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The paper proposes a reliable method for estimating quadric surfaces from 3D range data
in the framework of object recognition and localization or reverse engineering. Instead
of estimating a quadric surface in isolation, the approach fits all the surfaces captured
in the scene together taking into account the geometric relationships between them and
their specific characteristics. The technique is compared with other methods through
experiments performed on real objects and demonstrates that the use of constrained
relationships improves shape estimates.
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1. Introduction

Common quadric surfaces such as cylinders, cones and spheres are found in
most manufactured parts and objects. A reliable estimation of these surfaces is a
fundamental requirement, in many applications. An example is in the framework
of model-based recognition and localization of objects from range data, where the
parameters of the surfaces are used for detecting plausible correspondences between
model and scene or between surfaces extracted from different views for registration
purposes. An accurate and reliable estimation of surfaces is also an essential require-
ment in object modelling or reverse engineering, where a faithful model is needed
to be extracted from the set of range data for CAD/CAM purposes.

One obstacle to achieving this goal is the inaccuracy of shape estimates from
extracted quadric patches. This problem results from the limited field of view of
the sensor which can only cover a partial area of an object in a given view, self
or external occlusion of the object and finally some surface data is lost during the
surface segmentation process either due to segmentation failure or intentionally in
order to avoid unreliable data. The usable set of data points may thus represent,
only a small area of the surface (Figure 1) and consequently give unstable estimates
of the surface shape. Furthermore the available data is corrupted by measurement,
noise. Consequently quadric surface fitting often fails to give a reliable estimate of
the surface shape. The estimates are highly biased and may not reflect the actual
type of the surface even when sophisticated techniques are applied.

The idea presented here is to compensate the poorness of information embodied
in the quadric surface data by extra knowledge about the surface such as its type
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Figure 1: (a) Object containing a cylindrical surface. Only a small area of of the cylinder surface
is visible. (b) A miniaturized model of an industrial plant. Because of noise and segmentation
errors only small portions of the pipes are extracted and can be used reliably for shape estimation.

and relationships with other nearby surfaces. This additional information is either
provided by the model in the case of model-based applications or deduced from
a set of potential hypotheses generated, checked and verified within a perceptual
organization process. E.g., if preliminary estimates of a cylinder and plane lead to
an angle between the plane normal and the cylinder axis close to 0°, it is very likely
that the two surfaces are orthogonal, or if the estimated shape of a quadric is an
elliptic cylinder with major and minor axes having nearly identical values, then it
is very likely that the cylinder is circular.

The exploitation of this extra information is quite feasible since a patch is rarely
captured alone in the scene but rather with close or adjacent surfaces which could
be either planes or quadrics.

This paper shows how the extra information can be represented in a shape estim-
ation process and then evaluates the estimation process against several alternatives,
concluding that the extra information is both effective and easy to exploit.

2. Problem statement and related work

A quadric surface S is represented by the implicit function:
f(z,y,2,P) = ax® +by? + c2* + 2hay + 29wz + 2fyz + 2ux + vy + 2wz +d = 0 (1)

Given a set of NV measurement points X; we want to find the parameter vector
p=la,b,c,h,g, f,u,v,w,d] such that the function defined by (1) represents as well
as possible the actual shape of the surface. The type and shape characteristics of
the surface are deduced afterwards from p.

A reasonable criterion to judge the goodness of the solution is the sum of
the squared Euclidean distances between each measurement point and the surface
J = Z:\Ll d(X;,S)?. The parameter vector minimizing this criterion is the best
solution in the least squares sense. Unfortunately the non-linearity of this distance
measure does not lead to an easy closed-form solution. Various approximations of
this distance have been therefore proposed in the literature to make the minim-
ization problem easier. The most common one is using the value of the implicit
function f(z,y, z) known as the algebraic distance. It has been used in recovering



planes and quadrics [1, 2]. Although this approximation is highly attractive because
of its closed-form solution, it is subject to much criticism since it leads to a highly
biased estimation for small surfaces with low curvature. An improved approxim-
ation was suggested by expanding the implicit function by a Taylor’s series up to
first or second degree. The first order approximation is given by:
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Taubin [3] noted that, for surfaces with constant gradient, the estimate based on
the first order approximation is the solution of a generalized eigenvalue problem:

(2)

Hp=ADHp (3)
where H = S, hiii, DH = Y, dh;dh?,
hy = (22,42, 22, 2miy;, 225, 2yzi, 25, 2i, 225, 1T and dh; is the Jacobian matrix
of h; with respect to [x;,y;, z]. Other than this case the problem is a non-linear
minimization which needs to be solved iteratively, e.g. the algorithm proposed
by Kumar et al [4] for fitting Hyperquadric surfaces. When the gradient of the
surface vanishes, the first approximation is no longer valid. To avoid this singularity
problem Taubin [5] introduces a higher order approximate distance and estimates
the solution with a non-linear fitting procedure. Lukdcs et al [6] tackled this
problem by considering an approximation of the geometric distance specific to each
quadric type.

Lei and Cooper [7] used both the first and second order approximation for fit-
ting 2D curves but they convert the minimization problem to linear programming
optimization by using the measurements points as control points constraining the
shape of the curve. Sullivan et al [8] minimized the sum of the exact geometric
distances and consider the implicit function representing the surface as a constraint
function. They solved the problem with an iterative algorithm using the Levenberg-
Marquardt technique and Newton method.

Another way for considering the Euclidean distance is to use a specific repres-
entation function for a particular case of quadric surfaces, like the circular cylinder,
circular cone and sphere. A circular cylinder can be defined by:

(37*370)2'*‘(1/*1/0)24‘(2*20)2*(nm($*$0)+”y(l/*yo)+nZ(Z*ZO))2*TQ =0 (4)

where X, = [To, Yo, 20]" is an arbitrary point on the axis, i = [ng,n,,n.]" is a unit
vector along the axis and r is the radius of the cylinder.

A circular cone can be represented by:

[(2—20)” +(y—y0) "+ (2= 20)"]c0s® (@) = [na (x—26) +11y (y —y0) +72(2—20)]* = 0 (5)

where (75, Yo, 20)T is the apex of the cone, [n,,mn,,71.]T is the unit vector defining
the orientation of the cone axis and « is the semi-vertical angle.



A sphere can be defined by:
(m7$0)2+(y7y0)2+(2720)2 —r*=0 (6)

where [,,1,, z,]T is the centre of the sphere and r is its radius.

With this representation the value of the error function at a given point is
the squared distance between this point and the surface. This representation and a
slightly different one (replacing the axis vector by two angles) were used respectively
in [9, 10]. In both works the solution was found with a non-linear optimization.

A common characteristic of these works is that they treated each single surface
individually. When the quadric patch to be fitted covers a small amount of the sur-
face, the fitting technique fails to give a reasonable estimate and often the estimates
are highly biased. This is expected since second order functions can easily trade-off
curvature and position to produce similar error measures. Thus small patches do
not provide sufficient extent to reliably select both the curvature and position.

However, if we place ourselves in an object recognition and localization frame-
work, we usually have to estimate many surfaces belonging to the same object that
are linked by geometrical and topological relationships. By exploiting this global
knowledge together with information that may be available about the quadric type
and shape we compensate for the lack of information in the quadric patch and
obtain therefore a more accurate surface parameter estimate.

We will show that by a simple representation of the extra information and with
a rigorous integration of this information in the fitting process and by using just
the algebraic distance, the proposed approach makes a good trade-off between es-
timation accuracy and computational cost.

3. Principle of the approach

Consider a set of M surface patches of an object extracted from a given view.
We assume that the set may contain quadric and planar patches. By considering the
algebraic distance the minimization criterion related to the surface k£ has the form:
Jip = Zi‘] f(xi,yi, zi, pr)? for Ny, data points (x;,;, z;)7 lying on the surface. This
expression can be put into the form Jj, = pi ' Hypr. where pj, is the parameter vector
and Hj, is a nonnegative, definite and symmetric matrix:

Hy =S hibi (7)

h is a measurement vector function of the measurement point (z,y,2)T. E.g. for a
plane and a quadric h is defined respectively by: h = [z,v,2,1]7 and for a quadric
|

surface h = [2,y?2, 22, 2y, 2wz, 2yz, 21, 2y, 22, 1]7. A global minimization criterion

for all the surfaces is the sum of all the single criteria

J:J1+J2+"‘+JM:_'T,HI3‘ (8)



where ' is a global parameter vector concatenating all the single parameter vectors
and H is a global data matrix containing the set of matrices Hy. H is nonnegat-
ive, definite and symmetric as well. Examples on how the matrix H is formed in
terms of block-matrix H;, for different objects are shown in Section 5. The relation-
ships between the different surfaces and the shape characteristics of the surfaces are
formulated into a set of vector functions

Ci) =0, j=1.K (9)

So, the problem can be seen as a constrained optimization problem where we
have to determine the parameter vector § minimizing (8) subject to the constraints
(9).

In a previous work [11] concerned with reverse engineering, we developed an
algorithm to solve such constrained problems. Very briefly, the algorithm is based on
sequential unconstrained programming technique where each constraint is assigned
a weighting value. The set of weights are incremented sequentially, and at each
iteration the optimisation function composed of the least squares term (8) and the
weighted constrained functions (9) is minimized by means of a standard Levenberg-
Marquardt Technique. The algorithm stops when the constraints are satisfied to the
desired degree or when the parameter vector remains stable for a certain number of
iterations. The constraints were represented with the following matrix formulation

C(p) = (" Ag+ B 7+ V)? (10)

where A and B are respectively a square matrix and a vector having the same
dimension as the parameter vector p, V is a scalar. For more details about the
approach, we recommend the readers to [11].

4. Parametrization of the cylinder, the cone and the sphere

When the treated object contains planes and quadrics the relationships between
a quadric surface and other surfaces are relative orientation and position for cylin-
ders and cones and relative position for spheres. The circularity of a cylinder or a
cone is additional knowledge about the quadric shape which should be taken into
account as well.

Unfortunately the coefficients of the implicit function (1) do not have obvious
geometric significance. Formulating the geometric relationships only with these
parameters leads to complex constraint functions often with singular cases. To
avoid this problem, we introduce the orientation of the quadric axis defined by a
normal vector [n,,n,,n.]" as additional parameters for the cylinder and the cone.
Each of these two surfaces will be defined then by the following parameter vector:

[a,b,c,h,g,f,u,v,w,d,nz,ny,nz]T (11)

This representation over-parameterizes the quadric; in return it allows a simple
formulation of the geometric relationships between cone, cylinder and other surfaces



e.g. the relative orientation between a plane and a quadric is expressed by
ST o _
ne 1, — cos(a) = 0; (12)

where « is the angle between the plane’s normal and the quadric axis, n. is the
orientation vector of the quadric axis and r}, is the plane’s normal.

Based on the above parametrization the circularity of the cylinder is expressed
by the following equations

a = 1-n? h = —ngn, (13)
= 1- ’I'Lfl = —Ngnz
c = 1-n? f= —nyn.
and for the cone by:
a—b = n?- 773 h = ngny (14)
a—c = n?, - ni g = NNz
b—c = nz — ni f = nyn,

These relations are obtained by expanding equations (4) and (5) and identifying
with the general quadric equation (1). Taking into account the set of equations
(13), we can show that the point defined by X, = [~u, —v, —w]” belongs to the

cylinder axis, and that the cylinder radius can be expressed by
2 =d—u?— v —w (15)

A sphere is characterized by equal coefficients for the z2, y2 and 22 terms and
vanishing coefficients for the cross product terms. Its representation is:

a(z® +y* + 2%) 4+ 2ux + 20y + 2wz +d =0 (16)

The radius and the centre of the sphere are defined respectively by

X, = [~u/a, —v/a, —w/a]" (17)
. u?> + 02 +w? —ad
. (18)

5. Experiments

A series of experiments were performed on several real objects having planar and
quadric surfaces. The segmentation and the extraction of the surfaces were per-
formed automatically with the rangeseg program[12].

Our approach was compared with three main techniques covering a large part of
the spectrum of the fitting techniques developed in the literature. These techniques
are the unconstrained algebraic distance (AD) [1, 2], the first order approximation



of the Euclidean distance (AED) [3] (2) and the iterative optimization technique
[9, 10] based on the specific representations (SR) of quadrics (13), (14) and (6),
respectively for the circular cone, the circular cylinder and the sphere. We note that
the AED technique used here is improved with respect to the one in [3] by weighting
the Euclidean distance by the data variances (see the Appendix for details). In the
rest of the paper these techniques will be referenced respectively by AD, AED, SR
and our proposed global fitting approach by GF.

The performances of the different techniques are evaluated by comparing the
shape parameters of the quadrics, for instance the half angle for the cone and the
radius for the cylinder and the sphere. The computation time was taken into account
as well. With AD, and AED the estimation time is almost instantaneous, whereas
it varies from half an hour to several hours for the SR depending on the number
of measurement points. For the GF technique it is in the range of minutes. The
different techniques were implemented with Matlab on a 200 MHz Sun UltraSparc
workstation.

plane

cone

(a) object 1 (b) object 2

Figure 2: Objects used in the experiments with the extracted surfaces. The boundaries of the
extracted surfaces are marked on the object.

Consider object 1 containing a cylindrical patch and plane surface patches. In
the view shown in Figure 2.(a), only a small part of the cylinder surface is visible
(about 20%). The cylinder is circular and its axis is orthogonal to plane 1 and
parallel to plane 2. The first constraint is imposed by using a single unit vector for
both the cylinder axis and the normal of plane 1. The second constraint is satisfied
by imposing

iy =0 (19)
where 7] and 73 are the normals of plane 1 and plane 2. The parameter vector
is then p' = [a,b,c,h, g, f,u,v,w,d,ny,,n1,,n1_,l1,n2,,n2,,m2_,12] where I; and I,
are the distance parameters of plane 1 and plane 2. The minimization criterion is

o [ H(:ylinder (O) (O) -|
J = p 7‘[]5: H = (O) leanel (0)
[ (O) (O) leaneZ J

where Hoyiinder, Hplane, and Hpjane, are the data matrices of the cylinder surface,
plane 1 and plane 2, computed with (7).
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Figure 3: Objects used in the experiments with the extracted surfaces. The boundaries of the
extracted surfaces are marked on the object.



From (19) we deduce the penalty function associated to the orientation con-
straint: Copient (B) = (BT AP)? where A is an appropriate matrix.

The penalty function related to the circularity constraint is deduced from (13)
and defined by: Ceire(5) = Y1, (" 7 — p" Lif)?

The unity of the normal vectors has to be taken into account as well by intro-
ducing the penalty function: C\pi(p) = (T U1p—1)% + (7 Usp— 1)? where Uy, Us
are appropriate matrices.

The optimization function is thus set up as follows:

E(m = ﬁTHﬁ+ )\unit Cunit (m + )\orientcorient (m + Acirccvcirc(ﬁ’)

which can be put into the form E(f) = 5T Hp + S n_, M (Cr (7))?
where Cj(p) are the elementary constraint functions in the form of (10).

The results obtained with the different techniques when applied to the objects
in Figure 2.a are grouped in Tablel.(a). The AD and the AED techniques both give
a biased estimates and the resulting estimated cylinder has an elliptical shape. The
SR and the GF preserve the circularity of the cylinder surface, the GF has more
accurate estimate however. The computation time for the SR technique is 40 min
whereas it is only 3 min for the GF technique.

Object 2 is composed of a cone and a plane base (Fig.2.(b) ). The axis of the
cone is perpendicular to the plane. This constraint is imposed by associating a
single unit vector to both the orientation of the cone axis and the plane’s normal.

Tablel.(b) shows the results obtained with the different techniques except for
the AED technique, which cannot be used as a cone surface does not have a constant
gradient value. The AD technique gives an elliptic cone, whereas the SR and GF
ensures a faithful shape estimate and relatively better accuracy with the GF.

Object 3 is a miniaturized factory model. Two cylinders and two planes were
extracted from the view shown in Figure 3.(a). Cylinder 1 and cylinder 2 are
orthogonal respectively to plane 1 and plane 2. These constraints are satisfied by
associating the same vector to each pair of (Planel normal, cylinder 2 orientation)
(Plane2 normal, cylinder 1 orientation). The two cylinders are circular and mutually
orthogonal. The different estimates are presented in Table 1.(c).

Object 4 (Fig.3.(b)) contains a circular cone and a circular cylinder having
perpendicular axes. The cylindrical patch covers nearly 20% of the whole cylinder
and the cone patch around 30%. We have not considered the relationships between
the two lateral planes and the quadric surfaces but they can be also integrated
without any particular difficulty. Since the patches contain a large amount of data
points (nearly 25000 and 7000 points for the cylinder and the cone respectively) the
SR fitting is quite time-consuming, about six hours for the cylinder and around two
hours for the cone. With the GF technique, the two surfaces are simultaneously
estimated in 5 min. The different estimates are summarized in Table 1.(d).

Object 5 (Figure 3.(c)) contains a circular cylinder and a half sphere. The two
surfaces have the same radius and the axis of the cylinder goes through the centre



of the sphere. In the view shown in Figure 3.(c)) nearly a quarter of the sphere and
half of the cylinder are visible. The estimates are shown in Table 1(e).

In terms of accuracy, it is clear that the SR and the GF algorithms are compar-
able to each other and superior to the AD and the AED algorithms. In terms of
speed, GF is an order of magnitude faster.

Figure 4 shows the estimates of the cylinder surface and the sphere surface as
we vary the viewpoint on the surface. In the first position (first column) the sphere
patch occupies a larger field of the view relatively to the cylindrical patch. Then
the object is rotated such that the sphere patch area is reduced and the cylindrical
patch becomes more visible in the scene. The sphere patches area ranges from
nearly 70% to 20% of a half sphere. We notice that the GF fitting estimates remain
stable and close to the actual values. The SR estimates are also relatively stable but
less accurate than those of the GF. The AED technique estimates vary dramatically
for the cylinder. For the sphere, the AED estimates are relatively stable but still
less accurate than the GF ones.

70% 20%

sphere patch area (half sphere)
o] 15.36 15.16 11.63 14.59 13.91 14.82
< 15.85 15.62 11.68 14.92 14.35 14.90
—§ & | 1s07 | 1505 15.06 15.11 15.11 15.12
| 6| 1504 15.07 14.96 15.03 15.05 15.07
@ 15.13 15.19 15.16 15.16 15.21 15.24
& | | 1512 15.18 15.14 15.15 15.19 15.22
[Z e
S 15.04 15.07 14.96 15.03 15.05 15.07

Figure 4: Sphere and cylinder estimates for different positions of object7.

6. Discussion and Conclusion

It is clearly noticed from the different tables related to objects having circular
cones or circular cylinders that when the shape of the quadric is not constrained
the AD and AED algorithms do not guarantee a faithful shape estimate. Both
techniques result in elliptic cones or elliptic cylinders with a bias depending on
how much the patch covers the quadric and the number of measurement points
in each patch. However the AED technique estimates are less biased. Figure 5
illustrates the difference where the bias in the shape estimates is expressed in terms
of the (minor axis/major axis) ratio. The same aspect is noticed for the cones if we
compare the cone estimates for object 1 (Table 1.(a)) and object 6 (Table 1(d)).

By imposing the circularity constraint the SR and the GF give faithful estimates
in terms of shape and parameter values. It is noticed however that the results are
usually more accurate with the GF. This suggests that, by taking into account
the different position and orientation relationships constraining the location of the
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AD

AED SR GF true surface
ell.cylinder ell.cylinder | cir.cylinder | cir.cylinder | cir.cylinder
Pmaz = 30.41 | ryae = 41.58 | r =44.25 r = 44.62 r=45
Tmin = 17.50 | rpin = 37.80
- - 40 min 3 min
(a) cylinder in Figure 2.a
AD AED SR GF true surface
ell.cone: - cir.cone cir.cone cir.cone
Qmaz = 21.41° - a=20.77° | a =19.68° a = 20°
Qmin = 20.19° -
- - 30 min 2 min
(b) cone in Figure 2.b
AD AED SR GF true surface
ell.cylinder ell.cylinder | cir.cylinder | cir.cylinder | cir.cylinder
rlpar = 17.69 | 71,4, =9.01 | r1 =8.08 rl =7.44 rl =7.50
rlpnin = 1212 | 71, = 8.13
2mar = 4.96 | 124, = 5.67 | r2=15.23 r2 =4.95 r2 =5.00
2min = 4.28 | 12pmin = 5.24
- - 30 min dmin
(¢) cylinders 1 and 2 in Figure 3.a
AD AED SR GF true surface
ell.cylinder ell.cylinder cir.cylinder cir.cylinder | cir.cylinder
Tmaz = 46.10 | 7y = 57.62 r =59.81 r = 59.54 rl =60
Tmin = 33.66 | Tpin = 55.42
ell.cone - cir.cone cir.cone cir.cone
Qnaz = 28.86° - a = 26.84° a = 31.80° a = 30°
Qin = 25.19° -
) ) cone: 2 hours 5 min
cylinder: 6 hours
(d) cylinder and cone in Figure 3.b
AD AED SR GF true surface
ell.cylinder ell.cylinder cir.cylinder cir.cylinder | cir.cylinder
Tmaz = 14.46 | Tpe. = 14.64 r = 14.98 r =14.95 r =15.00
Tmin = 13.51 | Tmin = 14.01
sphere sphere sphere sphere sphere
r=15.03 r=15.05 15.03 14.95 15.00
_ . sphere: 20 min 4 min
cylinder: 2 hours

(e) cylinder and sphere in Figure 3.c

Table 1: The tables list the results of the four algorithms on the main quadric surfaces in the
test objects as well as the true answers. The computation time are shown in the last rows.
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Figure 5: shape bias in the cylinder estimates (ob:object, cl:cylinderl,etc.). (a) with the AD
technique, (b) with the AED technique

quadric surface, the estimate is greatly improved. When a specific algebraic function
is used for the sphere (16) all the techniques give accurate estimates (Table 1(e)).

The computation time is dramatically high with the SR technique, and may take
hours for surfaces with large amounts of data. This is normal with this non-linear
representation where the data terms cannot be grouped and accumulated separ-
ately . Indeed the minimization criterion J = Z:\Ll d(X;,S)? and its derivatives
have to be computed sequentially by evaluating d(X;, S)? at each point, thus the
computation time gets higher as the number of points increases, whereas in the GF
approach, the criterion J = p7 Hp and its derivatives have the measurement points
data encapsulated in the matrix A which is computed off-line, almost instantan-
eously. The GF technique has therefore very reasonable processing time (on the
order of few minutes) for all the objects.

Although it is not the objective of this work we believe that using all the known
relationships between the quadric surfaces and other surfaces very likely shifts the
position of the surfaces towards their actual positions in the sense that incorporating
these constraints may compensate for the effects of systematic errors. This aspect
was mentioned in [9] for the circularity of the quadric. Generalizing this aspect for
geometric relationships between surfaces can be worthwhile future work.

The optimization technique used in the GF algorithms supposes a reasonable
initialisation of the surface parameter vector. Although this condition limits the
field of application of the technique, it is well satisfied in our framework. We propose
to use the estimates given by the AD, or, when possible, the AED as initialization.
More generally we suggest the scheme illustrated in Figure 6 for optimal combination
of the AD, AED and the GF for the estimation of object surfaces.
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Figure 6: General scheme for object surfaces estimation.
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Appendix
A first order approximation [3] of the Euclidean distance squared between a
measurement point X and its projection X on the fitted surface is:

(X XTx Xy~ LB (20)

IV X))

We consider the Euclidean distance weighted by the variances of measurement noise:
(X - X)L (X - X) (21)

where L~ is the covariance matrix of the measurement points defined by

oz 0 0
L= 0 UZ 0
0 0 o2

The values of the variances deduced from empirical tests are o, = 0.05mm, o, =
0.05mm and o, = 0.1mm. These variances are related to the measurement errors
of the measurement point coordinates. They are independent of the object size.

By considering L~' = R”R, (21) becomes (RX — RX)"(RX — RX) Thus from
(20) we get

(X -X)TL (X -X)~ —f(ﬁ’ RX)"
IV £ (5, RX)|?

since . .
ORX ' 0X
(21) could be expressed as
<> — g f(ﬁ/ RX)2
(X - X)L (X - X) 4 _
(8f(g§X))TRTR(8f(g§X))
f(7, RX)*
(8f(g§X))TL71 (8f(§’)?x))
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