
A Comparison of Algorithms for Subpixel PeakDetetionR. B. Fisher and D. K. NaiduDept. of Arti�ial Intelligene, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Sotland, United KingdomAbstrat. This paper ompares the suitability and eÆay of �ve al-gorithms for determining the peak position of a line or light stripe tosubpixel auray. The algorithms are ompared in terms of auray,robustness and omputational speed. In addition to empirial testing,a theoretial omparison is also presented to provide a framework foranalysis of the empirial results.1 IntrodutionIt is often neessary to make measurements whih are outwith the preision ofa visual measurement system whih relies on loational auray to the near-est pixel. For example, in an imaging system whih relies on auraies to thenearest pixel while translating from 2-D amera oordinates to 3-D world oor-dinates, the auray of the estimated 3-D oordinates of a point in spae willbe limited by the image resolution. If a large spatial volume is projeted ontothe imaging surfae, eah single pixel on the imaging surfae will reord infor-mation from a range of positions. In our range sensor (working volume 20m ona side) and eah pixel images about 1 mm2 of the sene. This limited resolutionis not good enough for preision roboti image analysis. Therefore, algorithmsthat estimate feature positions to subpixel auray by interpolating the sensorresponse funtion (e.g.[4, 3, 5℄) are useful. This paper ompares �ve algorithmsfor determining the peak image position of a image line or stripe to subpixelauray.To determine the stripe to subpixel auray, the image of the stripe widthmust be observed over more than one pixel. Here, we assume that the spread ofintensity values aross the width of the stripe is not simply random, but onformsto some kind of distribution and this pixel spread is exploited in the design ofthe subpixel interpolation algorithms. Some spread is almost always the asebeause although it is possible optially to fous the stripe to less than a singlepixel width, the operative response of individual sensor elements often leads to ameasurement that is several pixels wide. If we did obtain an image of the stripewhih was only a pixel wide, it would be impossible to determine where the peakof the stripe was loated within the pixel beause we would have data from onlyone pixel with whih to interpolate. An example of a typial intensity responseversus position is shown in Figure 1.



Fig. 1. Typial intensity values from ontiguous pixels2 An Example Subpixel Stripe-Based Range SensorAn example of where subpixel stripe detetion methods are useful is in ourlaser stripe based triangulation sensor, whih is used to aquire range images ofobjets (see Figure 2). The target objet is plaed on a platform mounted ona linear miro-stepper whih is ativated under software ontrol. The platformmoves in small inrements under a stationary laser stripe, and at eah forwardstep of the platform a pair of digitized images of the laser stripe on the objetis aquired using two ameras loated on either side of the objet. These imagesare then proessed in software to derive a slie of range values of the objet.Eah suessive step produes a fresh slie and these slies are aumulated toprovide a omplete range image of the objet.The digitized image from eah amera is proessed to determine the positionof the stripe to subpixel preision. Beause of the amera and stripe plaement,the stripe is viewed in the image as a nearly vertial urve, the shape of whihis determined by the shape of the objet on whih the stripe impinges. Sinethe urve is vertial, the sanning of the raster image is performed from left toright so as to proess pixel values aross the width of the pereived stripe. They-oordinate of the pixel is determined by the vertial distane of the san linefrom the top of the image. The x-oordinate is determined by the loation ofthe pixel along a partiular san line. Therefore, when we refer to the subpixelposition of the peak of the stripe, we are disussing the x-oordinate of the pixel.One the peak of the stripe has been deteted, the image oordinates of thepeak are used to determine the 3D, real-world oordinates of the point by usingthe known projetive transform between the amera model and the real world inonjuntion with the known 3D equation of the stripe plane. Greater auray indetermining the peak position in 2D will automatially result in a more auratedetermination of the loation of the stripe in 3D oordinates, whih in turn willprodue more aurate estimates of objet dimensions and loation.3 Desription of AlgorithmsAll subpixel algorithms that we ould loate in the literature plus a new one(Gaussian) are analyzed below.



Fig. 2. Shemati of miro-stepper set-upIn the analyses below, x is the pixel position of the observed peak sensorreading with value f(x). f(x�1) and f(x+1) are the values of the adjaent pixels,et. The true peak is at x+ Æ and we will estimate Æ by Æ̂. The alulations useintensity values that have had the bakground image intensity value subtrated.3.1 Gaussian approximationThis algorithm uses the three highest, ontiguous intensity values around theobserved peak of the stripe and assumes that the observed peak shape �ts aGaussian pro�le. This assumption is approximately true as the light inident onthe sene is known to be nearly Gaussian distributed. The real distribution, ofourse, will not be Gaussian, beause eah pixel integrates light over its �eldof view, the physial sensor pads of the solid-state ameras we use have a gapbetween them, the sensor pads have internal struture that a�ets their sensi-tivity, and not all sensor pads are equally sensitive. None the less, while we donot know the exat form of the distribution, we assume that the omposition ofall these e�ets an be modeled by a Gaussian distribution. The subpixel o�set(Æ̂) of the peak is given by :Æ̂ = 12 ln (f(x� 1))� ln (f(x+ 1))ln (f(x� 1))� 2 ln (f(x)) + ln (f(x+ 1))



As the f() are usually integers in the range 0-255, the log alulation an beperformed by table lookup. We have not found any previous referenes to thisform of peak detetor in the literature.3.2 Center of MassThe enter-of-mass algorithm also assumes that the spread of intensity valuesaross the stripe onforms to a Gaussian distribution. Thus, the loation ofthe peak an be omputed by a simple weighted-average method. The subpixelloation of the peak is given by :Æ̂ = f(x+ 1)� f(x� 1)f(x� 1) + f(x) + f(x+ 1)The above equation desribes the method using only three points. However,we have ompared the same algorithm using 3, 5 and 7 points (denoted CoM3,CoM5 and CoM7) to ompute the enter of mass. The extension of the algo-rithm for the latter two ases is:Æ̂ = 2f(x+ 2) + f(x+ 1)� f(x� 1)� 2f(x� 2)f(x� 2) + f(x� 1) + f(x) + f(x+ 1) + f(x+ 2)for the CoM5 algorithm and for the CoM7 algorithm:Æ̂ = 3f(x+ 3) + 2f(x+ 2) + f(x+ 1)� f(x� 1)� 2f(x� 2)� 3f(x� 3)f(x� 3) + f(x� 2) + f(x� 1) + f(x) + f(x+ 1) + f(x+ 2) + f(x+ 3)Algorithms to use all points along the raster san also exist (e.g. as used in [6℄).3.3 Linear InterpolationThis method assumes that a simple, linear relationship de�nes the spread ofintensity values before and after the peak. Thus, if the three highest intensityvalues are identi�ed as before, then :If f(x+1) > f(x-1) Æ̂ = 12 (f(x + 1)� f(x� 1))(f(x)� f(x� 1))else Æ̂ = 12 (f(x + 1)� f(x� 1))(f(x)� f(x+ 1))3.4 Paraboli EstimatorA ontinuous version of the peak �nder is derivable from the Taylor series ex-pansion of the signal intensity near the peak. If the peak is at f(x + Æ) and weobserve the signal at f(x), then we have:



f 0(x + Æ) = 0 = f 0(x) + Æf 00(x) +O(Æ2)Hene, negleting the higher order terms,Æ := � f 0(x)f 00(x)We an estimate the derivatives disretely, resulting in:Æ̂ = 12 f(x� 1)� f(x+ 1)(f(x+ 1)� 2f(x) + f(x� 1))This estimator is also that found by �tting a paraboli (i.e. seond-order) fun-tion to the points f(x� 1), f(x) and f(x+1). In the experiments below, we allthis the paraboli estimator.3.5 Blais and Rioux DetetorsBlais and Rioux[2℄ introdued fourth and eighth order linear �lters:g4(x) = f(x� 2) + f(x� 1)� f(x+ 1)� f(x+ 2)g8(x) = f(x� 4) + f(x� 3) + f(x� 2) + f(x� 1)�f(x+ 1)� f(x+ 2)� f(x+ 3)� f(x+ 4)to whih we also add a seond order �lter:g2(x) = f(x� 1)� f(x+ 1)These operators at like a form of numerial derivative operator. The peak po-sition is estimated as above by:̂Æ = g(x)g(x)� g(x+ 1)The results of Blais and Rioux showed that the 4th order operator had bet-ter performane than the 8th order operator over the stripe widths that we areinterested in here, so we only analyze it (alled BR4 below) and the simpli�ed2nd order operator (alled BR2 below). The 8th order operator has better per-formane for stripe widths with Gaussian width parameter larger than 2 pixels.Note that this operator is only applied in the given form for f(x+1) > f(x�1).If f(x+ 1) < f(x� 1), then:Æ = g(x� 1)g(x� 1)� g(x) � 1



4 Maximum Error of EstimatorsAssuming that the observed stripe has Gaussian form and the true peak po-sition is near to an observed pixel, we determine the relationship between theestimated and true peak positions (i.e. o�sets from that pixel), for eah of thepeak detetors. Assume that the ontinuous stripe is modeled by:f(n) = e� (n�Æ)22�2where � 12 � Æ � 12 is the true peak position and f is sampled at n = -2, -1, 0, 1,2, .. . We ignore the problems of pixels integrating their inputs over their spatialextent, as well as any shaping funtions the amera and digitizer may apply.We might ask what is the maximum deviation j Æ � Æ̂ j over the range � 12 �Æ � 12 for eah estimator. We generated sampled stripes for values of Æ overthis interval and alulated the estimated Æ̂. For three values of � the maximumerrors are: � Gaussian CoM3 CoM5 CoM7 Linear Paraboli BR2 BR40.5 0.0 0.026 0.023 0.023 0.087 0.169 0.009 0.0151.0 0.0 0.223 0.042 0.003 0.043 0.047 0.034 0.0181.5 0.0 0.350 0.178 0.060 0.067 0.021 0.019 0.014Figure 3(left) shows the error versus Æ for the CoM7 estimator for � = 1:0.
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Biased COM7 Estimator Error
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-400.00 -200.00 -0.00 200.00 400.00Fig. 3. Error versus Æ For Unbiased (left) and Biased (right) COM7 EstimatorBy weighting the estimator (Æ̂0 = �estimator Æ̂) we an, for a given �, reduethe maximum error by spreading the error aross the full range. Figure 3(right)shows the error for the resulting CoM7 estimator when � = 1:006. This shows



that the maximum error has been redued by almost a fator of 10. By hoosingan appropriate value of � for eah algorithm and the expeted value of �, we anminimize the maximum error. Here, we hoose the � that minimizes the errorfor stripe width � = 1:0 pixel, and examine the maximum error for the samethree real stripe widths:� Gaussian CoM3 CoM5 CoM7 Linear Paraboli BR2 BR40.5 0.0 0.380 0.041 0.021 0.103 0.156 0.026 0.0231.0 0.0 0.005 0.002 0.000 0.030 0.029 0.024 0.0131.5 0.0 0.239 0.150 0.057 0.049 0.034 0.022 0.011� 1.0 1.85 1.093 1.006 0.93 1.08 0.95 0.975This shows that, in at least the ase of � = 1:0, we an tune the estimatorto have a very low error; however, setting the � values for one � may produeredued performane at other �s.5 Bias of EstimatorsUsing the Gaussian stripe model in Setion 4, we an determine an analytialmodel of the estimated peak o�set Æ̂ for a small, real o�set, Æ. Our analysisassumes �rst-order approximations: ex := 1 + xlog(1 + x) := xSo: f(n) := (1 + nÆ�2 )e� n22�2We an now determine the form of Æ̂ for eah peak estimator. For the Gaus-sian estimator:Æ̂ = 12 log(f(�1))� log(f(1))log(f(�1)) + log(f(1))� 2log(f(0)):= 12 log(e� 12�2 (1� Æ�2 ))� log(e� 12�2 (1 + Æ�2 ))log(e� 12�2 (1� Æ�2 )) + log(e� 12�2 (1 + Æ�2 ))� 2log(1)= 12 log(1� Æ�2 )� log(1 + Æ�2 )2log(e� 12�2 ) + log(1� Æ�2 ) + log(1 + Æ�2 ):= 12 � Æ�2 � Æ�22(� 12�2 )� Æ�2 + Æ�2= 12 �2 Æ�2� 1�2= Æ



Hene, theGaussian estimator has the ideal form for small Æ. For the Linearestimator: Æ̂ = f(1)� f(�1)2(f(0)� f(�1)):= e� 12�2 (1 + Æ�2 )� e� 12�2 (1� Æ�2 )2(1� e� 12�2 (1� Æ�2 )):= e� 12�2 (2 Æ�2 )2(1� e� 12�2 )= Æ�2 e� 12�2(1� e� 12�2 )We skip the derivations for the other ases and summarize their results:Estimator Loal Estimate Estimator Loal EstimateGaussian Æ CoM3 2Æ�2 e� 12�2(1+2e� 42�2 )Linear Æ�2 e� 12�2(1�e� 12�2 ) CoM5 2Æ�2 e� 12�2 +4e� 42�2(1+2e� 42�2 +2e� 42�2 )Paraboli Æ2�2 e� 12�2(1�e� 12�2 ) CoM7 2Æ�2 e� 12�2 +4e� 42�2 +9e� 92�2(1+2e� 12�2 +2e� 42�2 +2e� 92�2 )BR2 2Æ�2 e� 12�2(1�e� 42�2 ) BR4 2Æ�2 e� 12�2 +2e� 42�2(1+e� 12�2 �e� 42�2 �e� 92�2 )From these results, we see that the Paraboli operator gives one half theestimate of the Linear operator. When � = 1:0 (as is approximately our ase),the estimators are now:Estimator Gauss CoM3 CoM5 CoM7 Linear Paraboli BR2 BR4Loal Estimate 1:00Æ 0:55Æ 0:92Æ 0:99Æ 1:54Æ 0:77Æ 1:40Æ 1:20ÆHowever, in light of the results from Setion 4, we use the � estimator biasto hange the overall bias aording to the algorithm. When � = 1:0 (as approx-imately in our ase), the resulting Æ̂ is:Estimator Gauss CoM3 CoM5 CoM7 Linear Paraboli BR2 BR4Æ̂ 1:00Æ 1:01Æ 1:00Æ 1:00Æ 1:40Æ 0:83Æ 1:33Æ 1:17ÆHene, all but the Linear and BR2 estimators are reasonably unbiased.Overall, this noise-free theoretial and empirial analysis suggests that the Lin-ear, and BR2 estimators are not partiularly good. However, given typial sen-sor substruture, pixel spatial integration and ross-talk, non-gaussian stripe



formation and non-linear sensor transfer funtions, errors of less than 5% seemunlikely in any ase. Hene, the Gauss, CoM5, CoM7, Paraboli and BR4estimators still seem like good andidates.6 Errors in the Presene of NoiseIn line with the experiments of Blais and Rioux[2℄, we investigated how error inthe stripe data a�eted the estimated stripe position. These experiments wereonduted by generating stripe data with a known, but randomly hosen stripeo�set about an exat pixel position, and then orrupting the observed stripeintensity with noise. The main ontrolled variable was the stripe width. Uniformnoise was added (following the model of Blais and Rioux). Point measurementswere generated by: f(n; Æ; �; �) = e� (n�Æ)22�2 + ��where:Æ 2 U [�0:5;+0:5℄ is the stripe position.n 2 f�3;�2;�1; 0; 1; 2; 3g are the measured pixel positions.� 2 U [0; 1℄ is the noise variable.� is the stripe width parameter (range 0.8 to 1.8).� was the magnitude of the noise, and was onsidered for � = 0.0, 0.1,0.25, whih bounded our observed noise level (ie. � < 0:1).We measured both RMS error (q 1N P(Æi � Æ̂i)2) and maximum deviation(max j Æi � Æ̂i j) as a funtion of � for N = 10; 000 samples. Figures 4, 5 and6 show the RMS error for � = 0:0; 0:1; 0:25 respetively. Figures 7, 8 and 9show the same for the maximum error. Immediately, we see that the CoM3and CoM5 estimators are problemati. What is surprising is the error of theCoM7 estimator in the presene of noise at low stripe widths. However, this isunderstandable as, when the stripe width is low, the stripe intensities fall quiklyat non-entral pixels, ausing the noise to more quikly dominate the signal andhave a greater e�et.To ompare the algorithms, we also summed the RMS error for � = 0:8�1:8(by 0.05) for the three values of �.� Gaussian CoM3 CoM5 CoM7 Linear Paraboli BR2 BR40.00 0.00 3.71 1.36 0.31 0.87 0.49 0.39 0.240.10 1.07 3.90 1.86 1.32 1.36 1.23 0.93 0.770.25 2.49 4.25 2.67 2.63 2.62 2.61 2.12 1.86From this, we an see good performane over a range of � and � for the BR2and BR4 estimators. This is also lear in Figures 5 and 6, however, the Gaus-sian estimator has obvious bene�ts as the noise level or stripe width dereases.It is also interesting that the �gures show to what extent the hoie of estimatoris linked to the spei� stripe width and noise level. For our stripe system, wehave observed:
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RMS Error. Noise = 0.1
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RMS Error. Noise = 0.25
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Max Error. Noise = 0.0
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Max Error. Noise = 0.1
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Max Error. Noise = 0.25
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target mean stripe stripe bakgroundolor peak intensity � rangewhite 201 1.69 13-15grey 165 1.31 11-12blak 60 1.22 10-12Hene, for our striper, the noise seems to be about 2-3 quanta, or about 1-5%of the peak intensity. We think that the inrease in � as the intensity inreases isexplained by the gamma ompression of the amera attening the stripe peak.7 Algorithm Behavior on Sensor SaturationNo algorithm should produe wildly unreasonable estimates of the peak positionwhen the sensor is saturated. When saturation ours, the measured intensityvalues at the peak and nearby pixels are usually at some limiting value (e.g 255).Moreover, beause of the e�ets of saturation on the physial sensor, adjaentpixels whose true signal is below saturation may also be a�eted or beomesaturated. Hene, use of these adjaent pixels may also not be possible.The Gaussian, Linear and Paraboli algorithms given in Setion 3 have ade�nite problem in this situation, resulting in a division by zero. We propose thatthese algorithms an be modi�ed to use the midpoint of the saturated region:if overflow_ourred{ peak_position = last_overflowed_pixel - overflow_length/2 + 0.5}else use_normal_algorithmThe other algorithms do not atually perform too badly, provided the regionof saturation is only 1 - 3 pixels. We tested the behavior of the algorithms byan experiment where the pixel values were generated using the formula givenin Setion 4. Then, whenever the intensity value was greater than 0.5, it wasset to 0.5 (i.e. the saturation limit). This limit allowed a maximum of threeonseutive saturated pixels. The algorithms were applied at all subpixel o�setsfrom -0.5 to 0.5, and the deviation of the estimated subpixel o�set away fromthe true o�set were reorded. Figure 10 shows the deviations for the Gauss andthe BR4 algorithms.The maximum deviations for the algorithms are:Algorithm Gaussian CoM3 CoM5 CoM7 Linear Paraboli BR2 BR4Max Deviation 0.320 0.255 0.059 0.049 0.320 0.320 0.175 0.071Some improvement might be possible by a funtion of the non-saturated pix-els surrounding the saturated region, but the utility of these algorithms dependson how the sensor responds when saturated.



Saturated Data Offset Effects

gauss

BR4

Deviation x 10-3

-3Pixel Offset x 10-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

-0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

-400.00 -200.00 -0.00 200.00 400.00Fig. 10. Deviations of pixel o�sets using saturated data



8 Empirial TestingWe tested all algorithms in the laser stripe range sensor desribed in Setion 2.The experiments used three di�erent test objets. These were a ube, a trapezoidwith its top surfae at an angle of 10Æ to the horizontal, and an equilateral prism(see Figure 11). In all ases, the objet was oriented so that all range values alongthe stripe were equal. The test objets were aligned so that their surfae normalslay in the X � Z plane. The oordinate system, the relative positioning of theameras and the diretion of motion of the miro-stepper are lari�ed in Figure 2.

Fig. 11. Detail of experimental objetsThe experiments obtained a series of range images omprising 100 rangestripes eah. A single data point was hosen from eah stripe, suh that all thedata points hosen lay along a line parallel to the x-axis. Seondly, the stripeswere taken with a very small miro-stepper movement (0.2mm for the prism and0.3mm for trapezoid and the ube), thereby leading to high data density. Also,the depth quantization was kept small (0.03mm), so that the estimation errorswould be of larger magnitude than the quantization errors.For eah surfae, eah algorithm was used to detet the stripe peak, and thenthe depth alulated from eah amera was noted and their average omputed.Having olleted the data, a linear least-squares �t (z = â + b̂x) was omputedfor eah set of data points. The slope of this �tted line was omputed, and theminimum and maximum values of the errors were reorded. The variane of theerrors was also omputed. The omparative statistis are shown below.Surfae Error(mm)Algorithm â b̂ Min. Max. VarianeGaussian 49.7680 0.000112 -0.12762 0.09815 0.00249CoM - 3 pt 49.6466 0.000006 -0.06152 0.08812 0.00122CoM - 5 pt 49.7025 0.000130 -0.10121 0.09972 0.00156Flat Surfae CoM - 7 pt 49.6239 0.000036 -0.09555 0.09658 0.00156Linear 49.7878 0.000090 -0.07676 0.08499 0.00120Paraboli 49.7397 0.000297 -0.14026 0.14496 0.00271BR - 2nd 49.6804 -0.000171 -0.21498 0.11769 0.00323BR - 4th 49.6808 -0.000411 -0.13912 0.16080 0.00343



Surfae Error(mm)Algorithm â b̂ Min. Max. VarianeGaussian 57.2598 -0.05306 -0.24558 0.38329 0.02463CoM - 3 pt 57.7386 -0.05443 -0.45631 0.56070 0.05423CoM - 5 pt 57.6771 -0.05466 -0.37467 0.31389 0.0311010Æ slope, CoM - 7 pt 57.6287 -0.05478 -0.29864 0.34434 0.02416left to right Linear 57.6665 -0.05391 -0.30376 0.31999 0.01737Paraboli 57.7211 -0.05436 -0.23738 0.37868 0.01899BR - 2nd 57.8916 -0.05389 -0.27106 0.28737 0.01836BR - 4th 57.8261 -0.05382 -0.28686 0.33492 0.02110Gaussian 51.3929 0.05424 -0.31441 0.51424 0.03381CoM - 3 pt 51.8246 0.05257 -0.43193 0.47276 0.04573CoM - 5 pt 51.7356 0.05321 -0.34414 0.41777 0.0345710Æ slope, CoM - 7 pt 51.6648 0.05277 -0.32581 0.42064 0.03128right to left Linear 51.7305 0.05263 -0.35943 0.40299 0.03645Paraboli 51.7699 0.05281 -0.35278 0.41456 0.03496BR - 2nd 50.9346 0.05460 -0.33865 0.48187 0.03299BR - 4th 50.9251 0.05439 -0.30189 0.47461 0.03184Surfae Error(mm)Algorithm â b̂ Min. Max. VarianeGaussian 70.2352 -0.34806 -0.43505 0.45969 0.04737CoM - 3 pt 70.3217 -0.34726 -0.42918 0.51835 0.05024CoM - 5 pt 70.3418 -0.34816 -0.37187 0.55610 0.0414660Æ slope, CoM - 7 pt 70.1715 -0.34771 -0.39819 0.51866 0.04106left to right Linear 70.2851 -0.34810 -0.43443 0.42978 0.04897Paraboli 70.3154 -0.34841 -0.39460 0.50010 0.04764BR - 2nd 70.1493 -0.34781 -0.46431 0.51234 0.05624BR - 4th 70.1202 -0.34813 -0.47256 0.47195 0.04401Gaussian 23.5725 0.34834 -0.34344 0.44277 0.03918CoM - 3 pt 23.5071 0.34925 -0.33353 0.41938 0.03397CoM - 5 pt 23.5518 0.34852 -0.31148 0.35788 0.0321360Æ slope, CoM - 7 pt 23.3997 0.34865 -0.40910 0.48459 0.03624right to left Linear 23.5029 0.34894 -0.38680 0.47643 0.03994Paraboli 23.5249 0.34873 -0.39773 0.44770 0.03675BR - 2nd 23.5494 0.34841 -0.31710 0.46174 0.03628BR - 4th 23.5244 0.34870 -0.34116 0.52795 0.02985The measured values for â are not partiularly relevant. The values of b̂ areof interest, beause they speify the slope of the surfae as measured by thealgorithms used. The true value of b̂ is 0 in the ase of the ube, �0.0538 in thease of the trapezoid, and �0.3464 for the prism. These values were derived byareful, physial measurements of the objets, but are still subjet to the usualmeasurement errors. However, they provide us with a basis for omparing theauraies of the di�erent peak-piking methods.The tabulated results are better illustrated by the omparative graphs shownin Figure 12 - Figure 14. The graphs are the plots of the variation of the residualsfrom the line of best �t applied to the measured data. The plots have eah beeno�set by a di�erent amount so that they are appear together on one graph. Thesale on the Y-axis is the same for all the data sets. The maximum absolutevariation of the plots from the line of best �t is about 0.5mm.Figure 12 shows the variation aross the surfae of the ube. The CoM3and BR2 algorithms appear to show the least amount of perturbation, followedlosely by the plots derived from the Linear and BR4 methods.The results with the trapezoid (see Figure 13) learly show systemati errorsin the imaging system, partiularly with all the CoM algorithms. These areaused by the aliasing of the image of the peak reeping from one pixel to thenext, rossing the inter-pixel gap. We estimate this gap is itself almost as wide
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Fig. 12. Comparative depth residuals aross a at surfae. The data is separated forlarity.



10 Degree Slope Residual Comparison

Gaussian

CoM3

CoM5

CoM7

Linear

Parabolic

BR2

BR4

Fig. 13. Comparative depth residuals aross a 10Æ, left-to-right slope. The data isseparated for larity.



as a pixel. The non-uniform response aross a pixel response is also a soure ofthe observed periodi e�et (see e.g. [1℄).
60 Degree Slope Residual Comparison
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Fig. 14. Comparative depth residuals aross a 60Æ, left-to-right slope. The data isseparated for larity.The performane of all the algorithms deteriorates dramatially in the aseof the prism (see Figure 14). The variations are more pronouned and morefrequent than in the previous two examples. This is beause the aute angle ofthe objet, whih is very lose to the angle of the amera axis to the horizontal,auses the stripe to move aross the imaging sensors pixels more quikly.The aliasing gives a periodi struture to the estimators. Some portion ofthis periodi, and systemati error ould probably be redued by modeling thee�et as a funtion of loal surfae slope and unorreted estimated subpixelposition. In the ase of our sensor, the errors observed here are symptomati



of the sensor struture and dominate most of the theoretial results disussedabove. We have investigated using subpixel algorithms that �t an observed stripepro�le to an empirially derived real stripe pro�le; however, the stripe pro�lesthat we observed varied from pixel to pixel with little systemati harater, andwe onluded that modeling eah pixel's response individually was unpro�tablefor our appliation.9 ConlusionsThe empirial results show that theCoM3 algorithm has poor performane. Theother methods display performane within the same range probably beause offators suh as sensor struture, inter-pixel gaps, ross-talk, and integration ofthe sensor response over the width of the pixel. The Linear and BR2 methodshave been shown to possess high bias (Setion 5). When we onsider the errorsprodued, the sum of the RMS errors are highest for the CoM3 and CoM5algorithms. They are joined by the Paraboli algorithm when we onsider themaximum errors. This leaves us with only the Gaussian, CoM7 and BR4algorithms as suitable andidates.In the ase of algorithms like the CoM7 and BR4, whih rely on a largenumber of points around the peak, we observe that speular reetions andtranspareny may ause problems sine the outlying pixels have a substantiale�et on the omputation of the loation of the peak. Also, in the ase where theobjet has holes in it, ausing internal reetions and mutual illumination, theweighted average method of the CoM algorithms will deliver a skewed estimateof the peak position. That is, when random noise levels are low, estimators usinga small number of ponts will have advantages in avoiding e�ets arising from thestruture of the sensed objet.We an see good performane over a range of � and � for the BR4 estimator.This is also lear in Figure 5; however, the Gaussian estimator has obviousbene�ts as the noise level or stripe width dereases. It is also interesting thatthe �gures show to what extent the hoie of estimator is linked to the spei�stripe width and noise level. For our striper, the noise seems to be about 2-3quanta, or about 1-5% of the peak intensity. Note that in all ases we assumedthat the intensity levels were below the saturation level of the sensor.When omparing the speeds of the algorithms, The Gaussian is the slowestby about a fator of 2 over the Linear algorithm, whih is the fastest in ourimplementation. However, the peak detetion sub-proess takes up only a smallperentage of the total range image aquisition and peak detetion time, so thespeed of the algorithms is not a fator in their omparison.In addition to these results, we have not seen published before a bias analysis(f. Setion 5) and a bias fator on the estimator (f. Setion 4). Finally, thealiasing e�et observed in Setion 8 does not seem to have been reported beforein onjuntion with subpixel range sensors.These results apply to sampled and digitized signals, whereas some algo-rithms, namely the enter-of-mass algorithm, an be applied diretly to the
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