
Improving Second-order SurfacesEstimationN. Werghi, R. B. Fisher, A. Ashbrook, C. RobertsonDivision of Informatics, University of Edinburghfnaoufelw, rbf, anthonya, craigrg@dai.ed.ac.ukAbstractThe paper proposes a reliable method for estimating second-order sur-faces from 3D range data in the framework of object recognition andlocalization or object modelling. Instead of estimating such surfaceindividually the approach �ts all the surfaces captured in the scene to-gether, taking into account the geometric relationships between themand their speci�c characteristics. The technique is compared with othermethods through experiments performed on real objects and demon-strates that the use of constrained relationships improves shape estim-ates.1 IntroductionCommon second-order surfaces such as cylinders, cones and spheres are found inmost manufactured parts and objects. A reliable estimation of these surfaces isa fundamental requirement in many applications, for instance in the frameworkof model-based recognition and localization of objects from range data wherethe parameters of the surfaces are used for detecting plausible correspondencesbetween model and scene or between surfaces extracted from di�erent views forregistration purposes. An accurate and reliable estimation of surfaces is also anessential requirement in object modelling or reverse engineering, where a faith-ful model is needed to be extracted from the set of range data for CAD/CAMpurposes.One obstacle to achieving this goal is the inaccuracy of shape estimates fromextracted patches. This problem results from the limited �eld of view of the sensorwhich can only cover a partial area of an object in a given view, self or externalocclusion of the object and �nally some surface data is lost during the surfacesegmentation process either due to segmentation failure or intentionally in orderto avoid unreliable data. The usable set of data points may thus represent only asmall area of the surface and consequently give unstable estimates of the surfaceshape. Furthermore the remaining available data is corrupted by measurementnoise. Consequently conventional least squares quadric surface �tting often fails togive a reliable estimation of the surface shape. The estimates are highly biased andmay not reect the actual type of the surface even when sophisticated techniquesare applied.The idea presented here is to compensate the poorness of information embodiedin the quadric surface data by extra knowledge about the surface such as its



type and relationships with other nearby surfaces. This additional information iseither provided by the model in the case of model-based applications or could bededuced from a set of potential hypotheses generated, checked and veri�ed withina perceptual organization process. The exploitation of this extra information isquite feasible since a patch is rarely captured alone in the scene but rather withclose or adjacent surfaces which could be either planes or quadrics. This papershows how the extra information can be represented in a shape estimation processand then evaluates the estimation process against several alternatives, concludingthat the extra information is both e�ective and easy to exploit.2 Problem statement and related workA second-order surface S is represented by the implicit function:f(x; y; z; ~p) = ax2+by2+cz2+2hxy+2gxz+2fyz+2ux+2vy+2wz+d= 0 (1)Given a set of N measurement points Xi we want to �nd the parameter vector~p = [a; b; c; h; g; f; u; v; w; d] such that the function de�ned by (1) reects as wellas possible the actual shape of the surface. The type and shape characteristics ofthe surface are deduced afterwards from ~p.A reasonable criterion to judge the goodness of the solution is the sum of thesquared Euclidean distances between each measurement point and the surface:J = PNi=1 d(Xi; S)2. The parameter vector minimizing this criterion is the bestsolution in the least squares sense. Unfortunately the non-linearity of this distancemeasure does not lead to a nice and easy closed-form solution for the parametervector ~p. Various approximations of this distance have been therefore proposedin the literature to make the minimization problem easier. The most commonone is using the value of the implicit function f(x; y; z) known as the algebraicdistance. It has been used in recovering planes and quadrics [3, 6]. Althoughthis approximation is highly attractive because of its closed-form solution, it wassubject to many criticisms since it leads to a highly biased estimation for smallsurfaces with low curvature. An improved approximation was suggested by ex-panding the implicit function into Taylor's series up to �rst or second degree. The�rst approximation is given by: f(x;y;z)2k ~rf (x;y;z)k2 . Taubin [12] noted that for the sur-faces with constant gradient the estimation based on the �rst approximation is thesolution of a generalized eigenvalue problem: H~p = �DH~p, where H =Pi ~hi ~hiT ,DH =Pi dhidhTi , ~hi = [x2i ; y2i ; � � � ; 1]T and dhi is the Jacobian matrix of hi withrespect to [xi; yi; zi]Other than this case the problem is a non-linear minimization which needsto be solved iteratively, e.g the algorithm proposed by Kumar et al [8] for �t-ting Hyperquadric surfaces. When the gradient of the surface vanishes, the �rstapproximation is no longer valid. To avoid this singularity problem Taubin [13]introduces a high order approximate distance and estimates the solution with anon-linear �tting procedure. Lei and Cooper [9] used both the �rst and secondapproximation for �tting 2D curves but they convert the minimization problemto linear programming optimization by using the measurements points as controlpoints constraining the shape of the curve. Sullivan et al [11] minimized the sum



of the exact geometric distances and consider the implicit function representingthe surface as a constraint function. They solved the problem with an iterativealgorithm using Levenberg-Marquardt technique and Newton method.Another way to consider the Euclidean distance is to use a speci�c represent-ation function for a particular case of quadric surface, like the circular cylinder,circular cone and sphere. A circular cylinder can be de�ned by:(x�x0)2+(y�y0)2+(z�z0)2�(nx(x�x0)+ny(y�y0)+nz(z�zo))2�r2 = 0 (2)where ~Xo = [x0; y0; z0]T is an arbitrary point on the axis, ~n = [nx; nz; ny]T is aunit vector along the axis and r is the radius of the cylinder. A circular cone canbe represented by:[(x�xo)2+(y�yo)2+(z�zo)2]cos2(�)� [nx(x�xo)+ny(y�yo)+nz(z�zo)]2 = 0(3)where [xo; yo; zo]T is the apex of the cone, [nx; ny; nz]T is the unit vector de�ningthe orientation of the cone axis and � is the semi-vertical angle. A sphere can bede�ned by: (x� x0)2 + (y � y0)2 + (z � z0)2 � r2 = 0 (4)where [xo; yo; zo]T is the centre of the sphere and r is its radius. This representationand a slightly di�erent one (replacing the orientation vector by two angles) wereused respectively in [1, 5]. In both works the solution was found with a non-linearoptimization.A common characteristic of these works is that they treated each single surfaceindividually. When the quadric patch to be �tted covers a small amount of thesurface, the �tting technique fails to give a reasonable estimation of the surface andoften the estimates are highly biased. This is expected since second order functionscan easily trade-o� curvature and position to produce similar error measures. Thussmall patches do not provide su�cient extent to distinguish between the two cases.However if we place ourselves in an object recognition and localization frame-work we usually have to �t many surfaces belonging to the same object and whichare linked by some geometrical and topological relationships. By exploiting thisknowledge together with the information which may be available about the quad-ric type and shape we hope compensate the lack of information in the quadricpatch and obtain therefore a surface parameterization as accurate as possible.3 Principle of the approachConsider a set of M surface patches of an object extracted from a given view. Weassume that the set may contain quadric and planar patches. By considering thealgebraic distance, the minimization criterion related to the surface k has the formJk = NkXi=1 f(xi; yi; zi; ~pk)2 (5)for Nk data points [xi; yi; zi]T lying on the surface. This expression can be put intothe form Jk = ~pkTHk ~pk where ~pk is the parameter vector and Hk is a nonnegative,



de�nite and symmetric matrix: Hk = PNki=1 ~hi ~hiT , ~h is a vector function at themeasurement point (x; y; z). e.g for a plane and a quadric ~h is de�ned respectivelyby [x; y; z; 1]T and [x2; y2; z2; 2xy; 2xz; 2yz; 2x; 2y; 2z; 1].A global minimization criterion for all the surfaces is the sum of all the singlecriteria J = J1 + J2 + � � � + JM = ~pTH~p where ~p is a global parameter vectorconcatenating all the single parameter vectors and H is a global data matrixcontaining the set of matrices Hk. H is nonnegative, de�nite and symmetric aswell. The relationships between the di�erent surfaces and the shape characteristicsof the surfaces are formulated into a set of vector functionsCj(~p); j = 1::K (6)Examples of these functions are given in Section 5. So the problem can be seenas a constrained optimization problem where we have to determine the parametervector ~p minimizing ~pTH~p subject to the constraints (6). As we will see withthe test objects, most of the constraint functions are non-linear making thus thedevelopment of a closed form solution or the application of linear programmingtechniques quite hard or impossible. The problem belongs to the category ofquadratic objective function with non-linear constraints. These problems are wellbehaved if the constraint functions are continuous and di�erentiable and convex[4]. We propose a matrix formulation of the relationships and the shape character-istics which satis�es these requirements. Furthermore this representation ensurescompact form and avoids expressions with many variables.The estimation of the parameter vector is achieved with a sequential uncon-strained technique [14]. We consider the following optimization functionE(~p) = ~pTH~p+ KXk=1�kCk(~p) (7)where the second term is a penalty function consisting of the sum of squared con-straint functions weighted each by a positive value �k . The algorithm incrementssequentially the set of weights and at each step (7) is minimized with the standardLevenberg-Marquardt technique and the vector ~p is updated. The problem of theill-conditioned Hessian matrix appearing for high values of � is tackled by by ad-opting the technique proposed by Broyden et al [2] and extended to many di�erentweighting values �. The algorithm stops when the constraints are satis�ed to thedesired degree or when the parameter vector remains stable for a certain numberof iterations. The initial parameter ~po is determined by estimating each surfaceindividually with a generalized eigenvalue technique [3] and then concatenating allthe vectors into a single one.4 Parametrization of the cylinder, the cone andthe sphereA cylinder or cone patch is related to another surface by its relative orientation andposition. Since a sphere has no orientation only its relative position will be con-sidered. The circularity of a cylinder or a cone is additional knowledge about the



quadric shape which should be taken into account as well. Unfortunately the coef-�cients of the implicit function (1) do not have obvious geometric signi�cance. For-mulating the geometric relationships only with these parameters leads to complexconstraint functions often with singular cases. To avoid this problem, we introducethe orientation of the quadric axis de�ned by a unit vector [nx; ny; nz]T as additiveparameters for the cylinder and the cone. Each of these two surfaces will be de�nedthen by the following parameter vector: [a; b; c; h; g; f; u; v; w; d; nx; ny; nz]T . Thisrepresentation over-parameterizes the quadric; in return it allows a simple for-mulation of the geometric relationships between cone, cylinder and other sur-faces e.g. the relative orientation between a plane and a quadric is expressed by:~ncT ~np � cos(�) = 0 where � is the angle between the plane's normal ~np and thequadric axis unit vector ~nc .Based on the above parametrization the circularity of the cylinder is expressedby the following equations:a = 1� n2xb = 1� n2yc = 1� n2z h = �nxny (8)g = �nxnzf = �nynzand for the cone by:a� b = n2x � n2ya� c = n2x � n2zb� c = n2y � n2z h = nxny (9)g = nxnzf = nynzThese relations are obtained by expanding the equations (2) and (3) and identi-fying with the general quadric equation (1).A sphere is characterized by equal coe�cients for the x2, y2 and z2 terms andvanishing coe�cients for the cross products terms. Its representation is:a(x2 + y2 + z2) + 2ux+ 2vy + 2wz + d = 0 (10)5 ExperimentsA series of experiments were performed on several real objects having planar andquadric surfaces. Because of the limited space only 5 objects are presented inthis paper (Figure 1). The segmentation and the extraction of the surfaces wereperformed with rangeseg [7].Our approach has been compared with three main techniques covering a largepart of the spectrum of the �tting techniques developed in the literature. Thesetechniques are the eigenvalues solution based on the algebraic distance [3, 6], theeigenvalue technique [12] based on the approximation of the Euclidean distancef(x;y;z)2k ~rf(x;y;z)k2 and the iterative optimization technique [1, 5] based on the speci�crepresentation of quadric (8), (9) and (4), for the circular cone, the circular cyl-inder and the sphere. In the rest of the paper these techniques will be referenced



respectively by AD, AED, SR and the new suggested global �tting approach byGF. The performances of the di�erent techniques are evaluated by comparing theshape parameters of the quadrics, for instance the half angle for the cone andthe radius for the cylinder and the sphere. The computation time was taken intoaccount as well. With AD, and AED the estimation time is almost instantaneous,whereas it varies from half an hour to several hours for the SR depending on thenumber of measurement points. For the GF technique it in the range of minutes.The di�erent techniques procedures were implemented with Matlab on 200 MHzSun Ultrasparc workstation.Consider object 1 composed of a cone and a plane base (Fig.1.(a)) The axis ofthe cone is perpendicular to the plane. This constraint is imposed by associatinga single normal vector to both the orientation of the cone axis and the plane'snormal. The object is then represented by the parameter vector:~p = [a; b; c; h; g; f; u; v; w; d; nx; ny; nz; l]where l is the distance parameter of the plane. The minimization criterion is:J = ~pTH~p; H = � Hcone (O)(O) Hplane �where Hcone and Hplane are the data matrix of the cone surface and the planesurface respectively. The constraint function associated to the circularity of thecone is deduced from (9) and by using a vector function formulation the penaltyfunction associated to this shape constraint is: Ccirc(~p) = P6i=1(~viT ~p � ~pTAi~p)2where ~vi and Ai are appropriate vectors and matrices [14]. To ensure the unityof the normal vector [nx; ny; nz]T we introduce the penalty function: Cunit(~p) =(~pTU~p � 1)2 where U is an appropriate matrix. The optimization function (7) isthus set up as follows: ~pTH~p+ �1Cunit(~p) + �2Ccirc(~p).The results obtained with the di�erent techniques are grouped in Table 1.(a)except for the AED since a cone surface does not have a constant gradient value.The AD technique gives an elliptic cone, whereas the SR and GF ensure a faithfulshape estimate and relatively better accuracy with the GF. The computation timefor the SR is in the order of 30 min whereas it is 2 min for the GF.For object 2 (Fig.1.(b)), a small part of the cylinder surface is visible (about20%). The cylinder is circular and its axis is orthogonal to plane 1 and parallel toplane 2. These constraints were considered in the �tting technique. Table 1.(b)summarizes the results. The SR �tting took 40 min whereas the GF only 3mn.Object 3 is a miniaturized plant model. Two cylinders and two planes wereextracted from the view shown in Figure 1.(c). Cylinder 1 and cylinder 2 areorthogonal respectively to plane 1 and plane 2. They are also mutually orthogonaland circular. The computation time with SR is about 30 min for each cylinderand 5min with GF. The di�erent estimates are presented in Table 1(c).Object 4 (Fig.1.(d)) contains a circular cone and a circular cylinder havingperpendicular axes. The cylindrical patch covers nearly 20% of the whole cylinderand the cone patch around 30 %. We have not considered the relationships betweenthe two lateral planes and the quadric surfaces but they can be also integratedwithout any particular di�culty. Since the patches contain a large amount of data
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AD AED SR GF true surfaceell.cone: - cir.cone cir.cone cir.cone�max = 21:41o - � = 20:77o � = 19:68o � = 20o�min = 20:19o -(a) object 1: Estimates of the cone surface.AD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 30:41 rmax = 41:58 r = 44:25 r = 44:62 r = 45rmin = 17:50 rmin = 37:80(b) object 2: Estimates of the cylinder patch.AD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderr1max = 17:69 r1max = 9:01 r1 = 8:08 r = 7:44 r1 = 7:50r1min = 12:12 r1min = 8:13r2max = 4:96 r2max = 5:67 r2 = 5:23 r2 = 4:95 r1 = 5:00r2min = 4:28 r2min = 5:24(c) object 3: Estimates of the cylinder patches.AD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 46:10 rmax = 57:62 r = 59:81 r = 59:54 r1 = 60rmin = 33:66 rmin = 55:42ell.cone - cir.cone cir.cone cir.cone�max = 28:86o - � = 26:84o � = 31:80o � = 30o�min = 25:19o -(e) object 4: Estimates of the cylinder and the cone patches.AD AED SR GF true surfaceell.cylinder ell.cylinder cir.cylinder cir.cylinder cir.cylinderrmax = 14:46 rmax = 14:64 r = 14:98 r = 14:95 r = 15:00rmin = 13:51 rmin = 14:01sphere sphere sphere sphere spherer=15.03 r=15.05 15.03 15.03 15.00(d) object 5: Estimates of the cylinder and the sphere patches.Table 1: Estimates of the object surfaces.



points (nearly 25000 and 7000 points for the cylinder and the cone respectively)the SR �tting is quite high time consuming, about six hours for the cylinder andaround two hours for the cone. With the GF the two surfaces are simultaneouslyestimated in 5 min. The di�erent estimates are summarized in Table 1(d).Object 5 (Fig.1.(e)) contains a circular cylinder and a half sphere. The twosurfaces have the same radius and the axis of the cylinder goes through the centreof the sphere. In the view shown in Figure 1 nearly a quarter of the sphere andhalf of the cylinder are visible. The SR �tting time is two hours for the cylinderand 20 min for the sphere. With the GF it is 4 min. The estimates are shown inTable 1(e).6 Discussion and ConclusionIt is clearly noticed from the di�erent tables related to objects having circularcones or circular cylinders that when the shape of the surface is not constrainedthe AD and AED algorithms do not guarantee a faithful shape estimation. Bothtechniques result in elliptic cones or elliptic cylinders with a bias more or lessimportant depending on how much the patch covers the quadric and the number ofmeasurement points in each patch. However the AED technique estimates are lessbiased. Figure 2 illustrates the di�erence where the bias in the shape estimatesis expressed in terms of the (minor axis/major axis) ratio. The same aspect isnoticed for the cones if we compare the cone estimates for object 1 (Table 1.(a) )and object 4 (Table 1.(d)).
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ob2(a) (b)Figure 2: shape bias in the cylinder estimates (ob:object, c1:cylinder1,etc.). (a) with the ADtechnique, (b) with the AED techniqueBy imposing the circularity constraint the SR and the GF give faithful estim-ates in terms of shape and parameter values. It is noticed however that the resultsare usually more accurate with the GF. This suggested that by taking into accountthe di�erent position and orientation relationships constraining the location of thequadric surface the estimate is greatly improved. When a speci�c algebraic func-tion is used for the sphere (10) all the techniques give accurate estimates (Table1.(e)).The computation time is dramatically high with the SR technique, and maytake hours for surface with large amounts of data. This is normal with this non-
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