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FAITHFUL RECOVERING OF QUADRIC SURFACESFROM 3D RANGE DATA BY GLOBAL FITTINGNAOUFEL WERGHI� , BOB FISHER, ANTHONY ASHBROOK*̂, CRAIG ROBERTSONDivision of Informatics, University of Edinburgh, 5 Forrest HillEdinburgh, Scotland, United KingdomThe paper proposes a reliable method for estimating quadric surfaces from 3D range datain the framework of object recognition and localization or reverse engineering. Insteadof estimating a quadric surface in isolation, the approach �ts all the surfaces capturedin the scene together taking into account the geometric relationships between them andtheir speci�c characteristics. The technique is compared with other methods throughexperiments performed on real objects and demonstrates that the use of constrainedrelationships improves shape estimates.Keywords: Quadric surfaces, surface �tting, non-linear optimization, shape modelling.1. IntroductionCommon quadric surfaces such as cylinders, cones and spheres are found inmost manufactured parts and objects. A reliable estimation of these surfaces is afundamental requirement in many applications. An example is in the frameworkof model-based recognition and localization of objects from range data, where theparameters of the surfaces are used for detecting plausible correspondences betweenmodel and scene or between surfaces extracted from di�erent views for registrationpurposes. An accurate and reliable estimation of surfaces is also an essential require-ment in object modelling or reverse engineering, where a faithful model is neededto be extracted from the set of range data for CAD/CAM purposes.One obstacle to achieving this goal is the inaccuracy of shape estimates fromextracted quadric patches. This problem results from the limited �eld of view ofthe sensor which can only cover a partial area of an object in a given view, selfor external occlusion of the object and �nally some surface data is lost during thesurface segmentation process either due to segmentation failure or intentionally inorder to avoid unreliable data. The usable set of data points may thus representonly a small area of the surface (Figure 1) and consequently give unstable estimatesof the surface shape. Furthermore the available data is corrupted by measurementnoise. Consequently quadric surface �tting often fails to give a reliable estimate ofthe surface shape. The estimates are highly biased and may not re
ect the actualtype of the surface even when sophisticated techniques are applied.The idea presented here is to compensate the poorness of information embodiedin the quadric surface data by extra knowledge about the surface such as its type�Now at the Department of Computing Science, University of Glasgow, Glasgow G12 8QC, UK1



(a) (b)Figure 1: (a) Object containing a cylindrical surface. Only a small area of of the cylinder surfaceis visible. (b) A miniaturized model of an industrial plant. Because of noise and segmentationerrors only small portions of the pipes are extracted and can be used reliably for shape estimation.and relationships with other nearby surfaces. This additional information is eitherprovided by the model in the case of model-based applications or deduced froma set of potential hypotheses generated, checked and veri�ed within a perceptualorganization process. E.g., if preliminary estimates of a cylinder and plane lead toan angle between the plane normal and the cylinder axis close to 0o, it is very likelythat the two surfaces are orthogonal, or if the estimated shape of a quadric is anelliptic cylinder with major and minor axes having nearly identical values, then itis very likely that the cylinder is circular.The exploitation of this extra information is quite feasible since a patch is rarelycaptured alone in the scene but rather with close or adjacent surfaces which couldbe either planes or quadrics.This paper shows how the extra information can be represented in a shape estim-ation process and then evaluates the estimation process against several alternatives,concluding that the extra information is both e�ective and easy to exploit.2. Problem statement and related workA quadric surface S is represented by the implicit function:f(x; y; z; ~p) = ax2+ by2+ cz2+2hxy+2gxz+2fyz+2ux+2vy+2wz+d = 0 (1)Given a set of N measurement points Xi we want to �nd the parameter vector~p = [a; b; c; h; g; f; u; v; w; d] such that the function de�ned by (1) represents as wellas possible the actual shape of the surface. The type and shape characteristics ofthe surface are deduced afterwards from ~p.A reasonable criterion to judge the goodness of the solution is the sum ofthe squared Euclidean distances between each measurement point and the surfaceJ = PNi=1 d(Xi; S)2. The parameter vector minimizing this criterion is the bestsolution in the least squares sense. Unfortunately the non-linearity of this distancemeasure does not lead to an easy closed-form solution. Various approximations ofthis distance have been therefore proposed in the literature to make the minim-ization problem easier. The most common one is using the value of the implicitfunction f(x; y; z) known as the algebraic distance. It has been used in recovering2



planes and quadrics [1, 2]. Although this approximation is highly attractive becauseof its closed-form solution, it is subject to much criticism since it leads to a highlybiased estimation for small surfaces with low curvature. An improved approxim-ation was suggested by expanding the implicit function by a Taylor's series up to�rst or second degree. The �rst order approximation is given by:jf(x; y; z)jk ~rf(x; y; z)k (2)Taubin [3] noted that, for surfaces with constant gradient, the estimate based onthe �rst order approximation is the solution of a generalized eigenvalue problem:H~p = �DH~p (3)where H =Pi ~hi ~hiT , DH =Pi dhidhTi ,~hi = [x2i ; y2i ; z2i ; 2xiyi; 2xizi; 2yizi; 2xi; 2yi; 2zi; 1]T and dhi is the Jacobian matrixof ~hi with respect to [xi; yi; zi]. Other than this case the problem is a non-linearminimization which needs to be solved iteratively, e.g. the algorithm proposedby Kumar et al [4] for �tting Hyperquadric surfaces. When the gradient of thesurface vanishes, the �rst approximation is no longer valid. To avoid this singularityproblem Taubin [5] introduces a higher order approximate distance and estimatesthe solution with a non-linear �tting procedure. Luk�acs et al [6] tackled thisproblem by considering an approximation of the geometric distance speci�c to eachquadric type.Lei and Cooper [7] used both the �rst and second order approximation for �t-ting 2D curves but they convert the minimization problem to linear programmingoptimization by using the measurements points as control points constraining theshape of the curve. Sullivan et al [8] minimized the sum of the exact geometricdistances and consider the implicit function representing the surface as a constraintfunction. They solved the problem with an iterative algorithm using the Levenberg-Marquardt technique and Newton method.Another way for considering the Euclidean distance is to use a speci�c repres-entation function for a particular case of quadric surfaces, like the circular cylinder,circular cone and sphere. A circular cylinder can be de�ned by:(x�xo)2+(y�yo)2+(z�zo)2�(nx(x�xo)+ny(y�yo)+nz(z�zo))2�r2 = 0 (4)where ~Xo = [xo; yo; zo]T is an arbitrary point on the axis, ~n = [nx; ny; nz]T is a unitvector along the axis and r is the radius of the cylinder.A circular cone can be represented by:[(x�xo)2+(y�yo)2+(z�zo)2]cos2(�)�[nx(x�xo)+ny(y�yo)+nz(z�zo)]2 = 0 (5)where [xo; yo; zo]T is the apex of the cone, [nx; ny; nz]T is the unit vector de�ningthe orientation of the cone axis and � is the semi-vertical angle.3



A sphere can be de�ned by:(x� xo)2 + (y � yo)2 + (z � zo)2 � r2 = 0 (6)where [xo; yo; zo]T is the centre of the sphere and r is its radius.With this representation the value of the error function at a given point isthe squared distance between this point and the surface. This representation and aslightly di�erent one (replacing the axis vector by two angles) were used respectivelyin [9, 10]. In both works the solution was found with a non-linear optimization.A common characteristic of these works is that they treated each single surfaceindividually. When the quadric patch to be �tted covers a small amount of the sur-face, the �tting technique fails to give a reasonable estimate and often the estimatesare highly biased. This is expected since second order functions can easily trade-o�curvature and position to produce similar error measures. Thus small patches donot provide su�cient extent to reliably select both the curvature and position.However, if we place ourselves in an object recognition and localization frame-work, we usually have to estimate many surfaces belonging to the same object thatare linked by geometrical and topological relationships. By exploiting this globalknowledge together with information that may be available about the quadric typeand shape we compensate for the lack of information in the quadric patch andobtain therefore a more accurate surface parameter estimate.We will show that by a simple representation of the extra information and witha rigorous integration of this information in the �tting process and by using justthe algebraic distance, the proposed approach makes a good trade-o� between es-timation accuracy and computational cost.3. Principle of the approachConsider a set of M surface patches of an object extracted from a given view.We assume that the set may contain quadric and planar patches. By considering thealgebraic distance the minimization criterion related to the surface k has the form:Jk =PNki=1 f(xi; yi; zi; ~pk)2 for Nk data points (xi; yi; zi)T lying on the surface. Thisexpression can be put into the form Jk = ~pkTHk ~pk where ~pk is the parameter vectorand Hk is a nonnegative, de�nite and symmetric matrix:Hk = NkXi=1 ~hi ~hiT (7)~h is a measurement vector function of the measurement point (x; y; z)T . E.g. for aplane and a quadric ~h is de�ned respectively by: ~h = [x; y; z; 1]T and for a quadricsurface ~h = [x2; y2; z2; 2xy; 2xz; 2yz; 2x; 2y; 2z; 1]T . A global minimization criterionfor all the surfaces is the sum of all the single criteriaJ = J1 + J2 + � � �+ JM = ~pTH~p (8)4



where ~p is a global parameter vector concatenating all the single parameter vectorsand H is a global data matrix containing the set of matrices Hk. H is nonnegat-ive, de�nite and symmetric as well. Examples on how the matrix H is formed interms of block-matrix Hk for di�erent objects are shown in Section 5. The relation-ships between the di�erent surfaces and the shape characteristics of the surfaces areformulated into a set of vector functionsCj(~p) = 0; j = 1::K (9)So, the problem can be seen as a constrained optimization problem where wehave to determine the parameter vector ~p minimizing (8) subject to the constraints(9).In a previous work [11] concerned with reverse engineering, we developed analgorithm to solve such constrained problems. Very brie
y, the algorithm is based onsequential unconstrained programming technique where each constraint is assigneda weighting value. The set of weights are incremented sequentially, and at eachiteration the optimisation function composed of the least squares term (8) and theweighted constrained functions (9) is minimized by means of a standard Levenberg-Marquardt Technique. The algorithm stops when the constraints are satis�ed to thedesired degree or when the parameter vector remains stable for a certain number ofiterations. The constraints were represented with the following matrix formulationC(~p) = (~pTA~p+BT ~p+ V )2 (10)where A and B are respectively a square matrix and a vector having the samedimension as the parameter vector ~p, V is a scalar. For more details about theapproach, we recommend the readers to [11].4. Parametrization of the cylinder, the cone and the sphereWhen the treated object contains planes and quadrics the relationships betweena quadric surface and other surfaces are relative orientation and position for cylin-ders and cones and relative position for spheres. The circularity of a cylinder or acone is additional knowledge about the quadric shape which should be taken intoaccount as well.Unfortunately the coe�cients of the implicit function (1) do not have obviousgeometric signi�cance. Formulating the geometric relationships only with theseparameters leads to complex constraint functions often with singular cases. Toavoid this problem, we introduce the orientation of the quadric axis de�ned by anormal vector [nx; ny; nz]T as additional parameters for the cylinder and the cone.Each of these two surfaces will be de�ned then by the following parameter vector:[a; b; c; h; g; f; u; v; w; d; nx; ny; nz]T (11)This representation over-parameterizes the quadric; in return it allows a simpleformulation of the geometric relationships between cone, cylinder and other surfaces5



e.g. the relative orientation between a plane and a quadric is expressed by~ncT ~np � cos(�) = 0; (12)where � is the angle between the plane's normal and the quadric axis, ~nc is theorientation vector of the quadric axis and ~np is the plane's normal.Based on the above parametrization the circularity of the cylinder is expressedby the following equationsa = 1� n2xb = 1� n2yc = 1� n2z h = �nxny (13)g = �nxnzf = �nynzand for the cone by:a� b = n2x � n2ya� c = n2x � n2zb� c = n2y � n2z h = nxny (14)g = nxnzf = nynzThese relations are obtained by expanding equations (4) and (5) and identifyingwith the general quadric equation (1). Taking into account the set of equations(13), we can show that the point de�ned by Xo = [�u;�v;�w]T belongs to thecylinder axis, and that the cylinder radius can be expressed byr2 = d� u2 � v2 � w2 (15)A sphere is characterized by equal coe�cients for the x2, y2 and z2 terms andvanishing coe�cients for the cross product terms. Its representation is:a(x2 + y2 + z2) + 2ux+ 2vy + 2wz + d = 0 (16)The radius and the centre of the sphere are de�ned respectively by~Xo = [�u=a;�v=a;�w=a]T (17)r2 = u2 + v2 + w2 � ada2 (18)5. ExperimentsA series of experiments were performed on several real objects having planar andquadric surfaces. The segmentation and the extraction of the surfaces were per-formed automatically with the rangeseg program[12].Our approach was compared with three main techniques covering a large part ofthe spectrum of the �tting techniques developed in the literature. These techniquesare the unconstrained algebraic distance (AD) [1, 2], the �rst order approximation6



of the Euclidean distance (AED) [3] (2) and the iterative optimization technique[9, 10] based on the speci�c representations (SR) of quadrics (13), (14) and (6),respectively for the circular cone, the circular cylinder and the sphere. We note thatthe AED technique used here is improved with respect to the one in [3] by weightingthe Euclidean distance by the data variances (see the Appendix for details). In therest of the paper these techniques will be referenced respectively by AD, AED, SRand our proposed global �tting approach by GF.The performances of the di�erent techniques are evaluated by comparing theshape parameters of the quadrics, for instance the half angle for the cone and theradius for the cylinder and the sphere. The computation time was taken into accountas well. With AD, and AED the estimation time is almost instantaneous, whereasit varies from half an hour to several hours for the SR depending on the numberof measurement points. For the GF technique it is in the range of minutes. Thedi�erent techniques were implemented with Matlab on a 200 MHz Sun UltraSparcworkstation.
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From (19) we deduce the penalty function associated to the orientation con-straint: Corient(~p) = (~pTA~p)2 where A is an appropriate matrix.The penalty function related to the circularity constraint is deduced from (13)and de�ned by: Ccirc(~p) =P6i=1(~uiT ~p� ~pTLi~p)2The unity of the normal vectors has to be taken into account as well by intro-ducing the penalty function: Cunit(~p) = (~pTU1~p� 1)2 + (~pTU2~p� 1)2 where U1; U2are appropriate matrices.The optimization function is thus set up as follows:E(~p) = ~pTH~p+ �unitCunit(~p) + �orientCorient(~p) + �circCcirc(~p)which can be put into the form E(~p) = ~pTH~p+P9k=1 �k(Ck(~p))2where Ck(~p) are the elementary constraint functions in the form of (10).The results obtained with the di�erent techniques when applied to the objectsin Figure 2.a are grouped in Table1.(a). The AD and the AED techniques both givea biased estimates and the resulting estimated cylinder has an elliptical shape. TheSR and the GF preserve the circularity of the cylinder surface, the GF has moreaccurate estimate however. The computation time for the SR technique is 40 minwhereas it is only 3 min for the GF technique.Object 2 is composed of a cone and a plane base (Fig.2.(b) ). The axis of thecone is perpendicular to the plane. This constraint is imposed by associating asingle unit vector to both the orientation of the cone axis and the plane's normal.Table1.(b) shows the results obtained with the di�erent techniques except forthe AED technique, which cannot be used as a cone surface does not have a constantgradient value. The AD technique gives an elliptic cone, whereas the SR and GFensures a faithful shape estimate and relatively better accuracy with the GF.Object 3 is a miniaturized factory model. Two cylinders and two planes wereextracted from the view shown in Figure 3.(a). Cylinder 1 and cylinder 2 areorthogonal respectively to plane 1 and plane 2. These constraints are satis�ed byassociating the same vector to each pair of (Plane1 normal, cylinder 2 orientation)(Plane2 normal, cylinder 1 orientation). The two cylinders are circular and mutuallyorthogonal. The di�erent estimates are presented in Table 1.(c).Object 4 (Fig.3.(b)) contains a circular cone and a circular cylinder havingperpendicular axes. The cylindrical patch covers nearly 20% of the whole cylinderand the cone patch around 30%. We have not considered the relationships betweenthe two lateral planes and the quadric surfaces but they can be also integratedwithout any particular di�culty. Since the patches contain a large amount of datapoints (nearly 25000 and 7000 points for the cylinder and the cone respectively) theSR �tting is quite time-consuming, about six hours for the cylinder and around twohours for the cone. With the GF technique, the two surfaces are simultaneouslyestimated in 5 min. The di�erent estimates are summarized in Table 1.(d).Object 5 (Figure 3.(c)) contains a circular cylinder and a half sphere. The twosurfaces have the same radius and the axis of the cylinder goes through the centre9



of the sphere. In the view shown in Figure 3.(c)) nearly a quarter of the sphere andhalf of the cylinder are visible. The estimates are shown in Table 1(e).In terms of accuracy, it is clear that the SR and the GF algorithms are compar-able to each other and superior to the AD and the AED algorithms. In terms ofspeed, GF is an order of magnitude faster.Figure 4 shows the estimates of the cylinder surface and the sphere surface aswe vary the viewpoint on the surface. In the �rst position (�rst column) the spherepatch occupies a larger �eld of the view relatively to the cylindrical patch. Thenthe object is rotated such that the sphere patch area is reduced and the cylindricalpatch becomes more visible in the scene. The sphere patches area ranges fromnearly 70% to 20% of a half sphere. We notice that the GF �tting estimates remainstable and close to the actual values. The SR estimates are also relatively stable butless accurate than those of the GF. The AED technique estimates vary dramaticallyfor the cylinder. For the sphere, the AED estimates are relatively stable but stillless accurate than the GF ones.
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Figure 4: Sphere and cylinder estimates for di�erent positions of object7.6. Discussion and ConclusionIt is clearly noticed from the di�erent tables related to objects having circularcones or circular cylinders that when the shape of the quadric is not constrainedthe AD and AED algorithms do not guarantee a faithful shape estimate. Bothtechniques result in elliptic cones or elliptic cylinders with a bias depending onhow much the patch covers the quadric and the number of measurement pointsin each patch. However the AED technique estimates are less biased. Figure 5illustrates the di�erence where the bias in the shape estimates is expressed in termsof the (minor axis/major axis) ratio. The same aspect is noticed for the cones if wecompare the cone estimates for object 1 (Table 1.(a)) and object 6 (Table 1(d)).By imposing the circularity constraint the SR and the GF give faithful estimatesin terms of shape and parameter values. It is noticed however that the results areusually more accurate with the GF. This suggests that, by taking into accountthe di�erent position and orientation relationships constraining the location of the10



AD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 30:41 rmax = 41:58 r = 44:25 r = 44:62 r = 45rmin = 17:50 rmin = 37:80- - 40 min 3 min(a) cylinder in Figure 2.aAD AED SR GF true surfaceell.cone: - cir.cone cir.cone cir.cone�max = 21:41o - � = 20:77o � = 19:68o � = 20o�min = 20:19o -- - 30 min 2 min(b) cone in Figure 2.bAD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderr1max = 17:69 r1max = 9:01 r1 = 8:08 r1 = 7:44 r1 = 7:50r1min = 12:12 r1min = 8:13r2max = 4:96 r2max = 5:67 r2 = 5:23 r2 = 4:95 r2 = 5:00r2min = 4:28 r2min = 5:24- - 30 min 5min(c) cylinders 1 and 2 in Figure 3.aAD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 46:10 rmax = 57:62 r = 59:81 r = 59:54 r1 = 60rmin = 33:66 rmin = 55:42ell.cone - cir.cone cir.cone cir.cone�max = 28:86o - � = 26:84o � = 31:80o � = 30o�min = 25:19o -- - cone: 2 hourscylinder: 6 hours 5 min(d) cylinder and cone in Figure 3.bAD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 14:46 rmax = 14:64 r = 14:98 r = 14:95 r = 15:00rmin = 13:51 rmin = 14:01sphere sphere sphere sphere spherer=15.03 r=15.05 15.03 14.95 15.00- - sphere: 20 mincylinder: 2 hours 4 min(e) cylinder and sphere in Figure 3.cTable 1: The tables list the results of the four algorithms on the main quadric surfaces in thetest objects as well as the true answers. The computation time are shown in the last rows.11
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ob2(a) (b)Figure 5: shape bias in the cylinder estimates (ob:object, c1:cylinder1,etc.). (a) with the ADtechnique, (b) with the AED techniquequadric surface, the estimate is greatly improved. When a speci�c algebraic functionis used for the sphere (16) all the techniques give accurate estimates (Table 1(e)).The computation time is dramatically high with the SR technique, and may takehours for surfaces with large amounts of data. This is normal with this non-linearrepresentation where the data terms cannot be grouped and accumulated separ-ately . Indeed the minimization criterion J = PNi=1 d(Xi; S)2 and its derivativeshave to be computed sequentially by evaluating d(Xi; S)2 at each point, thus thecomputation time gets higher as the number of points increases, whereas in the GFapproach, the criterion J = ~pTH~p and its derivatives have the measurement pointsdata encapsulated in the matrix H which is computed o�-line, almost instantan-eously. The GF technique has therefore very reasonable processing time (on theorder of few minutes) for all the objects.Although it is not the objective of this work we believe that using all the knownrelationships between the quadric surfaces and other surfaces very likely shifts theposition of the surfaces towards their actual positions in the sense that incorporatingthese constraints may compensate for the e�ects of systematic errors. This aspectwas mentioned in [9] for the circularity of the quadric. Generalizing this aspect forgeometric relationships between surfaces can be worthwhile future work.The optimization technique used in the GF algorithms supposes a reasonableinitialisation of the surface parameter vector. Although this condition limits the�eld of application of the technique, it is well satis�ed in our framework. We proposeto use the estimates given by the AD, or, when possible, the AED as initialization.More generally we suggest the scheme illustrated in Figure 6 for optimal combinationof the AD, AED and the GF for the estimation of object surfaces.AcknowledgementsThe work presented in this paper was funded by UK EPSRC grant GR /L25110.A short version of the paper has been published in the International Conference onRecent advances in 3-D Digital Imaging and Modeling, Ottawa, Canada.12
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AppendixA �rst order approximation [3] of the Euclidean distance squared between ameasurement point X and its projection X̂ on the �tted surface is:(X � X̂)T (X � X̂) ' f(~p;X)2k ~rf(~p;X)k2 (20)We consider the Euclidean distance weighted by the variances of measurement noise:(X � X̂)TL�1(X � X̂) (21)where L�1 is the covariance matrix of the measurement points de�ned byL = 24 �2x 0 00 �2y 00 0 �2z 35The values of the variances deduced from empirical tests are �x = 0:05mm, �y =0:05mm and �z = 0:1mm. These variances are related to the measurement errorsof the measurement point coordinates. They are independent of the object size.By considering L�1 = RTR, (21) becomes (RX �RX̂)T (RX �RX̂) Thus from(20) we get (X � X̂)TL�1(X � X̂) ' f(~p;RX)2k ~rf(~p;RX)k2since @f(~p;RX)@RX = RT @f(~p;RX)@X(21) could be expressed as(X � X̂)TL�1(X � X̂) ' f(~p;RX)2(@f(~p;RX)@X )TRTR(@f(~p;RX)@X )= f(~p;RX)2(@f(~p;RX)@X )TL�1(@f(~p;RX)@X )
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