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Abstract

This paper describes a new technique for global shape
improvement based upon features’ positions and geomet-
rical constraints. It suggests a general incremental, frame-
work whereby constraints can be added and integrated in
the model reconstruction process, resulting in an optimal
trade-off between minimization of the shape fitting error
and the constraints’ tolerances. The objects treated are in-
dustrial parts containing planes and quadric surfaces.

1. Introduction

There has been a recent flurry of effort on reconstruct-
ing 3D geometric models of objects from single [3, 6, 8]
or multiple [2, 4, 12, 11, 13] range images, in part motiv-
ated by improved range sensors, and in part by demand for
geometric models in the CAD and Virtual Reality (VR) ap-
plication areas. However, an important aspect had not been
fully investigated which is the exploitation of the geometric
constraints defining the spatial or topological relationships
between object features. Taking these constraints into ac-
count may be of great usefulness since it allows the reduc-
tion of the error in registration and mis-calibration effects.
Consequently this leads to a more faithful model of the ob-
ject.

The main problem encountered in this purpose is how to
integrate the constraints in the shape fitting process. The
problem is particularly crucial in the case of nonlinear con-
straints. In his pioneering work, Porrill [10] suggests a lin-
earization of the nonlinear constraints and their combina-
tion with the Kalman filter equations. This method takes
advantage of the recursive linear estimation of KF, but it
guarantees satisfaction of the constraints only to linearized
first order. Additional iterations are needed at each step if
more accuracy is required. This last condition has been
taken into account in the work of De Geeteret al [5] by
defining a “Smoothly Constrained Kalman Filter”. The key

idea of their approach is to replace a nonlinear constraint by
a set of linear constraints applied iteratively and updated by
new measurements in order to reduce the linearization er-
ror. However, the characteristics of Kalman filtering makes
these methods essentially adapted for iteratively acquired
data and many data samples. Moreover, there were no cri-
teria mentioned in both of the above works for knowing to
what level the constraints have been satisfied at the end of
the algorithm.

In this paper we describe a new approach for global
shape improvement based on feature position and shape
constraints. This approach avoids the drawbacks of linear-
ization techniques since the constraints are integrally imple-
mented and is more general in scope and application. The
key of the approach is to parameterize the features in a way
that allows constraints to be expressed as a function of the
shape parameters, and to then apply an optimization pro-
cedure that searches for parameter vectors that satisfy the
constraints while simultaneously optimizing the surface fit
to the range data. The constraints may be either interact-
ively supplied by a user, or inferred by a knowledge-based
system reasoning from general engineering principles. The
types of constraints exploited here are of these families: 1)
a set of features have a fixed orientation relationship (e.g.
a set of surfaces or edges that meet at a specified angle or
are parallel) and 2) a set of features have a fixed separation
(e.g.the distance between a pair of parallel lines or planes).
These are typical engineering relationships, and, in particu-
lar, are the sorts of properties that fix relationships between
part-mating features.

This paper extends the work reported previously in [14]
by adding new constraints, allowing one to specify the rela-
tionships between quadratic surfaces and planes and include
such information in the optimization process.

2. Problem Definition

Given sets of 3D measurement points representing sur-
faces belonging to a certain object, we want to estimate the



different surface parameters, taking into account the geo-
metric constraints between these surfaces.

A state vector~p is associated to the object, which in-
cludes the set of parameters related to the patches. The vec-
tor ~p has to best fit the data while satisfying the constraints.
So, the problem that we are dealing with is a constrained
optimization problem to which an optimal solution may be
provided by minimizing the following function:E(~p) = F (~p) + C(~p) (1)

whereF (~p) is the objective function defining the relation-
ship between the set of data and the parameters andC(~p)
is a function representing the constraints. The objective
function could be the likelihood of the range data given the
parameters (with negative sign since we want to minimize)
or the least squares error function. The likelihood function
has the advantage of accounting for the statistical aspect of
the measurements. In a first step, we have chosen the least
squares function. The integration of the data noise charac-
teristics in the LS function can be done afterwards with no
particular difficulty, leading to the same estimation of the
likelihood function in the case of the Gaussian distribution.

The LS function can be represented by :F (~p) = ~pTH~p+ ~h~p+K (2)

whereH, ~h andK are respectively a matrix, a vector and
constant depending on the data. Moreover, the matrixH is
positive definite. More details about how such equation is
obtained are expanded in [14].

GivenM constraints, the constraint function is represen-
ted by the following equation:C(~p) = MXk=1 �kCk(~p) (3)

where�k are weighting coefficients (known in the literature
as Lagrange multipliers) used to control the contribution of
the constraints in the parameters’ estimation.

2.1. Optimization of shape satisfying the constraints

The method of solving this problem depends on the
nature of the objective function (convex or not), the type
of the constraints (linear or not) and whether the constraints
could be merged together in order to reduce the number of
parameters and eventually combined with the least square
objective function.

The objective function is convex since it is quadratic and
we can show easily that the matrixH is positive definite.

The problem can be said to be a convex optimization
problem if the constraintsCk(~p) are also convex functions.

On the other hand, the existence of an optimal solution ne-
cessitates that both the least squares function and the con-
straint function are differentiable. A detailed analysis of the
convexity and the optimality conditions is available in [9].

In some particular cases it is possible to get a closed form
solution for (1) (the eigenvalues methods). This depends on
the characteristics of the constraint functions and whether
it is possible to combine them efficiently with the object-
ive function. Generally it is not trivial to develop a closed
form solution especially when the constraints are nonlin-
ear and their number is high. In such case an algorithmic
approach could be of great help taking into account the in-
creasing capabilities of computing. The main idea was to
develop a search optimization scheme for determining the
best set(~p; �1; :; :; �k). Moreover, we have been investig-
ating, whether it is possible to get a solution that satisfies
a specified tolerance. So the objective is to determine the
vector~p which satisfies the constraints to the desired spe-
cification and which fits the data to a reasonable degree.

To solve the optimization problem, we have simplified
the full problem slightly. As a first step we have given an
equal weight to each constraint, so a single� is considered
for all the constraints:E = ~pTH~p+ ~hT ~p+K + � MXk=1 Ck(~p); � � 0 (4)

As � will be driven (effectively) to+1, this will force all
constraints to be satisfied. Since we are not placing a rel-
ative importance on the different constraints, it is then con-
venient to just use a single�.

The problem now is how to find~p that minimizes (4). Be-
cause (4) may be a non-convex problem (thus having local
minima), we solve the problem in a style similar to the GNC
method [1]. That is, we start with a parameter vector~p[0]
that satisfies the least squares constraints and attempt to find
a nearby vector~p[1] that minimizes (4) for small�, in which
the constraints are weakly expressed. Then we iteratively
increase� slightly and solve for a new optimal parameter~p[n+1] using the previous~p[n]. At each iterationn, the al-
gorithm increases� by a certain amount and a new~p[n] is
found such that the optimization function is minimized by
means of the standard Levenberg-Marquardtalgorithm. The
parameter vector~p[n] is then updated to the new estimate~p[n+1] which becomes the initial estimate at the next value
of �. The algorithm stops when the constraints are satisfied
to the desired degree or when the parameter vector remains
stable for a certain number of iterations. The algorithm is
illustrated in Figure 1.a.

The initialization of the parameter vector is crucial to
guarantee the convergence of the algorithm to the desired
solution. For this reason the initial vector should be taken as
the one which best fitted the set of data. This vector can be
obtained by estimating each surface’s parameter vector sep-
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Figure 1. (a): optim1 - batch constraint optimization al-

gorithm. (b): optim2 - sequential constraint introduction optim-

ization algorithm.

arately and then concatenating the vectors into a single one.
Naturally, the option of minimizing the least squares func-
tionF (~p) alone has to be avoided since it leads to the trivial
null vector solution. On another hand, the initial value� has
to be large enough to avoid the above trivial solution and to
give the constraints a certain weight. A convenient value for
the initial� is : �0 = F (~p[0])C(~p[0]) (5)

where~p[0] is the initial parameter estimation.
Another option of the algorithm consists of adding the

constraints incrementally. At each step a new constraint is
added to the constraint functionC(~p) and then the optimal
value of~p is found according to the scheme shown in Figure

1.b. For each new added constraintCk(~p), �k is initialized
at�0, whereas~p is kept at its current value. We have experi-
mented with both algorithms and found that the first “batch”
approach to be very slightly less accurate but faster.

3. Object shape constraints

Polyhedral objects involve the two types of constraints
mentioned in the introduction. They are represented in
this case by fixed angles between the planes’ normals and
the fixed distances between parallel planes. These con-
straints are discussed in Sections 3.1 and 3.2. Quadratic
surfaces allow additional constraints, of which the simple
ones: 1)fixed angle between quadratic surfaces’ axes; 2)
fixed angle between quadratic surface axis and plane nor-
mal. Some of these constraints are addressed in Section 4.3.
Other constraints can be defined as well for the quadratic
surfaces such as the variety related to the common case of
surfaces of revolution. We do not explicitly consider these
constraints in this paper but the representation given in sec-
tion 2 can be applied to them as well.

3.1. Planes with a fixed orientation relationship

A plane surface can be represented by this equation:pxx+ pyy + pzz + d = 0 (6)

where[px; py; pz]T is the unit normal vector to the plane
andd is the distance to the origin. For each plane surface
we consider a local frame centred on a point belonging to
the plane (in practice this point is taken as the centre of
gravity of the measurement points), so the plane equation
can be written as: pxx+ pyy + pzz = 0 (7)

ConsiderN planes, where the angles between planes’ nor-
mals are known.(N � 1) � N=2 angle relationships can
be defined between the planes. The orientation relationship
between the different planes and the unity constraint of each
normal can be written under a matrix formulation:Ak(~p) = (~pTAk~p� 2cos(�k))2 = 0; k 2 [1::(N � 1) �N=2] (8)Ui(~p) = (~pTUi~p� 1)2 = 0; i 2 [1::N ] (9)

where~pT = [pT1 ; :; :; pTN ], Ui andAk areN � N block
matrices defined by:Ui = 24 03 : 0303 (I3)ii 0303 : 0303 : 03 35 ; Ak = 24 03 : 03: : (I3)ij03 (I3)ji 03: : 03 35
andI3 and03 are the3� 3 identity and null matrices.



We noticed here that although the use of matrices may
be computationally expensive, the matrix notation leads to
a compact form and avoid expressions with many variables.
This allows a fast and automatic implementation of the con-
straints.

3.2. Parallel planes with a given separation

Consider without loss of generality two parallel planesSp andSq containing respectivelyNp andNq observed data
points and separated by the specified geometric distancedpq . Since the two planes have a common orientation, a
single normal ~npq can be associated with them. Each pair
of points(Xpi ; Xqj ); Xpi 2 Sp; Xqj 2 Sq has to satisfy the
following equation:(Xpi �Xqj )T ~npq � dpq = 0 (10)

By considering all the planes’ points, the normal~npq has to
minimize the above least squares criterion:Np;NqXi;j ((Xpi �Xqj )T ~p�dpq)2 = ~pTHpq~p�2dpq~hTpq~p+Npqd2pq (11)

whereHpq = Np;NqXi;j (Xpi �Xqj )(Xpi �Xqj )T~hTpq = Np;NqXi;j Xpi �Xqj = Nq NpXi Xpi �Np NqXj XqjNpq = NpNq
Here, the distance constraint is considered as a part of the

objective equation since it involves both data and paramet-
ers.

3.3. Constraints on quadric surfaces

A general quadric surface is represented by the general
quadratic equation:ax2+by2+cz2+2hxy+2gxz+2fyz+2ux+2vy+2wz+d = 0 (12)

The above mentioned types of constraints can be extended
for quadric surfaces. However the implicit equation (12)
is not sufficient for extracting a concrete formulation of
such constraints. Other representations involving geomet-
ric properties of the quadric (centre, axis orientation, etc.)
are more appropriate for this purpose. An example related
to the cylindrical surface case will be studied in section 4.3

4. Experiments

A first series of tests was applied on a synthetic object,
a step model object (Fig.2). The aim was to check the be-
haviour and the convergence of algorithm and compare the
performances of theoptim1 andoptim2 algorithms .

The second series of experiments was carried out with
two real objects, a tetrahedron (Fig.5) and half cylinder
(Fig.6). The data was acquired with a 3D triangulation
range sensor. The range measurements were already seg-
mented into groups associated with features by means of
therangeseg[7] program.

4.1. The step model object

This object contains sets of parallel planes. The proto-
type object is composed of seven faces. We have studied
the case when five faces are visible (Fig. 2.a). For this
view we assigned a single normal for each set of parallel
planes. Three normals~p1; ~p2; ~p5 are associated respect-
ively to surfaces (S1; S4), (S2; S3), andS5. Besides the
three angle constraints (orthogonality of each two vectors)
and the three unit vector constraints, this object involves as
well two distance constraints related to the fixed distances
between(S1; S4) and(S2; S3). The surfaces’ points were
corrupted with Gaussian noise of2mm standard deviation.
Using equations (2) and (11) the least squares function is:F (~p) = ~pTH~p� 2~hT ~p+K; (13)

whereH = � H1 +H4 +H14 0 00 H2 +H3 +H23 00 0 H5 �
and ~hT = [d14~hT14; d23~hT23; 0; 0; 0] , K = N14d214 +N23d223
The first series of tests were carried out with the algorithmoptim1 in which all the constraints were applied simultan-
eously. Some results are shown in Fig. 2. The unit con-
straint function (b), the angle constraint function (c) and the
estimation error of one normal (d) are mapped as a func-
tion of �. These figures describe the behaviour of the con-
straint functions and the estimation errors. The unit error
constraint and the angle error constraints are decreasing lin-
early at a logarithmic scale (b and c). It can be observed
that increasing� by factor of 10 leads to an accuracy im-
provement factor of almost 10 in the constraint. Thus it is
possible to enforce the constraint to any level of tolerance
until the numerical accuracy of the algorithm is comprom-
ised. The orientation error related to the surface normal~p1
is also decreasing to a low value. The results show that
the position of the optimal~p1 stabilizes near the actual one.
Similar behaviour is observed for the other parameter vec-
tors. This is encouraging because it means that the part’s
shape and position stabilizes as a whole.
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Figure 2. (a) the step model object. (b) and (c) variation of

respectively the unit constraint error and the angle constraint error

( ~p1; ~p2) in function of �. (d) variation of estimated orientation

error of the normal~p1
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Figure 3. Variation of the angle constraint error related to( ~p1; ~p2) at the four steps of the algorithmoptim2.
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Figure 4. Variation of the orientation error related to( ~p1) at

the four steps of the algorithm optim2.

In the second series of experiments, the algorithmoptim2 was applied. In this algorithm the constraint func-
tion changes each time a new constraint is added. Nor-
mally, the incremental process contains six steps, however
since the unit constraints are used mainly to avoid the null
solution there is no need to apply them incrementally; in-
stead they are inferred at once simultaneously in a single
step. Thus the algorithm comprises four steps, in the first
the unit constraints are considered then the three angle con-
straints are applied one by one. Some results are illustrated
in Fig.3 and Fig.4 which show respectively the variation of
one angle constraint function and the variation of the es-
timation error of one normal along the four steps of the al-
gorithm. Similar results are obtained for the other parameter
vectors.

Fig.3 shows in particular the significant decrease of the
constraint error ( b:step 2) when the related constraint func-
tion is inferred. Moreover it shows that once the constraint
is satisfied (b: end of the step 2 ) the addition of the other
constraints (c:step 3) and (d:step 4) only affect the level of
tolerance previously reached to a very small degree. Fig.4
also shows the convergence of the estimated~p1 towards the
actual one, moreover we observe that the final position is
better than the one reached inoptim1 by a factor of 100
( compare Fig.2.d and Fig.4.d). The unit constraints and
the angle constraints are highly satisfied in both algorithms,
optim1and optim2.

4.2. The tetrahedron

Figure 5 shows a real tetrahedron image with three faces
visible. This object involves three angle constraints repres-
ented by the three angles90o, 90o and120o between the
three surface normals, as well as the unit vector constraints.
The application of the paradigm developed in Section 3.1 is
immediate for this object. We get thus easily the following
error function:E(~p) = ~pTH~p+ �( 3Xk=1 Ak(~p) + 3Xl=1 Ul(~p)) (14)

All constraints were applied simultaneously according to al-
gorithmoptim1. The results are the average of 100 trials,
with the initial vector~p[0] corrupted by a uniform deviation
of scale5%. Fig.5a shows the decrease of the unit constraint
error and the angle constraint errors. The final errors are
small. In Fig.5.b, it is seen also that the least squares func-
tion converges to a stable value, and the constraint function
decreases to zero at the end of the estimation. Thus, the fi-
nal part shape now satisfies the shape constraints at a slight
increase in the least squares fitting error.
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Figure 5. (a) decrease of the unit vector and the angle con-

straint error functions with respect to�. (b) variation of the LS

function and the constraint function with respect to�.

4.3. The half cylinder object

This object is composed of four surfaces. Three patchesS1, S2 andS3 have been extracted from the view represen-
ted in Figure.6. They correspond respectively to the base
planeS2 , lateral planeS1 and the cylindrical surfaceS3 .
The least squares error function is given by:F (~p) = ~ptH~p (15)

whereH = " H1 0 00 H2 00 0 H3 # ; ~p = [ ~p1; ~p2; ~p3]~p1 and ~p2 involve two unit constraints as well as an angle
constraint: U1(~p) = (~pTU1~p� 1)2 = 0 (16)

half cylinder

S2

S1

S3

Figure 6. A single view of the cylinder object and the extracted

surfaces. U2(~p) = (~pTU2~p � 1)2 = 0 (17)A(p) = (~pTA~p � 2cos(�=2))2 = 0 (18)

whereU1 = � I3 O3 O3;10O3 O3 O3;10O10;3 O10;3 O10;10 � U2 = � O3 O3 O3;10O3 I3 O3;10O10;3 O10;3 O10;10 �A = � O3 I3 O3;10I3 O3 O3;10O10;3 O10;3 O10;10 �
The cylinder axis is collinear toS1’s normal ~p1 and ortho-
gonal toS2’s normal ~p2. Thus the vector~p1 can be asso-
ciated with the cylinder axis orientation. The exploitation
of the above constraint needs to use the following form of a
cylinder equation:(x�x0)2+(y�y0)2+(y�y0)2�(nx(x�x0)+ny(y�y0)+nz(z�zo))2�r2 = 0

(19)

where (x0; y0; z0) is an arbitrary point on the axis,(nx; nz; ny) is a unit vector along the axis andr is the radius
of the cylinder. Consequently this vector can be~p1.
The expansion of (19) and the identification with (12) yieldsa = 1� n2x (20)b = 1� n2y (21)c = 1� n2z (22)h = �nxny (23)g = �nxnz (24)f = �nynz (25)u = �((nxx0 + nyy0 + nzz0)nx + x0) (26)v = �((nxx0 + nyy0 + nzz0)ny + y0) (27)w = �((nxx0 + nyy0 + nzz0)nz + z0) (28)d = x20 + y20 + z20 � (nxx0 + nyy0 + nzz0)2 � r2 (29)



The unit constraint on the vector~p1 leads to:a+ b+ c = 2
whose impact on the vector~pT = [ ~p1T ; ~p2T ; ~p3T ] can be
represented by the following constraint equation:C1(~p) = (iT1 ~p� 2)2 = 0 (30)

where i1 = [0; 0; 0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0]T
The summation of the equations (23), (24) and (25) gives:f + g + h = �(nxny + nxnz + nynz)
which leads to the following constraint :C2(~p) = (iT2 ~p+ ~pTQ~p)2 = 0 (31)

where i2 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0]T (32)Q = � R O3;3 O3;10O3;3 O3;3 O3;10O10;3 O10;3 O10;10 � (33)R = � 0 1 00 0 11 0 0 � (34)

Considering all the above, the optimization function isE(~p) = ~pTH~p+ �(U1(~p) + U2(~p) +A(~p) + C1(~p) + C2(~p)) (35)

The algorithmoptim1 has also been used for this object.
Results are shown in Figure.4.3. (a) and (b) show the de-
crease of respectively one unit constraint and the angle con-
straint. The constraintsC1 andC2 ((c) and (d)) are decreas-
ing with the same slope. All the constraints have been sat-
isfied to a high degree at the end of the optimization.

The least squares error converges to a stable value (e) and
the constraint error function is practically zero at the end of
the algorithm (f).

5. Discussion and conclusion

The experiments presented in the previous section show
that the incremental representation of constraints and para-
meter optimization search does produce shape fitting that
satisfies the constraints with low error. The experiments
also show that the least-square error grows slightly as the
constraints are applied. However, what is important is re-
constructing shapes that satisfy the given constraints while
also binding the remaining unconstrained shape parameters
using the range information. We have also to bear in mind
that the weakness of the least-squares residuals value may
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Figure 7. (a,b,c,d) decrease of the constraints’ errors as a

function of�. Variation of least squares error function (e) and the

constraint error function (f) with respect to�.

not reflects a good estimation in the case when the meas-
urement errors are systematic (e.g. registration errors, mis-
calibration errors). The magnitude of the actual least-square
error, even relative to the least-squares error of the uncon-
strained fit, is unimportant relative to the constraint satis-
faction. The small amount of change in position of the con-
strained surfaces relative to the original position is similarly
irrelevant.

The option of adding the constraints incrementally was
also investigated. We have chosen to start from the previous
optimal position when a new constraint is added and to keep
the weight of the previous constraints at the fixed maximum
value of�. The experiments confirmed that a previous con-
straint is almost unaffected when a new constraint is added.

The optimization procedure used in this approach pro-
duces solutions in a few minutes or less, which is suitable
for CAD work.

Regarding the improvement the optimization technique,
we are investigating a reformulation of the constraints that
might allow an exact solution using the Lagrange multipli-



ers. One issue we are concerned with is the large number of
constraints in a typical problem.

Finally, real parts usually have more than just the con-
strained developable surfaces. The optimization procedure
discussed above manipulates the constrained surface posi-
tions and shapes, but not the other surfaces. Consequently,
a complete system would need to consider how to move and
transform the other connected surfaces as the constrained
features move. The work presented in this paper can be
considered as a first step toward a general methodology for
object modelling integrating the constraints. Future work
will consider more complicated object shapes including dif-
ferent types of quadric surfaces.1
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