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Abstract: This paper describes how the surfaces in a segmented 24D sketch can
be grouped into surface clusters according to rules derived from image boundary
and solid object properties. The clusters designate complete, isolated visible
object surfaces usable as a rough scene description for a blob-level vision
system, or as input for more detailed recognition.

l.g Introduction

A competent object recognition system clearly needs a figure/ground separation
mechanism to indicate both which image features are related and the object's
spatial extent. The bounding context also reduces feature relationship com-
binatorics, thus improving recognition performance. This paper shows how the
explicit information in a surface image (e.g. 24D sketch] can be used to group
surfaces to form a blob-level, identity-independent representation of the 3D
solids in the scene. These surface clusters (SC) form the first object-level
interpretation of an image and organize the surface information for later pro-
cessing as part of object recognition ([FIS86]).

Initial work on object segmentation was based on recognizing the objects in a
restricted domain and then isolating their features from the remainder of the
scene (e.g. [ROB65]). Classical work in line labeling isolated distinct bodies
using connection heuristics ([GUZ67]) or connected obscuring boundaries (e.g.
[cLo71]). Waltz ([WAL75]) later extended this by adding crack and separable
concave edge labels. Sugihara ([SUG79]) used light stripe data to acquire 3D
surface information about a scene. Some labels (e.g. concave, convex, obscur-
ing) could be directly assigned using a combination of stripe behaviour and
valid label configuration rules. Two heuristics were proposed for separating
objects in the labeled scene: (1] where two obscuring and two obscured seg-
ments meet, depending on a depth gap being detectable from either illumination
or viewpoint effects and (2) along concave boundaries terminating at special
types of junctions (mainly involving two obscuring junctions). These are sub-
cases of the obscuring segment rule proposed below. ’

None of the methods could segment a cube lying flush in a corner. Further,
when a laminar surface curves or is creased back to obscure itself, the sur-
faces are separated by an obscuring boundary but should still be considered
connected.

2.0 Assumptions about input data and model segmentation

The input is the labeled segmented surface image, a 2§D sketch-1like structure,
which records scene depth and surface orientation in a viewer based image re-
gistered like the usual intensity image. It is segmented into regions of simi-
lar shape property, at surface depth, orientation and curvature discontinui-
ties, etc. The boundaries resulting from this are labeled according to the
type of segmentation ([FISB6]), and are annotated as being front surface or
back surface [occluding) or convex or concave (shape diseontinuity). A surface
orientation boundary that 1is both concave and convex in places is broken up
during image segmentation.

For this paper, the test data represents a combination of hand measured and
real data. An intensity image was used to guide manual segmentation into the

different surface shape regions. Figure 1 shows the labeled region boundaries



for the scene and the referenced surface regions.

Figure 1: Labeled Boundaries for Test Scene

Arrows indicate obscuring boundaries with the front surface to the right. Plus
and minus indicate convex and concave shape discontinuities respectively.
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Figure 2: Labeled Robot Model

To achieve correspondence between model and data features, Similar groupings
must be achieved for both models and data. So model surfaces are segmented by
the same criteria as the data surfaces. Then, concave surface shape discon-
tinuities isolate groups of model surfaces making convex volumes the primitive
model features. Larger features are generated by joining smaller features
hierarchically. A wine glass thus segments into a bowl, a stem and a base.
Clearly, this does not always work, such as where the back of a dinner chair is
flush with the legs.

Figure 2 shows the robot model used for this example, with the primitive seg-
mented assemblies indicated and the larger aggregated assemblies listed below.

§.g "Why Surface Clusters?"”

Surface clusters (SC). are maximal sets of related data surfaces such that any
one surface is adjacent to at least one other within the set via a suitable
connecting boundary. They recreate the complete, visible, 3D portion of each
distinct object's surface.



The surface cluster is a new representation. It is a "blob" level interpreta-
tion, in which there are unidentified solid objects with approximate spatial
relationships and is useful for some tasks such as navigation or object
avoidance. Such interpretations are needed for unidentifiable objects, whether
because of faults or lack of models in the database. They provide an inter-
mediate 1level of interpretation upon which further interpretations®can be
built. Surface clusters help bridge the conceptual distance between the object
and the image. With this structure, the key image understanding representa-
tions now become: image - primal sketch - surface image - surface clusters -
objects

Surface clusters may be incomplete, as when an object is split up by a closer
obscuring object, though surface hypothesizing may bridge the occlusion. They
may also be over-aggregated - from images where there is insufficient evidence
to segregate two objects. The goal of the process is to produce a partitioning
without a loss of information. These failures may reduce recognition perfor-
mance [i.e. speed], but not its competence (i.e. success): incompletely merged
SCs will be merged in a larger context and insufficiently split SCs will Just
cause more searching during model directed matching.
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Figure 3: Surface Segmentation Boundary Cases
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4.0 Creating Surface Clusters

This process aims to produce minimal clusters of image surfaces corresponding
to distinct model components. The solution is conservative, because it avoids
splitting the components at the expense of merging distinct adjacent objects.
This produces contexts guaranteed to contain complete segmented model primi-
tives (as defined in section 2), but may contain more than one.

4.1 Determining Segmentation Boundaries

Whenever one object sits in front of or on top of another, the intervening
boundary is always either concave or obscuring. Separate objects may be on op-
posite sides of a concave boundary, but it is -indeterminate whether the two
surfaces are joined or merely contact. So, the conservative approach suggests
that this boundary is provisionally segmenting. Assuming concave boundaries
always segment leads to contradictions as seen in figure 3a, where there is no
reasonable shape boundary at point X to continue segmentation, so only the
"provisionally segmenting" label is used at this point.

Obscuring boundaries usually give no cues to the relation between opposing sur-
faces [other than being depth separated], so these usually separate. Connec-
tivity holds across obscuring boundaries when laminar surfaces fold- back on
themselves. Figure 3b shows a leaf folded over and the two surfaces of a
trashcan, where the surfaces are connected even though an obscuring boundary



intervenes. what distinguishes this case is the presence of the arrow vertex
shown at the right. Viewpoint analysis shows that these are the only speclal
cases for laminar surfaces.

4.2 Finding Primitive Surface Clusters

Primitive surface clusters are formed by collecting all surfaces regions that
nave any direct or transitive connection, once all provisionally segmenting
boundaries are identified. Surface clusters are maximally connected to provide
complete contexts for object subcomponents, SO if there is doubt, then connect.
This contrasts with model segmentation, where if there is doubt, then segment.
Then, all model features will lie completely within some data context.

4.3 Depth Aggregation of Surface Clusters

One goal of the SC process is to associate all subcomponents of an object in
some SC. Aggregation is necessary because self-occlusion may segment the visi-
ble portions of an object into several depth levels. In the test 1image, the
robot lower_arm obscures the upper_arm, SO parts of the robot_upper_assembly
will appear in different primitive SCs. Depth aggregated SCs provide the con-
text for complete objects.

Merging all SCs behind a given SC is not a solution, because more than one sub-
component may be in front of the linking component. Similarly, merging all SCs
in front fails if the object has several components behind. To solve this
problem, a combinatorial solution was adopted.

Certain sets of SCs can be initially grouped into equivalent depth clusters.
These occur when either SCs mutually obscure each other, or there is no obvious
depth relationship as when across a concave surface boundary. The robot
lower arm and trash can SCs mutually obscure in the test image. When these
cases occur, all such primitive SCs are merged into a single cluster. The
combinatorial depth merging process applies only to these equivalent depth SCs.

The computation producing the equivalent depth clusters is:

, ... P_} be the primitive surface clusters
1 n

front(Pi, P.) is true if P, is in fromt of P., which is true if there is
4 sufface in P wit% an obscuring rel&tion to a surface in P,

i J

beside(P,,P.) is true if P, is beside P,, which is true if not

font P.,P.) and not front(P.,P.a and there is a surface

. i ;

in Pi that”shares a concave goundary with a surface in Pj
{E1, S r Em} be the equivalent depth clusters
E, = {Pi1. - Pis},

Then:

(1) 1f E; A Ej # 0 then E; = Ey
(2) for any P,, € E, there is a P, € E; such that:

frong&Pia,Pib) and front[Pib,Pia]

beside(Pia,Pib) and not front(P, ,P, } and not tront(P,, P, )

sizeof E, ) =1



Then, the depth aggregated SCs are sets of equivalent depth SCs:

Let:
direct(Ei,E ) be true if surface cluster E, is directly in front of *
surface cluster E,, which occurs if there are primitive surface
clusters P, e E;"and Py, € Ey such that front(Pia,PJb]

linked(Ei,EJ) if direct(Ei,EJ) or direct(EJ,Ei)

{D1, . Dn} be the depth aggregated clusters
D; = {Egqs +o Eyel

Then:

for any E € D, there is a E

ia i i

That is, there is a chain of relationships'between the equivalent depth SCs.
The background [e.g. surfaces that lie behind all others) is omitted. :

p € D; such that linked(Eia,Eib)

5.0 Evaluating the Surface Cluster Formation Process

Using the surface hypotheses for the test image, some SCs are shown in figure
y, The data required a minor intervention to produce correct behavior because
the boundary between the robot body (region 8] and the robot shoulder (region
29) was a crack and was forced to act as a concave boundary. This allowed the
body to be depth equivalent with the shoulder, which is appropriate.
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Figure 5: Some Surface Clusters From the Test Scene

Below, there is a listing of the SC to model component correspondences for the
test image. Clearly, the SC formation process groups the data surfaces into
what corresponds to the structural units defined in the model.

This example shows that the SC formation process is successful in a variety of
circumstances and is not limited to just planar surfaces. All the primitive
and most of the larger SCs corresponded with object features. Primitive model
assemblies were completely contained in single primitive surface clusters and
larger assemblies were completely contained in larger surface clusters. The
only irrelevant surfaces in the main SCs were those of the trashcan which was
intertwined with the robot. Though several SCs contained multiple assemblies,
this causes no recognition failures, only greater matching effort.

The combinatorial formation of depth merged SCs is a problem. Here, the number
of depth merged SCs was not excessive as the object also has a strong depth
order, so 2 of the 6 corresponded to ASSEMBLYs. If more objects had been



behind, even more SCs (roughly 0(2")) would have been created.

Table 1: SC to Model Correspondence

SC TYPE REGIONS MODEL
1 PRIMITIVE 20,21,30
2 PRIMITIVE 27
3 PRIMITIVE 16,26 robot_shoulder_body
Yy PRIMITIVE 8 robot body
5 PRIMITIVE 29 robot_shoulder_small_panel
6 PRIMITIVE 33,34,35,36,37
7 PRIMITIVE 12,18, 31 robot lower arm
8 PRIMITIVE 9,28,38 trashcan
9 PRIMITIVE 17,19,22,25,32 robot upper arm
10 EQUIVALENT 20,21,27,30 - -
1 EQUIVALENT 8,16,26,29 robot_shoulder + robot_body
12 EQUIVALENT 9,12,18,28,31,38 trashcan + robot_lower_arm
13 DEPTH 9,12,17,18,19,22, robot_upper_assembly
25,28,31,32,38
14 DEPTH 8,16,17,19,22,25,26,29,32
15 DEPTH : 8,9,12,16,17,18,19,22,
25,26,28,29,31,32,38 Pobot_link + robot
16 DEPTH 8,16,20,21,26,27,29,30
17 DEPTH 8,16,17,19,20,21,22,25,
26,27,29,30,32
18 DEPTH 8,9,12,16,17,18,19,20,21,22,

25,26,27,28,29,30,31,32,38

The theory could be extended easily to make "crack" type lines separate (e.g.
between the robot body and shoulder) and using Waltz labeling on separable con-
cave boundaries could remove inappropriately labeled boundaries.

To summarize, this paper:

- Proposed an intermediate representation [Surface Clusters) between the
21D sketch and the model based 3D object hypotheses, which segments
the image data into blob level, identity independent solids.

- Elaborated rules for producing these surface clusters, including objects
with curved surfaces and some laminar surface groupings.
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