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Abstract: This paper describes research on- recogniz-
ing partially obscured objects using three dimension-
al surface data and geometrical object models as in-
put. The paper shows that surface information is an
important input to the visual understanding process.
This is because surfaces are the features that
directly link perception to the objects perceived
(for normal "camera-like" sensing) and because sur-
face understanding makes explicit information needed
to understand and cope with some visual problems
(e.g. obscured features).
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1.0 INTRODUCTION

This paper summarizes new results in object recogni-
tion based on surface information (e.g. direct 3D
scene data] rather than edge information. Here, the
surface information 1is absolute surface depth and
orientation organized in a pointillist array aligned
with a standard intensity image of the scene.. This
data can be suppllied by several processes currently
under development, including stereo and laser range-
finding.

The advantages of using surface information are:

- surface information is explicitly 3D, so 3D pro-
perties can be calculated directly, rather than
deduced from 2D image properties,

- surfaces can be segmented from both the model
and the data according to the same criteria,
hence producing directly corresponding features
(disregarding scale questions],

- it makes explicit features found on non-blocks-
world objects (e.g. curved surface patches],

- it makes explicit where occlusion occurs (depth

discontinuity boundarles), and

it provides larger features for model matching,
thus reducing the effect of noise and minor er-
rors. :

An object is considered to be recognized 1if image
data can be found that consistently supports the ob-
ject hypothesis, with the goal of completely explain-
ing the presence or absence of all object features.
For partially obscured objects, this requires that
the hypothesis be Instantiated in spite of missing
features and that all remaining evidence 1is con-
sistent with the hypothesized occlusion.

Recognition [here) is based on pairing data surface
regions to model surface regions, which allows direct
estimation of the object's spatial position, From
this, the program can deduce what object features are
expected to be visible, with what aspect and where.
To do this, what is needed is:

- surface-based object models,

- criteria for segmenting the image data,

- methods for grouping surface features together,

- methods for estimating an object's position,

- methods for finding data features to pair to the

model and

- methods for predicting or overcoming occlusion.
Using these, recognition succeeds with partially ob-
scured, flexibly connected, moderately complicated
objects seen from unpredictable viewpoints, Occlu-
sion is thus more manageable provided one uses infor-
mation made explicit by surface based representa-
tions.

The research reported here builds on much research in
related ~areas. For surface extension (section 3},
boundary connection methods of Guzman (8) nhave been
extended to use additional constraints embodied in 3D
data. These are continuity of surface depth and
orientation as well as boundary connectedness. Sur-
face cluster formation [(section 1) extends the
blocks-world 2D image rules of Waltz (11] and 3D
heuristics of Sugihara (10) to group laminar surfaces.
Here, the scene constraints were not needed to deduce
segment labels as the surface image provides this in-
formation directly. Object modeling [section 5) fol-
lows ACRONYM (2]. except that surface segments are the
chosen primitives, rather than volumes. This allows
direct model to data pairings, as well as allowing
easier feature visibility predictions. The surface-
based object models are like those of Faugeras and He-
bert (3] except here complete models are used, with
hierarchical substructure and flexible attachments.
Some work on 3D surface description has started but
this has concentrated more on finding continuous sur-
face descriptions (e.g. Brady et al (1)) rather than
summary properties. Geometrical reasoning was more
advanced in ACRONYM [2], except their interests were
in solids and linear image features, whereas here sur-
face reasoning predominates. Faugeras and Hebert [3]
used information from planer surface patches for a
least squares estimate of object position. This would
probably improve on the positional results shown here,
which refined bounded estimates in a six dimensional
parameter space. The work here also uses constraints
from curved surfaces and previously recognized subcom-
ponents. Little previous work has been done on fully
recognizing objects, including understanding occlusion
and locating missing features.

2.0 SURFACE IMAGES AND SEGMENTATION

Recognition starts from surface data, as represented
in a structure called a labeled, segmented surface im-
age (LSSI). This structure is like Marr's 2iD sketch
(9] and includes a pointillistic representation of ab-
solute depth and local surface orientation. The sur-
faces are separated into regions by boundary segments
labeled as shape or obscuring edges. Shape segmenta-
tion is based on orientation, curvature magnitude and
curvature direction discontinuities [5). Obscuring
boundaries are placed at depth discontinuities. These
criteria segment the surface image into reglons of
nearly uniform shape, characterized by the two prinei-
pal curvatures and the surface boundary. As no fully
developed processes produce this data yet, the program
input is from computer augmented, hand-segmented test
images. (Several laboratory systems produce similar
data though (3,10).) Figure 2 shows part of the input
used for the test scene shown in figure 1. Part (a)
shows the cosine of the surface slant for each 1image
point. Part (b) shows the obscuring boundaries.

3.0 COMPLETE SURFACE HYPOTHESES

The image segmentation directly leads to partial or
complete object surface segments. Surface completion
processes reconstruct obscured portions of surfaces,
when possible, by connecting extrapolated surface
boundaries behind obscuring surfaces. The advantage
of this 1s twofold - it provides data surfaces more
like the original surface for property extraction
[section 6) and the extended surfaces give better im-
ageevidence; durdng, - hypothesis completion. Two



processes are used for completing surface hypotheses.
The first bridges over gaps in single surfaces and
the second links two completely segmented surface
patches. Merged surface segments must have roughly
the same depth and surface characterization. Figures
3a and 3b illustrate both rules in showing the origi-
nal and reconstructed robot upper arm large surface
from the test image.

4.0 SURFACE CLUSTERS

Surface hypotheses are joined to form surface clus-
ters, which are blob-like 3D identity-independent
representations. The goal of this process 1s to par-
tition the scene into a set of 3D solids, without yet
knowing their identities. These re useful [here) for
aggregating 1image features into contexts for model
matehing., They would also be useful for tasks where
identity is not necessary, such as object avoldance.

Forming a surface group is based on finding closed
laops of 1solating boundary segments. Isolating
boundaries are generally obscuring and concave sur-
face orientation shape segmentation boundaries. An
exception occurs for laminar objects, where the ob-
scuring boundary across the front 1lip of the trash
can [rigure 4) does not isolate the surfaces. These
criteria determine the primitive surface clusters and
larger clusters are formed based on depth ordering
relationships. Figure 4 shows some of the primitive
surface clusters for the test scene,.

5.0 SURFACE-BASED OBJECT REPRESENTATION

Objects are compact, connected solids with definable
surface boundaries, where the surfaces are rigid and
segmentable at some appropriate scale, The class of
objects recognizable by the implemented program may
also have rigid subassemblies with possibly flexible
interconnections.

Model-based object recognition requires geometric ob-
Ject models. Here, the models are designed for ob-
ject recognition, not image creation, so the model
primitives are based on matchable image features.

The model used here has surface patches as primi-
tives, because the surface 1s the primary data unit.
This allows more direct pairing of data with models,
comparison of surface shapes and estimation of model
to scene transformation parameters (7]. Surfaces are
described by their principal curvature parameters and
extent boundary. Surfaces have zero, one or two
directions of curvature (positive or negative). The
segmentation ensures that the shape [e.g. principle
curvatures] remains relatively constant over the en-
tire surface segment. The boundary describes the
limits of the surface.

Objects are recursively constructed from surfaces or
subobjects using coordinate reference frame transfor-
mations. Each structure has its own local reference
frame transformation and larger structures are con-
structed by placing the subcomponents in the refer-
ence frame of the aggregate. Varijable transforma-
tions connect subobjects flexibly, by using variables
in the attachment relationship. The geometrical re-
lationship between structures is useful for making
model to data assignments and for providing the adja-
cency and relative placement information used by ve-
rification,

Illustrated first is the surface definition for the
robot upper arm large side panel [uside). The first
triple on each line glve the starting endpoint for a
boundary segment, The last item describes the seg-
ment as a LINE or a CURVE [with its parameters in
brackets). PO denotes the segmentation point as a
Orientation discontinuity point, PC as a Curvature
discontinuity point, and BO as an Orientation discon-~
tinuity boundary between surfaces. The next to last
line for each surface describes the surface type.

The final line gives the surface normal at a nominal
point on the surface in the feature's reference frame.

SURFACE uslde =

P0/(0.0,0.0,0.0) BO/LINE

P0/{19.6,0.0,0 o} BO/LINE
pc/(61.8,7.4,0.0) BO/CURVE[7.65,0.0,0.0]
PC/(61.8,22.4,0 o} BO/LINE
p0/(19.6,29.8,0.0) BO/LINE

po/(0.0,29.8,0.0) BO/CURVE[-22.42,0.0,0.0]
PLANE
NORMAL AT (10.0,15.0,0.0) = (0.0,0.0,-1.0);

Illustrated next is a portion of the robot rigid
upper-arm assembly [upperarm] with 1its subsurfaces
(e.g. uslde] and the reference frame relationships
between them. The first triple in the relationship is
the (x, Y, z) translation and the second gives the
[rotation, slant, tilt) rotation. Translation is ap-
plied after rotation.

ASSEMBLY upperarm =

uside AT ({-17.0,-14.9,-10.0),(0.0,0.0,0.0))
uside AT ((-17.0,14.9,0.0),(0.0,n \7/2)

uendb AT ((-17.0,-14.9,0.0 .Eo .0,1/2,%))
uends AT ((44.8,-7.5,-10.0), ? 0,1/2,0.0))

.

uedges AT {{-17.0,-14.9,0.0),(0.0,7/2,3n/2
vedges AT ((-17.0,14.9,-10.0),(0.0,n/2,%/2 é
uedgeb AT ((2.6,-14.9,0.0),(0.173,n/2,30/2
vedgeb AT ((2.6,14.9,-10.0),(6. 11.n/2,u/2) ;

The assembly that pairs the upper and lower arm rigid
structures into a flexibly connected structure ls
shown below. Here, the lower arm has an affixment
parameter that defines the joint angle in the assem-
bly.

ASSEMBLY upperasm =

upperarm AT {Eo.o,o.o,o .0),(0.0,0. o,o.o]}
lowerarm AT ((43.5,0.0,0.0),(0.0 0.0

FLEX ((0.0,0.0,0.0),( .0,0
Figure 5 shows an image of the whole robot assembly
with the surfaces shaded according to surface orienta-
tion.

6.0 THREE DIMENSIONAL FEATURE DESCRIPTION

General identity-independent properties are needed to
cue the invocation process; some properties must be
extracted before enough evidence exists to suggest the
identity of the object, which could then trigger
model-directed description processes. Later, these
properties are used to ensure that model-to-data sur-
face palirings are correct. The use of 3D information
from the surface image makes it possible to compute
many object properties directly. Most of the proper-
ties measured relate to surface patches and include:
local curvature, absolute area, elongation and surface
intersection angles. Table 1 1lists the values of
these properties for the vertical robot base panel, as
estimated from the test image.

TABLE 1: Properties 0f Robot Base Side Panel

PROPERTY ESTIMATED TRUE
adjacent surface angle 4.8 [N}
adjacent surface angle 2.3 3.
maximum surface curvature 0.127 0.111
minimum surface curvature 0.0 0.0
absolute area 1238 1413
relative area 1.0 1.0
surface eccentricity 3.3 2.0
boundary relative orientation 1.79 1.57
boundary relative orientation 1.48 1.57
number of parallel boundaries 2 2
boundary curve length 27.3 28.2
boundary curve length 16.1 50.0
boundary curve length 51.1 50.0



boundary curvature 0.038 0.11
boundary curvature 0.011 0.0
boundary curvature 0.010 0.0

Model invocation is necessary because of the many po-
tential 1identities for any image structure, and be-
cause generic representation requires suggestive in-
dexing (i.e. there may not be an exact model for the
data]. Invocation is based on plausibility, rather
than certainty, and this notion is expressed through
accumulating various types of evidence for objects in
an associative network representing both direct pro-
perty evidence and indirect component or generic evi-
dence, When the plausibility of a structure having a
given identity is high enough, a model is invoked.

Further discussion of model invocation can be seen in
(4) and (6).

7.0 HYPOTHESIS COMPLETION

Hypothesis completion attempts to find image evidence
for each feature of the invoked model. Because of
the modeling assumptions, these features are sur-
faces and recursively defined subcomponents. Invoca-
tion provides the data for forming the initial hy-
pothesis, which 1s used for estimating the 3D loca-
tion and orientation. This eliminates most substruc-
ture search by directly pairing features. All other
data comes from within the local surface cluster con-
text.

Hypothesis construction requires global location and
orientation estimates for hypothesis completion. The
spatial relationship between astructures is con-
strained by the geometrical relationships of the
model and inconsistent data implies an inappropriate
invocation or feature pairing. Object orientation is
estimated by mapping the nominal orientations of
pairs of model surface vectors to corresponding image
surface vectors. Surface normals and curvature axes
are the two types of surface vectors used. Pairs are
used because a single vector allows a remaining de-
gree of rotational freedom. Because of data errors,
the six degrees of spatial freedom are represented as
parameter ranges. Each new model-data feature pair-
ing contributes new spatial information, which helps
further constrain the parameter range. Translation
is estimated from the allowable range of oriented
model surfaces consistent with the image data.

Previously recognized substructures also constrain
object position.

Table 2 1lists the measured and estimated location po-
sitions, orientation angles and flexible attachment
angles for the robot in the test image. This data
was obtained from an image taken at about 500 cm.

TABLE 2: Measured And Estimated Spatial Parameters
{In Global Reference Frame]

Estimated

Parameter Measured
486

X

Y 85 cm
A 552 cm
Rotation 0.24 rad
Slant 0.90 rad
Tilt 3.64 rad
Joint 1 2.29 rad
Joint 2 3.07 rad
Joint 3 4.34 ({rad

A variety of model driven processes contribute to
completing a hypothesis. They are, 1in order:
1) decide back-facing surfaces
2] decide tangential surfaces
3) predict visibility of remaining surfaces
HJ search for missing surfaces
5) bind rigidly connected subobjects

6} bind flexibly connected subobjects
7] explain some incorrectly segmented surfaces
8) validate externally obscured structure

Hypothesis completion has a "hierarchical synthesis"
character, where data surfaces are paired to model
surfaces, surface groups are matched to assemblies and
assemblies are matched to 1larger assemblies. The
three key constraints on the matching are: (1) locali-
zation in the correct image context (i.e. surface
cluster), (2} correct feature identities and (3) con-
sistent reference frame relationships.

Adding a new surface or a rigidly connected subcom-
ponent requires meeting only the above three require-
ments. Joining together two flexibly connected assem-
blies also gives the values of the variable attachment
parameters, by unifying the respective reference frame
descriptions. The parameters must also meet any
specified constraints, such as on joint angles in the
robot test image.

The construction process tries to find evidence for
every portion of the model. Many features are paired
during the invocation process. Others, such as the
back of the trash can {n the test image, need to be
paired by a model-directed process. Given the orient-
ed model, the image positions of unmatched surfaces
can be predicted. Then, any surfaces in the general
area that:

- have not already been previously used,

- belong to the surface cluster and

~ have the correct shape and orientation
can be wused as evidence for the unpaired model
features. Later verifications ensure that correct
pairings were made.

Missing structure requires understanding the three
cases of occlusion, predicting or detecting its oc-
currence and showing that the image data is consistent
with the expected visible portion of the model. The
easiest case of back-facing and tangent surfaces can
be predicted using the orientation estimates with
known observer viewpoint and the surface normals de-
duced from the geometrical model. A raycasting tech-
nique (i.e. predicting an 1image from an orlented
model) handles self-obscured front-facing surfaces by
predicting the Jlocation of obscuring surfaces and
hence which portions of more distant surfaces are in-
visible. The final case occurs when unrelated struec-
ture obscures portions of the object. Assuming enough
evidence is present to invoke and orient the model,
occlusion can be confirmed by finding other closer un-
related surfaces responsible for the missing image
data.

The self-occlusion visibility analysis for the trash
can in the scene is given in table 3. The results are
correct. Minor prediction errors occur at edges where
surfaces do not meet perfectly.

TABLE 3: PREDICTED TRASH CAN VISIBILITY

VISIBLE OBSC'D TOTAL

SURFACE PIXELS PIXELS PIXELS VISIBILITY
outer front 1479 8 1487 full
outer back 1 1581 1582 back-facing

outer bottom 5 225 230 back-facing
inner front 0 1487 1487 back-facing
inner back 314 1270 1584 partial-obsc
inner bottom 7 223 230 full-obsc

Figure 6 shows the boundaries of the found portions of
the object model as predicted by the orientation
parameters and superposed over the original intensity
image. No hidden line removal was used. Because of
minor and cumulative errors from the robot's base po-
sition, the position of the lower arm is somewhat away
from its observed position, However, when it was ini-
tially recognized, its position was closer. Further,
the picture shows that the global understanding is
correct., In analysis, all features were correctly



paired, predicted invisible or verified as externally
self-obscured. The numerical results in table 2 also
show good performance.

8.0 HYPOTHESIS VERIFICATION

The final step in the recognition process is verifi-
cation. Verification ensures that instantiated hy-
potheses are valid physical objects and have the
correct identity (i.e. have all object properties).
This is necessary because model invocation suggests a
particular object, which then acquires rough model
instantiation and orientation. It i{s then necessary
to verify the details for correctness. A proper,
physical, object is more certain if all surfaces are
connected and they enclose the object. Correct iden-
tification is more likely if all model structure 1is
accounted for, the model and corresponding image
surface shapes and orientations are the same, and the
model and image surfaces are connected similarly.
The constraints used to ensure correct identities in
the test image were:

(for surfaces)
~ has approximately correct size
- has approximately correct curvature class

(for solids)

~ has no duplicated use of image data

- all predicted back-facing surfaces have no data

- all adjacent data surfaces are adjacent in model

- all subfeatures have correct orientation

- all features predicted as partially self-
obscured during raycasting are observed as such
(i.e. have appropriate occluding boundaries)

In the example given above, all correct object hy-
potheses passed these constraints. The only spurious
structures to pass verification were single surfaces
similar to the correct surface or symmetric subcom~
ponents,

9.0 DISCUSSION

This recognition process was clearly successful on
the test 1image. However, much research is still
needed. Objects were represented here at only a sin-
gle 1level of scale, but feature descriptions change
as a function of observer distance, with larger
features dominating at greater distances. The sur-
face data needed to be partly generated by hand, be-
cause no surface information was avallable here.
Further, the theory on surface segmentation and
description is not well advanced yet. The recogni-
tion process 1s also very slow at present, preventing
practical application.

The success of the research lies in demonstrating the
ease with which complete explainable object recogni-
tion can be achieved using surface information.
Further, the type of object fully recognized is sig-
nificantly more complicated than previously possible
(because of its multiple articulated features, curved
surfaces, self-occlusion and external occlusion].
Fuft?er information on this work can be found in [N)
- \7).
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Figure 1: Test Scene
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Figure 3: Original and Reconstructed Robot Upper
Arm Surface
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Figure 4: Some Connected Surface Groups
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