
Constrained Object ReconstructionIncorporating Free-form SurfacesN. Werghi y, R.B. Fisher z, C. Robertson xy University of Glasgow. Glasgow G128QQ, UKz University of Edinburgh. Edinburgh, EH1 2QLx University of Edinburgh. Edinburgh, EH1 2QLAbstractThis paper addresses the problem of integrating free-form surfaces in a constrainedobject reconstruction. The objects of interest here have both simple shaped surfaces(e.g. planes and quadrics) and free-from surfaces. The goal is to ensure a global op-timization of the object shape where neighbourhood relationships between free-fromsurfaces and analytic surfaces are also satis�ed. The scheme is validated with experi-ments made on synthetic and real objectKeywords: 3D range data, Object reconstruction, constrained optimization1 IntroductionIn reverse engineering, having an object reconstruction satisfying geometrical constraints isa fundamental requirement to ensure shape consistency and to reproduce human-intendedrelationships. In previous work we have developed an approach for imposing geometricconstraints on objects having regular surfaces, e.g. planar [9] and second order surfaces[10, 11]. Although these categories covers a large range of manufactured objects, thereare still a lot of objects that contain both simple shaped and free-form surfaces. For thiscategory, imposing constraints only on simple surfaces while leaving the free-form surfacesfree may cause undesirable e�ects, such as loss of continuity between the free-form surfacesand simple surfaces, and decrease of the smoothness of the object shape as whole. Theaim of this work is to investigate how to impose constraints on the regular surfaces whilemaintaining their continuity or more generally the shape properties at the point of theirintersection with the free-form surfaces which remain constrained by proximity to the data.2 Constrained object surface reconstructionGiven sets of 3D measurement points representing surfaces belonging to a certain object,we want to estimate the di�erent surface parameters, taking into account the geometricrelationships between these surfaces and the speci�c shapes of surfaces as well. A state vector~p is associated to the object, which includes all parameters related to the di�erent objectsurfaces. The vector ~p has to best �t the data while satisfying the constraints. ConsiderF (~p) to be an objective function de�ning the relationship between the measured data pointsand the parameters. Such a function is generally a minimization criterion, for instance, thesum of the least squares residuals. Using an algebraic representation of the surfaces, thisfunction can be put into a quadratic form: F (~p) = ~pTH~p where H is a data matrix. Theconstraints will also to be represented by a quadratic vector function: ~pTA~p + BT ~p + Cwhere A;B and C are respectively appropriate matrix, a vector and a scalar.Consider Ck(~p), k = 1::M , the set of constraint functions de�ning the geometric con-straints where Ck(~p) is a vector function associated with constraint k. The problem can be



then stated as follows: minimize F (~p) subject to the constraints Ck(~p) = 0; k = 1::M Theproblem is a constrained optimization problem. We suggested an approach in the frameworkof sequential unconstrained minimization where we consider the optimization functionE(~p) = F (~p) + MXk=1 �k(Ck(~p))2; �k > 0 (1)The scheme is to initialize the parameter vector ~p, then increment the set of weightingvalues �k iteratively, at each step (1) is minimized by a standard non-constrained technique,and solution ~p is updated. The process continues until the constraints are satis�ed. Figure1.A illustrates a simpli�ed version of the algorithm where the constraints have been as-signed an equal weighting value. For more details about the technique and the convergenceconditions of the algorithm we refer the readers to [11].3 Incorporating B-spline surfaces in constrained objectreconstructionThe objective is to reconstruct the object taking into account the geometric relationships(referred as a regular constraints) between the simple surfaces while maintaining the bound-ary relationships between them and the free-form surfaces, these relationships are referredhere by the boundary constraints. One possible approach to solve this problem is to applythe constrained surface �tting scheme of Section 2 on the regular surfaces then modifyingafterwards the free-form surfaces so that they join the optimized analytic surfaces with thedesired joining constraints. Such modi�cations can be performed manually using CAD pack-ages. However, this way may a�ect the smoothness of the surface and introduce wrinkles.It may also lead to solutions with larger overall errors when later imposing the boundaryconstraints. Besides, achieving this adjustment manually is a tedious task.Kruth et al [2] treats the case of objects containing only free-form surfaces which arejoined with boundary conditions, namely, positional and tangential continuity. They adopteda NURBS representation of the surfaces (NURBS is a more elaborated version of the B-splinewhere the control points coe�cients are rational and assigned a weighting values). In theirapproach, the NURBS surface is modi�ed locally to �t an adjacent surface subject to theboundary conditions. The parameters of the adjacent surface are supposed to be already�xed.Our work di�ers from [2] in three aspects. First we treat a category of objects composedof free-form surfaces and simple surfaces. Second, it follows from the �rst aspect thatour constrained optimization scheme considers additionally to the geometric relationshipsbetween the simple surfaces, the boundary constraints inferred by the adjacency betweenthe free-form surfaces and the simple surfaces. Third, most importantly, all the surfaces are�tted simultaneously within an automated constrained surface �tting scheme incorporatingthe two types of constraints. This ensures a global adjustment of all the surfaces' parametersrather than modifying some to �t already �xed ones and leads therefore to a homogeneousadjustment of the object surfaces' shape and spreading of the errors.The whole constrained reconstruction process is described as follows: First we startfrom a cloud of points acquired with a laser scanner. The measurement points are treatedwith the rangeseg program [1] to produce two sets of surfaces, namely simple surfaces withknown types and free-from surfaces. The simple surfaces include planes and quadric surfacesthat can be de�ned by algebraic functions. The linearity with respect to the parametersof the algebraic functions allows a closed-from solution when �tting these surfaces with aLeast Squares technique [8]. Whereas simple surfaces can be represented with algebraic
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(A) (B)Figure 1: (a) a A B-spline curve with 6 control points. (c) a B-spline surface having 6 and 3 control pointsin the u; v directions respectively. (b) The end control point P1 is set on the segment s, so the B-splinecurve is continuous with the segment s. By setting the relative orientation between P1P2 and s to angle �,the B-spline curve meets s with the same angle. (d) The �rst two control points in each column (v direction)of the control point matrix make a �xed angle with the plane surface, so the B-spline surface keeps the sameorientation along the joining edge.functions, it is not the case for free-form surfaces. For these surfaces we adopted TheB-spline representation. The surfaces are �tted separately and the resulting parameters~p0f and ~p0a of respectively the free-form surfaces and the simple surfaces are grouped intothe parameter vector ~p0 de�ning an initial parameterization of the object. The regularconstraints, the boundary constraints and the initial vector ~p0 constitute the input of theconstrained optimization algorithm.3.1 B-spline surface �ttingA B-spline surface is de�ned by the following equation:C(u; v) = nXi=1 mXj=1Bi(u; Tu)Bj(v; Tv)Pi;j (u; v) 2 [0; 1]where (u; v) are the location parameters that uniquely de�ne the location of the point C onthe surface, n andm are the number of control points in the u and v directions, Bi(u; Tu) andBj(u; Tv) are the normalized B-spline function. Bi(u; Tu) is de�ned uniquely by the orderku (degree + 1) of the polynomial and the knot sequence Tu consisting of a set of n+ku non-decreasing constants fu0; � � � ; un+ku�1g non-uniformly sub-dividing the interval [0; 1]. Thereis an analogous de�nition for Bj(u; Tv) with respect to the order kv and the knot sequenceTu:fv0; � � � ; vn+kv�1g. (Pi;j) are the control points controlling the shape of the surface. Thecontrol points are organized as an n�m rectangular grid (Fig.1.b) where (n;m) are the num-bers of control points in u and v directions respectively. Given a set of measurement pointsXNk=1, a B-spline surface �tting is performed by determining the set of control points mini-mizing the least squares function: PNk=1 (Pni=1Pmj=1Bi(uk; Tu)Bj(vk; Tv)Pi;j �Xk)2 This



is a non-linear problem since (uk; vk; Tu; Tv) de�ning the parametrization of the projectionof the data points Xk on the B-spline surface have to be known.There are two alternatives for the solution, the �rst is to proceed with a non-linearminimization technique as in [7]. The other alternative is to use an iterative algorithmwhich consists of: 1) Assign initial parameter (uk; vk) to the data points and deduce fromthem (Tu; Tv). 2) Solve the linear least squares equation (3.1) which by restructuring thecontrol points into a single vector ~pf = [P11x ; P12x ; ::; Pnmx ; P11y ; ::; Pnmy ::; P11z ; ::; Pnmz ]T can berewriten as the vector function: (Hf ~pf + ~hf )2 where Hf and ~hf are a matrix and a vectorwhose elements depend on the normalized B-spline function values and the measurementdata. 3) If the �t is not acceptable then recompute the parameters (uk; vk; Tu; Tv) for the�xed control points and go to 2).We have chosen the second alternative. The determination of the projection parameterswas performed using the methods described in [3]. Prior to the determination of the pro-jection parameters, the scattered measured data points need to be organized into a regulargrid structure. This can be performed semi-automatically, for instance [3] or automatically,for instance [4].3.2 The boundary constraints on a B-spline surfaceThe free-form surface has to be continuous with the adjacent simple surface and keep a�xed angle all along its boundary with that surface. To set the equations related to theseconstraints we need to examine �rst the properties of B-spline curve de�ned by C(u) =Pni=1 Bi(u; Tu)PiProperty 1: A B-spline curve interpolates its �rst and last control points (Figure 1.a), that is C(0) = P0 and C(1) = P1Property 2: At its ends, a B-spline curve is tangent to the segments connecting the�rst two and, respectively the last two control points, that is:@C(u)@u ju=0 = K(P1 �P2); @C(u)@u ju=1 = K0(Pn �Pn�1) (2)where K and K 0 are constants. From these properties we deduce that a B-spline curve iscontinuous with a segment if the end control point is set to lie on that segment and that bysetting the segment made by the last two end control points so that it makes given anglewith the joined segment, the tangent to the B-spline curve at the joining point will makethe same angle with the joined segment (Fig.1.c).Extending these properties to surfaces leads to saying that the �rst order continuity ofa B-spline surface with an simple surface is satis�ed by setting the control points of the endrow or column (depending on which side the regular surface meets the B-spline surface) tobelong to the simple surface. Similarly making the tangent plane of the B-spline surfacehave a �xed angle with the tangent plane of the regular surface is imposed by setting eachof the segments formed by the two last end control points of each row (or column) so thatthey make the same angle with the tangent plane of the regular surface at their joining edge(Fig.1.d).Consider the case of a plane as the simple surface and consider a B-spline surface havingn and m control points in the u and v direction respectively, and which joins a plane surfacehaving as orientation the normal ~n and d as o�set parameter. The B-spline surface joins theplane so that their orientations at the edge make an angle �. Let us suppose without lossof generality that the B-spline surface joins the plane along the v direction (as in Fig.1.d).Then the continuity constraints and the orientation constraints on the B-spline surface atits boundary with the plane can be de�ned by the equations (3), (4) and (5)



~nTP1;j + d = 0; j = 1::m; (3)~nT (P1;j �P2;j) = Kjcos(�); j = 1::m; (4)(P1;j �P2;j)T (P1;j �P2;j) = K2j (5) ~pTAj~p+ ~BT ~p = 0; j = 1::m; (6)~pTBj~p�Kjcos(�) = 0; j = 1::m; (7)~pTCj~p�Kj = 0; j = 1::m; (8)The equation (5) constrains the length of each segment P1;jP2;j to a �xed value. Weadded this constraint in order to simplify the implementation of the angle constraint. Fromthese relations we extract the quadratic vector functions (6),(7) and (8). where ~p is thewhole parameter vector ~p grouping the B-spline surface parameters ~pf and the parametersof the simple surfaces ~pa, Aj , B, Bj and Cj are appropriate matrices and vectors. Under thisform the integration of the boundary constraint into the constrained surface optimizationalgorithm described in section 2 is straightforward.3.3 Recapitulation of the algorithmThe constrained reconstruction algorithm for objects having simple and free-form surfacescontains the following steps: 1) Fit the simple surfaces (planes and quadrics) and computethe related initial parameters ~pa0 using for instance the technique in [8]. 2) Fit the B-spline surface using the method mentioned in Section 3.1 and assign to the B-spline surfacea parameter vector ~pf0 initialized by the control points coordinates. 3) Set the objectparameter vector to ~p and initialise it to the vector ~p0 grouping ~pa0 and ~pf0 and de�ne theobjective function as F (~p) = ~pTHa~p+ (Hf~p+ ~hf )2 where Ha;Hf and ~hf are matrices andvector deduced from the initial surface �tting of the simple and the B-spline surfaces. 4)Set the equations of the regular constraints (??) and the boundary constraints (6) and (7).5) Apply the constrained optimization algorithm and determine ~p.4 ExperimentsThe experiments were carried out on synthetic and real parts containing planar and free-formsurfaces. The aim was to study the impact of the constrained reconstruction on the free-form surfaces in terms of satisfaction to the boundary constraints imposed by the geometricrelationships with adjacent planar surfaces. Because of space limit only one object will bepresented in this paper.The experiment considered a set of surfaces from the object shown in Figure.2.(a). Thefree-form surface Sf is bounded by the three planes. The number of control points assignedto Sf are n = m = 5 in the u and v directions respectively. The plane S1 is orthogonalto S2 and S3, these two last make a �xed angle between their orientation. The free-formsurface has then a positional continuity constraint with each plane. This is encoded by theequations (9), (10) and (11)mXj=1(~pTA(SfS1)j ~p+ BTS1~p)2 = 0 (9)nXj=1(~pTA(SfS2)j ~p+ BTS2~p)2 = 0 (10)nXj=1(~pTA(SfS3)j ~p+ BTS3~p)2 = 0 (11)
mXj=1(~pTB(SfS1)j ~p�K(S1)j )2 = 0 (12)nXj=1(~pTB(SfS2)j ~p)2 = 0 (13)nXj=1(~pTB(SfS3)j ~p)2 = 0 (14)The equations related to the orthogonality of Sf to S1 and the tangency of Sf to S2 andS3 are obtained by setting the angle � in (4) to 0 and �=2, we get the equations (12), (13),(14). We notice that the value �=2 of the angle � makes the norm value Kj not involved
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(g) (h)Figure 2: (a) view of the object. (b)..(f), views of the reconstructed surfaces (g)angle between the free-formsurface normal and the plane normal of the adjacent surfaces. (h) plane function values at the edge pointsof the free-from surfaces Sfin the tangency constraint between Sf and both S2 and S3. Therfore there is no need toimpose the norm constraint (5) on the control points of the B-spline surface associated toSf and located on the side of S2 and S3. For the control points on the side of S1, the relatednorm constraints is Pnj=1(~pTC(SfS2)j ~p�K(S1)j )2 = 0Figure 2(b..f) shows some views of the reconstructed surfaces. The satisfaction of thecontinuity and the tangency of the B-splines surfaces with the bounding plane surfaces isillustrated in Figure 2(g,f).5 ConclusionIn this paper we have described an approach for integrating free-form surfaces and theirconstrained relationships in a surface recovery scheme incorporating geometric constraints.The global aspect of the surface optimization produces a free-form surface approximationsatisfying the constraints while having the desired smoothness. The experiments were car-ried out with planes as bounding surfaces, but the quadric surface case can be also used inthis approach. The set of constraints between the free-form surfaces and the simple surfacescan be further extended to cover constraints other than the boundary ones. For example,a free-form surface can be imposed to have its local orientation (the local orientation ata given point of a free-from surface can be de�ned by the normal of the plane tangent to
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