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eption, A
tion and BehaviorUniversity of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, UKAbstra
t. We present a method for estimating the viewpoint from where a 3D image has been taken using a 
entral-proje
tion range sensor. We assume we have the 3D 
oordinates of the points, organized with a known topology, but
onsiderable noise is present in the data. At points in the s
ene where there are surfa
e dis
ontinuities we estimatestep rays through a linear interpolation. The viewpoint is found as the point of minimum distan
e to the set of steprays. To 
ope with noise, we de�ne an unbiased distan
e measure. The minimization of the sum of distan
es providesthe viewpoint. We present results of several experiments 
arried out with 3D images of an old 
hur
h.1 Introdu
tionWith the introdu
tion of long range, wide angle, laser-based range sensors, three-dimensional images arebe
oming more and more available to the s
ienti�
 
ommunity and to the general publi
. On the Internetone 
an already �nd 
olle
tions of three-dimensional models made of polygons, or raw three-dimensionalimages 
onsisting of a matrix of 3D points.3D images 
onsist of a point 
loud or 
an be arranged as a matrix, but usually there is no informationavailable about the sensor: �eld of view, angular resolution, viewpoint, et
.Furthermore, even if one has the range sensor, it is possible that it does not provide all this information.The 
oordinate system origin of the 3D points is not ne
essarily the sensor origin. Or even if the extrinsi
parameters of the sensor are known (the exa
t position and orientation of the tripod where the sensor ismounted), the transformation from the extrinsi
 
oordinate system to the true sensor origin (viewpoint) isoften unknown.This latter information, the viewpoint, is probably the most important one sin
e, as we assume the 3D
oordinates of the point 
loud and neighborhood relationships between points in the 3D image are known,knowing the viewpoint allows us to infer other information, su
h as the aperture of the �eld of view, sensororientation or angular resolution. It also allows dedu
tion of o

lusion relationships, reje
tion of outliers, et
.3D images, like intensity images, are noisy [1℄. For example the 3D 
oordinates of the points may be
omputed by reading in information from the line s
anning devi
e (whi
h de
e
ts the laser beam horizontallyby rotating a mirror), or from the tilt head (whi
h modi�es the azimuth angle of the rotating mirror). Ifthe readings from the motor en
oders are mistaken, it may result in a big angular drift of the points beings
anned. The depth may be quite 
orre
t, but the point lo
ation in spa
e is not.Time-of-
ight or phase-based range sensors also in
lude depth error along the line of sight of ea
h s
annedpoint, usually 
ategorized as Gaussian noise of zero mean and a 
ertain standard deviation. The deviation,of the order of 
m for some sensors [2℄, 
an be 
omparable to the s
ene stru
ture at some areas.Triangulation sensors have both range and dire
tion errors from sensor noise and impre
ision in lo
ating
orresponding features.If we know the viewpoint, we 
an predi
t the pan (tilt) angle of ea
h 
olumn (row) and dis
ard or 
orre
toutliers, that is, put drifted points ba
k in pla
e.In this work we assume the 3D image has been taken with a 
entral-proje
tion range sensor with geometryas shown in Figure 1. As 
an be seen, in this geometry all rays start from the 
enter of the mirror. We alsoassume that enough stru
ture (surfa
e dis
ontinuities) exists in the s
ene to allow us to estimate viewdire
tions. So, the method would not work if the s
ene is just a plane (a wall, for example).Made expli
it, our assumptions are:? Email: san
hiz�uji.es, rbf�dai.ed.a
.uk



{ Enough depth dis
ontinuities exist, and are in random positions.{ The depth dis
ontinuity lines of sight interse
t at the viewpoint.The question we address is: is it possible to dedu
e the viewpoint given a 3D image ?, and weshow that it is possible to do this a

urately. We know of no previous work addressing this problem, hen
ethere are only a few referen
es in this paper.
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Fig. 1.: Pan-tilt range sensor geometry2 Viewpoint dete
tionIf we knew the line-of-sight ray (view ray) from the 
enter of s
anning to some s
anned points, then theviewpoint 
ould be easily 
omputed from a number of rays. In theory two rays are enough to 
ompute it,sin
e all rays interse
t at the viewpoint, but if we a
quire more than two rays, the viewpoint 
an be 
omputedby minimization as the point of minimum distan
e to all these rays.The problem is then to estimate the view rays at a number of points in the 3D image, by some geometri
-based te
hnique. On
e we a
quire a set of estimated view rays, we have the problem of �tting a model (theposition of the viewpoint) to a set of noisy data (the estimated view rays) in the presen
e of outliers. Several�tting methodologies exist to address this problem [3℄ [4℄ [5℄ [6℄. We have applied (and dis
ussed) one ofthem, the Random Sample Consensus (RanSaC ) [3℄. Here, the model �t is the estimated viewpoint and theset of 
onsensual data are the rays that agree with the model.It is easy to estimate view rays at points where the s
anned surfa
e has a depth dis
ontinuity, we 
allthese rays step rays. Figure 2 illustrates how a depth dis
ontinuity 
an be dete
ted. The distan
e d betweentwo adja
ent s
anned points is d = a
os 
 , where a 
an be approximated, for small angular resolutions, bythe ar
 length at a point between the two s
anned points (Figure 2 (top)). a = �r, where � is the anglebetween the lines of sight of the two s
anned points, and r is the average distan
e to the viewpoint. Thend = �r
os 
 . A 
ommon 
hara
teristi
 of range sensors is that they 
annot observe surfa
es viewed with an anglebetween the line of sight and the surfa
e normal bigger that a limiting value (
max). So, if the two s
annedpoints belong to the same surfa
e, whi
h is lo
ally smooth in the area between them, the maximum distan
ebetween these points will be dmax = �maxrmax
os 
max . Figure 2 (bottom) shows two s
anned points belonging todi�erent surfa
es; the distan
e between them is now expe
ted to be mu
h bigger.In order to set a threshold h to sele
t step rays we have to 
ompute dmax. This 
an be done estimatingthe maximum angular resolution of the sensor, �max, the maximum distan
e to the surfa
es in the s
ene,rmax, and the maximum view angle of the sensor, 
max. For this task, knowledge of the sensor and of thes
ene will help.For example, assuming a maximum distan
e rmax of 20 meters, a maximum viewing angle 
max of 45degrees, and an angular resolution �max of 20 steps per degree, we havedmax = ( �180 20 rad) (20metres) 1
os (45 deg) = 0:024metres = 2:4 
m.So we 
an use a distan
e threshold of h = 24 
m (one order of magnitude above dmax, for example).
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onse
utive points p1 , p2, s
anned on the same surfa
e (top), and on di�erent surfa
es (bottom)Assume 2 that a 3D image is a matrix [prow;
ol℄ (row 2 [0::M � 1℄, 
ol 2 [0::N � 1℄) where pi;j =(xi;j ; yi;j ; zi;j)0. The method to dete
t step rays is:{ Traverse the 3D image row by row and sele
t a horizontal step ray if the distan
e from pi;j to pi;j+1 isbigger than a threshold h.{ Traverse the 3D image 
olumn by 
olumn and sele
t a verti
al step ray if the distan
e from pi;j to pi+1;jis bigger than a threshold h.The dire
tion of a step ray is 
omputed by estimating the point where the surfa
e would have beens
anned if a dis
ontinuity had not o

urred. Figure 3 illustrates how this point is 
omputed by a linearinterpolation. As shown, a horizontal step ray hi;j+1 at point pi;j+1 is 
omputed as:hi;j+1 = pi;j+1 + �(bpi;j+1 � pi;j+1) (1)where � is the parameter that expands the ray, and bpi;j+1 is the interpolated point, 
omputed as bpi;j+1 =pi;j + (pi;j � pi;j�1).Similarly, a verti
al step ray vi+1;j at point pi+1;j is 
omputed as:vi+1;j = pi+1;j + �(bpi+1;j � pi+1;j) (2)where now bpi+1;j = pi;j + (pi;j � pi�1;j).
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Fig. 3.: A step ray 
omputed by linear interpolationFrom the set of step rays (horizontal and verti
al), the viewpoint is 
omputed as the point of minimumdistan
e to a subset S of rays, su
h that the size of S is bigger than a threshold n, and the distan
e fromea
h ray in S to the viewpoint is smaller than a threshold t. These are the 
onsensual rays.2 It is not ne
essary to have a regular array to apply this method. All that is required is knowing the topologi
al orneighborhood relations between points. A regular matrix is the most 
ommon topology.



For sele
ting the subset S we use RanSaC [3℄, an algorithm for general model �tting and 
onsensussele
tion in noisy data.Among the most established �tting and data asso
iation methodologies, RanSaC is a robust and simpleone. Its main 
riti
ism may be that it is a 
lassify-then-�t approa
h, while it has been reported that a
lassify-while-�t approa
h [6℄ is more well suited for multiple-model problems. In this 
ase, we only have onemodel, and the data has to be 
lassi�ed as belonging or not to the model. The model is found by minimizationusing all the data that has been previously 
lassi�ed by a minimum amount of randomly sele
ted sampledata.Despite the years passed sin
e RanSaC was reported, its approa
h remains valid for many appli
ations.Its simpli
ity is also something to take into a

ount. Other alternative methods in
lude the ones based onRobust Statisti
s [7℄ [4℄ [5℄. Here all the data is used to �nd the model by minimization using a measure ofdistan
e that tends to minimize the in
uen
e of outliers (i.e. data that are at a relatively far distan
e fromthe model). As stated in [6℄, all these methods trade robustness for a

ura
y, and fail when the number ofoutliers in
reases to more than 50%, whi
h 
ould really be the 
ase in our problem.With RanSaC the user 
an �x the minimum number of 
orre
t data to produ
e a valid model, as well asthe a

ura
y. We believe this is an advantage in the present problem.A short review of RanSaC is as follows: let A be a set of data, and m be the minimum number of dataneeded to 
ompute a model.Repeat for a maximum number of timesSele
t m data at random from ACompute an exa
t model from the m dataPut the elements in A with distan
e to the model smaller than a threshold t into subset SIf 
ardinal(S) is bigger than a threshold n, exit loopEnd of RepeatCompute the model from all the elements in S by minimizationIn our 
ase the minimum number of data to 
ompute the model (viewpoint) is two rays, m = 2. Fromtwo rays the model is also 
omputed by minimization, as it is from any number of rays. On
e a viewpointis estimated from two sample rays, to 
he
k if other rays agree with the model, we 
ompute the distan
efrom ea
h step ray to the viewpoint. The threshold for this distan
e, t, 
an be set to a value of a few (3 forexample) orders of magnitude smaller than the s
ene dimensions. If the s
ene extends to several meters, t
an be set to a few mm.The threshold n, that indi
ates how many data are 
onsidered suÆ
ient to give a �nal solution to themodel, depends on the number of outliers present in the image. It is 
onvenient to express it as a fra
tionof the data size (step rays). In our experiments we have obtained satisfa
tory results with a value of 60% ofthe total number of step rays dete
ted. This �gure has been set after a few initial tests. It should be biggerfor images with few outliers, and smaller for more noisy images.3 Error analysisAlthough the viewpoint is found by minimization of a distan
e measure from the set of step rays, we maybe introdu
ing some errors in the way these step rays are estimated, whi
h may bias the further estimationof the viewpoint.As 
an be seen in Figure 3, if the surfa
e is not perpendi
ular to the view dire
tion, the linear interpolationof bpi;j+1 from points pi;j�1 and pi;j will fall in the next ray, hi;j+1, only if the viewpoint is at in�nity.Otherwise bpi;j+1 will fall before or after the real ray (from pi;j+1 to the viewpoint) depending on the surfa
eorientation, resulting in step rays estimated with too mu
h or too little in
lination. This error is unavoidable,sin
e we do not know the position of the viewpoint a priori, but we 
an 
onsider that the errors tend to
an
el if the s
ene 
ontains a big number of surfa
es with random orientations.Let ri (i 2 [1::N ℄) be a set of rays, ri = 
i + �ini (i 2 [1::N ℄), where 
i is the starting point, ni is thedire
tion ve
tor, and �i is the parameter that expands the ray.In order to �nd the point of minimum distan
e to the set, v = (x; y; z)0, the standard pro
edure is tominimize the distan
e from a point v to a line with respe
t to x, y and z.The distan
e from a point to a line is expressed as:



di = kni � (v � 
i)kknik (3)The addition of the squared distan
es to all rays is:D2 = NXi=1 d2i (4)The point of minimum distan
e is that for whi
h�D2=�x = �D2=�y = �D2=�z = 0 (5)If we assume that the 3D image points used to estimate the step rays in
lude Gaussian noise of zeromean and varian
e �20 on ea
h 
omponent, then 
i is a random Gaussian ve
tor of a 
ertain mean and
ovarian
e �20I (I being a 3 � 3 identity matrix). ni is a random Gaussian ve
tor of a 
ertain mean and
ovarian
e �21I (�21 = 6�20), sin
e, from (1, 2), ni = �pi;j+1 + 2pi;j � pi;j�1 for horizontal step rays, orni = �pi+1;j + 2pi;j � pi�1;j for verti
al step rays.To see if the expression in (3) is biased, we �nd its expe
tation, resulting in:E[d2i ℄ = k�ni�(v��
i)k2+2�20k�nik2+6�20�21+2�21kv��
ik2k�nik2+3�21 (6)where the mean values �
i; �ni 
an be estimated by the measured values, 
i;ni (Maximum Likelihood or LeastSquares 
riterion [8℄).So, instead of using expression (3), we minimize the unbiased distan
e measure:d2unbiassed; i = kni � (v � 
i)k2 � 2�20knik2 � 6�20�21 � 2�21kv � 
ik2knik2 � 3�21 (7)Taking the partial derivatives (5) of (7), we obtain a linear system Av = b, whereA = 0B� PNi=1(n2iy + n2iz � 2�21) �PNi=1(nixniy) �PNi=1(nixniz)�PNi=1(nixniy) PNi=1(n2ix + n2iz � 2�21) �PNi=1(niyniz)�PNi=1(nixniz) �PNi=1(niyniz) PNi=1(n2ix + n2iy � 2�21)1CA (8)and b = 0B� PNi=1 
ix(n2iy + n2iz � 2�21)�PNi=1(
iynixniy)�PNi=1(
iznixniz)�PNi=1(
ixnixniy) +PNi=1 
iy(n2ix + n2iz � 2�21)�PNi=1(
izniyniz)�PNi=1(
ixnixniz)�PNi=1(
iyniyniz) +PNi=1 
iz(n2ix + n2iy � 2�21)1CA (9)Solving the system we obtain the point v = (x; y; z)0 of minimum distan
e to the set of rays.4 ResultsWe have 
he
ked the approa
h with ten 3D panorami
 images taken with a range s
anner (LARA 12600,Zoller&Frohli
h) [9℄ inside an old 
hur
h in Bornholm, Denmark. Ea
h image is of 8000� 1400 points, theground-truth viewpoint is known, (0,0,0)', and the extent of these images is of several meters.Although we only have ten images, the volume of data they 
ontain is 
onsiderable. The number of pointsused in the experiments has been of 1:12 � 108 and, by subsampling and extra
ting subimages of smallerangular extent, we have used more than 600 images in the tests.Figure 4 shows an overhead view of one of the test images, with the 
onsensual step rays after applyingRanSaC. The image 
overs quite a big area, and it is diÆ
ult to appre
iate details in it. As 
an be seen, therays point at the viewpoint, in the 
enter of the 
hur
h. Similar results 
an be seen in Figure 5, but for amore detailed partial view of the 
hur
h 
ontaining some 
hairs. In fa
t the method 
an be used not onlywith panorami
 images, but with whatever the aperture of the �eld of view.Figure 6 (left) shows the estimated view points for the test images. The mean distan
es from these
enters to the ground truth (0,0,0)' is 1.26 mm and the standard deviation is 1.43 mm. Figure 6 (right)



Fig. 4.: Full 3D image (8000� 1400 points) of a 
hur
h seen from above, with the 
onsensual step rays afterapplying RanSaC, 
onverging on the viewpoint in the 
entre of the 
hur
h.shows plots with the mean distan
e from all of the 
onsensual rays to the estimated view point, and thestandard deviation of these distan
es. Both �gures are of the order of few mm.Figure 7 shows the number of iterations of the RanSaC algorithm until the number of 
onsensual raysex
eeds the threshold (60% of the total number of step rays), and the per
entage of 
onsensual data found.The threshold value of 60% was 
hosen running RanSaC �rst with a threshold of 100% (all data should �tthe model), and observing the di�erent per
entages of 
onsensual data obtained at ea
h iteration.To 
he
k the dependen
e of the approa
h with the amount of data used, we ran two more experimentsfo
used on using only part of the data. In the �rst experiment, we used di�erent sized horizontal se
tors ofpanorami
 images, but with the same image resolution. Figure 8 shows the mean distan
e from the 
onsensualrays to the estimated 
entroid, and their standard deviation taking di�erent se
tor sizes from the panorami
image in Figure 4. It also shows the distan
e from the estimated viewpoint to the ground-truth viewpoint.The method works well until the se
tor width be
omes quite small (about 20 degrees).In the se
ond experiment we sub-sampled the test images using one of every number of rows and one ofevery number of 
olumns. Sin
e the step rays estimation (1, 2) is based on assuming that points pi;j andpi;j�1, or pi;j and pi�1;j , belong to the same surfa
e, the method will start to fail when the sub-samplingrate is so big that this assumption does not hold any more. The experiment used the same thresholds asthe previous experiments, but we ran RanSaC one thousand times to determine, for every sub-samplingrate, the biggest number of 
onsensual rays that we 
ould use. Figure 9 
orresponds to the sub-samplingof the panorami
 image in Figure 4. It shows how the mean and standard deviation of the distan
es fromthe 
onsensual rays to the estimated viewpoint gradually in
rease with the sub-sampling rate. Figure 9 alsoshows how the number of 
onsensual rays de
reases with the sub-sampling rate sin
e, the more we sub-sample, the less a

urate the step ray estimation is. This is probably the most indi
ative graph be
ause, forproblems where we only have one model to �t (the viewpoint), we would like to a
quire the highest amountof useful data to 
ompute the model.



Fig. 5.: Detailed 3D subimage (1000�700 points), and 
onsensual step rays after applying RanSaC, the trueviewpoint is to the right.
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ate one standard deviation of the distan
es, added to and subtra
ted from the mean.
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Fig. 8.: Estimation error as a fun
tion of the amount of data used to 
ompute the viewpoint, the horizontalaxis is the se
tor angle of the image. Left : mean distan
e and standard deviation (added and subtra
ted)from the 
onsensual rays to the estimated viewpoint. Right : Distan
e from the estimated viewpoint to theground truth.5 Con
lusionsIn this paper we have applied a paradigm for model �tting in the presen
e of outliers (RanSaC ) to theproblem of estimating the viewpoint from where a 3D image has been taken, assuming a 
entral-proje
tionrange sensor.We have used an approa
h to step ray dete
tion based on �rst-order interpolation. Step rays are the dataused for model �tting (viewpoint estimation). We have presented 
lues for setting the parameters involved.We have used an unbiased distan
e estimator that takes into a

ount the data noise, modeling it asGaussian with zero mean and a known (or estimated) standard deviation.The experiments give an estimate of the viewpoint with an a

ura
y of three orders of magnitude smallerthan the s
ene's extent.Two experiments fo
used on estimating the viewpoint from a redu
ed volume of data: taking only se
torsof a panorami
 image, and image sub-sampling. A

ura
y is largely independent of se
tor width provided atleast 20 degrees of sampling is obtained. On the other hand, image sub-sampling redu
es the 
on�den
e ofthe step ray estimates, resulting in fewer 
onsensual data being found, but only slowly degrades the a

ura
yof the estimated viewpoint.From our results we 
an 
on
lude that the method presented is a valid approa
h for viewpoint estimation
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tion of the amount of data used to 
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e and standarddeviation (added and subtra
ted) from the 
onsensual rays to the estimated viewpoint. Right : Per
entage of
onsensual data found for every sub-sampling rate. As expe
ted, the method �nds less 
onsensual data asthe sub-sampling rate in
reases.from noisy images.A
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