportion of the dataset assigned to each processor was approximately egual.
2. The proportion of each section assigned to each processor was epproximately equal.
3. The blocks of data assigned 1o each processor were widely distributed in the dataset.

The optimal grain-size of the scattering is critically dependent upon the relative overheads of
processing within a block and communicating between processors al the boundaries of each
block. For twenty five processors processing a dataset of 128X128x12 voxels, a block size of
8x8x4 voxels was chosen. Each block was supplied along with a shell of vozxels around it
one voxel thick to allow local surface-detection operators to be eapplied witbout any
communication between processors to which adjacent blocks were assigned. As an aid to
improving the levels of processor loading during surface tracking it was decided to stagger the
block origins between layers in the Z dimension. This results in each block being face-
comnected to one block across four of its six faces, and to four blocks across each of the
other two faces. Each face—connected neighbouring block was assigned to a different processor.
and to a different one to that to which the block itself was assigned.

b J ﬂ /k
M ,: A |
\ . /II=H/ e

c "~ 7
\ E, ;‘\ ' l\ Wiy 9
! '\ \ : f\ "\T 2T /

N,
\

¢ e i ’/,h
z AN v
' 7

X

Fig 22 The assignment of data to processors
Each of the blocks shown contains §x8X4 voxels in the X, ¥, 2 dimensions.
All the blocks shown are assigned to different processors.

3

Communications Betwesn Processors

The surface tracking operation, as it tracks across boundaries of blocks, requires
communications between the processors to Wwhich those blocks have been assigned. The
distribution of dete outlined above clearly aims to have each block of data face-connected to
blocks of date assigned to twelve distinct processors, each of which is different to the
processor to which the block is itself assigned. Each processor may therefore be forced to
communicate with twelve other processors., which may not be merely its nearest neighbours in
an array of processors. In advance of the program running and such parameters as the size
of the dataset being processed becoming known, it is not possible to predict the exact identities
of the processors to and from which & given processor will have to communicate. It was
therefore decided to allow any processor 1o communicate with any other.

The surface tracking process and indeed the other parts of the program allow for processing to
proceed on an communications driven basis. In this programming style, the arrival of =a
message &l & Processor causes a processing event to happen, which may optionally cause the
generation of more messages to be sent to other processors. There is a master processor with
which the filesystem and the user communicates and which inputs the data onto the network
and controls the flow of computation according to user input via 2 menu. It was arranged
for all possible messages to make sense at any stage of the program (although not necessarily
to cause execution of the same process), and for each messages to be transmitted as a
complete unit. This allowed the use of a simple input buffer at each processor and obviated
the necessity for & handshake between communicating processors.

The communications software allews a processor to specify that two packets it was sending to
another processor should arrive in the same order as they were sent, by assuring that they
would be sent along exactly the same route along which there would be no overtaking. This
mechanism for allows a degree of loose synchronisation between processors.

In addition to the input buffer mentioned earlier, several other buffers were required to allow
the communications to work without desdlock. Each of the physical transputer links was
given a software buffer to allow for the possibility of bidirectional asynchroncus
communications on all four links. Each processor was alsc given a transit buffer to avoid the
program deadlocking when communication was required around loops in the network. The
communications processes may be described as below.

In Link Out Link
Buffer 3 Buffer 3
o
Transit
Buffer
In Link = Out Link |
Buffer 2 LN uffer 2 J
\ X N /"
.’heoeption Postman
> ~
A = \
In Lin_k/-// Receive
Buffer 1 Buffer | ~ <
T Main
A Program
In Link Out Link
Buffer 0 \D‘f Channel % g \H\an\@f&ke Channel Buffer 0

Fig 3: Communications processes and channels,

M

The above discussion has omitted to mention the problem of routing messages within a
network communicating with such software. In order to allow experimentation with processor
network topology it was decided to allow the network of processors itself to determine the
optimal routing of packets between processors, and in later versions of the program to work
out the topology of the network directly, without resort to any information supplied by the
programmer. In practise this means that one may change the topology of processors upon
which the program is running simply by changing the top-level PLACED PAR statement read
by the configurer.

The algorithm used by the network to search the configuration on which it has been
implemented approximates to:

PLACED PAR | = @ FOR processors
some arbitrory channel plaocement stotement

SEQ
.. determine which of my |links ore connected to other processors

PAR
.. broadcast my identity aolong those connected !inks

WHILE processors.known < processors
SEQ
read in on my incoming |inks
IF

I have only heard about this packet’'s source by lorger routes (if at all)
record how 1 came by it and poss it out on oll connected links

I have heard obout the packet’s source by o shorter route
. absorb it

. I have heard about the pocket's source by an equaily short route
. absorb it but record how I come by it

read in and tronsmit data packets occording to known shortest routes

Each processor records about each other processor a list of links via which packets may be
sent to take them one step closer to their destination. This information is acquired since
during the start up phase each processor hears at least once from each other processor, and
records the links upon which the messages were received.

In order to visualise the network search algorithm, which is highly parallel, each processor
may be thought to be sending out a signal of its identity which propagates outwards like a
wave across the network of processors,, The propagation is, however, determined by a
decision made at every node in the network. The wave is never allowed to back-track and
as soon as it reaches areas of the network that it has already covered it is blocked. Each
processor is eventually touched by the wave, and stores a list of the direction(s) from which
the wave came. It may then assume that a signal passed out in those direction(s) will be
moving one step closer to the source of the wave.

Results and Conclusions

The program was implemented in occam on a Meiko M40 Computing surface with twenty five
inmos T414 transputers involved in processing the image and three others used for controlling

5

the program and displaying results. The assignment of data to processors described above,
produces high levels of processor loading for global and section based operations. Such
operations tend to benchmark over one hundred times faster than a similar program running
serially in C on a Sun 2 workstation. While it has not proved possible to exhaustively
benchmark the surface tracking operation, models of processing would indicate a processor
utilisation rate in excess of 50% for tracking moderate sized objects.

The communications software has proved to be reliable in operation and to organise itself
effectively for arbitrary networks of processors. As there is nothing application specific about
the communications software it has been successfully abstracted into a utility which is
available to users of the Edinburgh Concurrent Supercomputer, and is currently incorporated
in a number of other working programs.

List of References

1. “Special Issue on CT,” Proceedings IEEE. , Vol 71 (3) pp 291-448.

2. G.T. Herman, HK. Lieu, "Three dimensional display of human organs from computer
tomograms,” Computer graphics and Image Processing, Vol. 9 pp1-121, 1979.

3. A, Nelson. "Body scan data surface detection and presentation,” MSc Dissertation
1985, University of Edinburgh, Department of Artificial Intelligence.

4. 1 Sobel. “Camera Models and Machine Perception,” AIM-21, Stanford Al Lab, (May
1970).

5. S.W. Zucker, RA. Hummel, “An optimal three-dimensional edge—operator.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4 pp41-50, 1982.

6. M.G. Norman, “A three dimensional image processing program for a parallel computer,”
MSc Dissertation 1987, University of Edinburgh, Department of Artificial Intelligence.

7. JF. Canny. “Finding edges and lines in images,” MSc Thesis. MIT. , Cambridge, 1983..

8. D.P. Reeve, “"Walsh and Canny based surface detection in body scan data,” MSc
Dissertation 1986, University of Edinburgh, Department of Artificial Intelligence.

9. F. OGorman, "Edge detection using Walsh functions,” Artificial Intelligence. Vol. 10
Pp215-223, 1978.

10. G.C. Fox. W. Furmanski, “"The Physical Structure of Concurrent Programs and Concurrent
Computers.” Proceedings Royal Society A., Vol. (To be Published).

