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Abstract
This paper addresses the problem of integrating free-form surfaces in a constrained
object reconstruction. The objects of interest here have both simple shaped surfaces
(e.g. planes and quadrics) and free-from surfaces. The goal is to ensure a global op-
timization of the object shape where neighbourhood relationships between free-from
surfaces and analytic surfaces are also satisfied. The scheme is validated with experi-
ments made on synthetic and real object
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1 Introduction

In reverse engineering, having an object reconstruction satisfying geometrical constraints is
a fundamental requirement to ensure shape consistency and to reproduce human-intended
relationships. In previous work we have developed an approach for imposing geometric
constraints on objects having regular surfaces, e.g. planar [9] and second order surfaces
[10, 11]. Although these categories covers a large range of manufactured objects, there
are still a lot of objects that contain both simple shaped and free-form surfaces. For this
category, imposing constraints only on simple surfaces while leaving the free-form surfaces
free may cause undesirable effects, such as loss of continuity between the free-form surfaces
and simple surfaces, and decrease of the smoothness of the object shape as whole. The
aim of this work is to investigate how to impose constraints on the regular surfaces while
maintaining their continuity or more generally the shape properties at the point of their
intersection with the free-form surfaces which remain constrained by proximity to the data.

2 Constrained object surface reconstruction

Given sets of 3D measurement points representing surfaces belonging to a certain object,
we want to estimate the different surface parameters, taking into account the geometric
relationships between these surfaces and the specific shapes of surfaces as well. A state vector
P is associated to the object, which includes all parameters related to the different object
surfaces. The vector p has to best fit the data while satisfying the constraints. Consider
F(p) to be an objective function defining the relationship between the measured data points
and the parameters. Such a function is generally a minimization criterion, for instance, the
sum of the least squares residuals. Using an algebraic representation of the surfaces, this
function can be put into a quadratic form: F(p) = p7 Hp where H is a data matrix. The
constraints will also to be represented by a quadratic vector function: §7 Ap'+ B7p + C
where A, B and C' are respectively appropriate matrix, a vector and a scalar.

Consider Ci(p), k = 1..M, the set of constraint functions defining the geometric con-
straints where C(p) is a vector function associated with constraint k. The problem can be



then stated as follows: minimize F(p) subject to the constraints Cy(p) =0, k = 1..M The
problem is a constrained optimization problem. We suggested an approach in the framework
of sequential unconstrained minimization where we consider the optimization function

E@) = F@) + Y M(Cr(@)* M >0 (1)

k=1

The scheme is to initialize the parameter vector g, then increment the set of weighting
values Ay iteratively, at each step (1) is minimized by a standard non-constrained technique,
and solution p'is updated. The process continues until the constraints are satisfied. Figure
1.A illustrates a simplified version of the algorithm where the constraints have been as-
signed an equal weighting value. For more details about the technique and the convergence
conditions of the algorithm we refer the readers to [11].

3 Incorporating B-spline surfaces in constrained object
reconstruction

The objective is to reconstruct the object taking into account the geometric relationships
(referred as a regular constraints) between the simple surfaces while maintaining the bound-
ary relationships between them and the free-form surfaces, these relationships are referred
here by the boundary constraints. One possible approach to solve this problem is to apply
the constrained surface fitting scheme of Section 2 on the regular surfaces then modifying
afterwards the free-form surfaces so that they join the optimized analytic surfaces with the
desired joining constraints. Such modifications can be performed manually using CAD pack-
ages. However, this way may affect the smoothness of the surface and introduce wrinkles.
It may also lead to solutions with larger overall errors when later imposing the boundary
constraints. Besides, achieving this adjustment manually is a tedious task.

Kruth et al [2] treats the case of objects containing only free-form surfaces which are
joined with boundary conditions, namely, positional and tangential continuity. They adopted
a NURBS representation of the surfaces (NURBS is a more elaborated version of the B-spline
where the control points coefficients are rational and assigned a weighting values). In their
approach, the NURBS surface is modified locally to fit an adjacent surface subject to the
boundary conditions. The parameters of the adjacent surface are supposed to be already
fixed.

Our work differs from [2] in three aspects. First we treat a category of objects composed
of free-form surfaces and simple surfaces. Second, it follows from the first aspect that
our constrained optimization scheme considers additionally to the geometric relationships
between the simple surfaces, the boundary constraints inferred by the adjacency between
the free-form surfaces and the simple surfaces. Third, most importantly, all the surfaces are
fitted simultaneously within an automated constrained surface fitting scheme incorporating
the two types of constraints. This ensures a global adjustment of all the surfaces’ parameters
rather than modifying some to fit already fixed ones and leads therefore to a homogeneous
adjustment of the object surfaces’ shape and spreading of the errors.

The whole constrained reconstruction process is described as follows: First we start
from a cloud of points acquired with a laser scanner. The measurement points are treated
with the rangeseg program [1] to produce two sets of surfaces, namely simple surfaces with
known types and free-from surfaces. The simple surfaces include planes and quadric surfaces
that can be defined by algebraic functions. The linearity with respect to the parameters
of the algebraic functions allows a closed-from solution when fitting these surfaces with a
Least Squares technique [8]. Whereas simple surfaces can be represented with algebraic
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Figure 1: (a) a A B-spline curve with 6 control points. (c) a B-spline surface having 6 and 3 control points
in the u,v directions respectively. (b) The end control point Py is set on the segment s, so the B-spline
curve is continuous with the segment s. By setting the relative orientation between P1P2 and s to angle a,
the B-spline curve meets s with the same angle. (d) The first two control points in each column (v direction)
of the control point matrix make a fixed angle with the plane surface, so the B-spline surface keeps the same
orientation along the joining edge.

functions, it is not the case for free-form surfaces. For these surfaces we adopted The
B-spline representation. The surfaces are fitted separately and the resulting parameters
poy and pga of respectively the free-form surfaces and the simple surfaces are grouped into
the parameter vector py defining an initial parameterization of the object. The regular
constraints, the boundary constraints and the initial vector py constitute the input of the
constrained optimization algorithm.

3.1 B-spline surface fitting

A B-spline surface is defined by the following equation:

C(u,v) = ZzBi(U,Tu)B]’(U,Tv)Pi,]‘ (u,v) €10,1]

i=1 j=1

where (u,v) are the location parameters that uniquely define the location of the point C' on
the surface, n and m are the number of control points in the v and v directions, B;(u,T,) and
Bj(u,T,) are the normalized B-spline function. B;(u,T.,) is defined uniquely by the order
k. (degree + 1) of the polynomial and the knot sequence T, consisting of a set of n+ k&, non-
decreasing constants {ug, - - -, Un4k, —1 } non-uniformly sub-dividing the interval [0, 1]. There
is an analogous definition for B;(u,T,) with respect to the order k, and the knot sequence
Tu{vo, -+, Untk,—1}. (Ps;) are the control points controlling the shape of the surface. The
control points are organized as an n*m rectangular grid (Fig.1.b) where (n,m) are the num-
bers of control points in u and v directions respectively. Given a set of measurement points
XN ., a B-spline surface fitting is performed by determining the set of control points mini-

mizing the least squares function: Y0, (321, >oity Bi(uy, Tu) Bj (v, Ty)P; j — Xy)? This



is a non-linear problem since (ug, vy, Ty, T,) defining the parametrization of the projection
of the data points X; on the B-spline surface have to be known.

There are two alternatives for the solution, the first is to proceed with a non-linear
minimization technique as in [7]. The other alternative is to use an iterative algorithm
which consists of: 1) Assign initial parameter (ug,vs) to the data points and deduce from
them (T, T,). 2) Solve the linear least squares equation (3.1) which by restructuring the
control points into a single vector pj = [Pi1,,Pi2,, .. Pamas Pi1,, . Pamy -, Pi1.s ., Pam.]T can be
rewriten as the vector function: (H;py + h_;c)2 where Hy and h_;c are a matrix and a vector
whose elements depend on the normalized B-spline function values and the measurement
data. 3) If the fit is not acceptable then recompute the parameters (ug,vg, Ty, T,) for the
fixed control points and go to 2).

We have chosen the second alternative. The determination of the projection parameters
was performed using the methods described in [3]. Prior to the determination of the pro-
jection parameters, the scattered measured data points need to be organized into a regular
grid structure. This can be performed semi-automatically, for instance [3] or automatically,
for instance [4].

3.2 The boundary constraints on a B-spline surface

The free-form surface has to be continuous with the adjacent simple surface and keep a
fixed angle all along its boundary with that surface. To set the equations related to these
constraints we need to examine first the properties of B-spline curve defined by C(u) =
Z?:] Bz (U, Tu)Pl

Property 1: A B-spline curve interpolates its first and last control points (Figure 1.a)
, that is C(0) = Py and C(1) = P,

Property 2: At its ends, a B-spline curve is tangent to the segments connecting the
first two and, respectively the last two control points, that is:

0C (u) 0C (u)
ou ou

where K and K' are constants. From these properties we deduce that a B-spline curve is
continuous with a segment if the end control point is set to lie on that segment and that by
setting the segment made by the last two end control points so that it makes given angle
with the joined segment, the tangent to the B-spline curve at the joining point will make
the same angle with the joined segment (Fig.1.c).

lu=0 = K(P1 — P2),

lu=1 = K'(Pn — Pn_1) (2)

Extending these properties to surfaces leads to saying that the first order continuity of
a B-spline surface with an simple surface is satisfied by setting the control points of the end
row or column (depending on which side the regular surface meets the B-spline surface) to
belong to the simple surface. Similarly making the tangent plane of the B-spline surface
have a fixed angle with the tangent plane of the regular surface is imposed by setting each
of the segments formed by the two last end control points of each row (or column) so that
they make the same angle with the tangent plane of the regular surface at their joining edge
(Fig.1.d).

Consider the case of a plane as the simple surface and consider a B-spline surface having
n and m control points in the u and v direction respectively, and which joins a plane surface
having as orientation the normal 77 and d as offset parameter. The B-spline surface joins the
plane so that their orientations at the edge make an angle a. Let us suppose without loss
of generality that the B-spline surface joins the plane along the v direction (as in Fig.1.d).
Then the continuity constraints and the orientation constraints on the B-spline surface at
its boundary with the plane can be defined by the equations (3), (4) and (5)



ATP1;+d=0, j=1.m; (3) a7+ BTg=0, j=1.m; (6)
il (P15 — Paj) = Kjcos(a), j=1.m; (4) pT B;p — Kjcos(a) =0, j=1.m; (7)
(P1j—P2j)" (P1j—Paj) =K (5 PICiP—K; =0, j=1.m;  (8)

The equation (5) constrains the length of each segment Py ;P ; to a fixed value. We
added this constraint in order to simplify the implementation of the angle constraint. From
these relations we extract the quadratic vector functions (6),(7) and (8). where p' is the
whole parameter vector j grouping the B-spline surface parameters py and the parameters
of the simple surfaces p,, 4;, B, B; and C; are appropriate matrices and vectors. Under this
form the integration of the boundary constraint into the constrained surface optimization
algorithm described in section 2 is straightforward.

3.3 Recapitulation of the algorithm

The constrained reconstruction algorithm for objects having simple and free-form surfaces
contains the following steps: 1) Fit the simple surfaces (planes and quadrics) and compute
the related initial parameters p;, using for instance the technique in [8]. 2) Fit the B-
spline surface using the method mentioned in Section 3.1 and assign to the B-spline surface
a parameter vector py, initialized by the control points coordinates. 3) Set the object
parameter vector to p’ and initialise it to the vector pp grouping p,, and p7, and define the
objective function as F(p) = p' Hap + (Hsp + l_if)2 where H,,H; and h_;c are matrices and
vector deduced from the initial surface fitting of the simple and the B-spline surfaces. 4)
Set the equations of the regular constraints (??) and the boundary constraints (6) and (7).
5) Apply the constrained optimization algorithm and determine g.

4 Experiments

The experiments were carried out on synthetic and real parts containing planar and free-form
surfaces. The aim was to study the impact of the constrained reconstruction on the free-
form surfaces in terms of satisfaction to the boundary constraints imposed by the geometric
relationships with adjacent planar surfaces. Because of space limit only one object will be
presented in this paper.

The experiment considered a set of surfaces from the object shown in Figure.2.(a). The
free-form surface Sy is bounded by the three planes. The number of control points assigned
to Sy are n = m = 5 in the u and v directions respectively. The plane S; is orthogonal
to Sy and S3, these two last make a fixed angle between their orientation. The free-form
surface has then a positional continuity constraint with each plane. This is encoded by the
equations (9), (10) and (11)

> G Asys, 7+ BEDT =0 (9) D Bis 50,7 Kisp,) =0 (12)
j=1 j=1
5L A 7+ BL 5?2 =0 10 5T B 2=0 13
(0" A(sys,),0+ Bg,p)" = (10) (0" B(s;s,),0)" = (13)
j=1 =1
il A 7+ BT 5)2 =0 11 7T B 20 14
(0" A(s;sq),0+ Bs,p)” = (11) (0" B(s;s5),0)" = (14)

j=1 j=1

The equations related to the orthogonality of Sy to S; and the tangency of Sy to Sy and
Ss are obtained by setting the angle o in (4) to 0 and /2, we get the equations (12), (13),
(14). We notice that the value 7/2 of the angle @ makes the norm value K; not involved
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Figure 2: (a) view of the object. (b)..(f), views of the reconstructed surfaces (g)angle between the free-form
surface normal and the plane normal of the adjacent surfaces. (h) plane function values at the edge points
of the free-from surfaces Sy

in the tangency constraint between Sy and both S» and S3. Therfore there is no need to
impose the norm constraint (5) on the control points of the B-spline surface associated to
Sy and located on the side of S, and S3. For the control points on the side of S;, the related
norm constraints is 3" (5" C(s,s,),7 — K(sy);)* =0

Figure 2(b..f) shows some views of the reconstructed surfaces. The satisfaction of the

continuity and the tangency of the B-splines surfaces with the bounding plane surfaces is
illustrated in Figure 2(g,f).

5 Conclusion

In this paper we have described an approach for integrating free-form surfaces and their
constrained relationships in a surface recovery scheme incorporating geometric constraints.
The global aspect of the surface optimization produces a free-form surface approximation
satisfying the constraints while having the desired smoothness. The experiments were car-
ried out with planes as bounding surfaces, but the quadric surface case can be also used in
this approach. The set of constraints between the free-form surfaces and the simple surfaces
can be further extended to cover constraints other than the boundary ones. For example,
a free-form surface can be imposed to have its local orientation (the local orientation at
a given point of a free-from surface can be defined by the normal of the plane tangent to



the free-from surface at that point) orthogonal to (or set to a fixed angle with) an simple
surface. This problem will be addressed in a future work. The constrained optimization was
implemented in C++ language. The program was run on a 200 MHz Sun Ultrasparc work-
station. The optimization time was about 17 min for the used object. Further improvement
can be brought to the algorithm: at this stage, only the control points are updated by the
optimization process. It is worth to investigating how to incorporate the other parameters
of the B-spline surface, namely, the knots sequences, T,, and T,.
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