
Estimating the viewpoint position from a three-dimensional imageJ.M. Sanhiz y, R.B. Fisher x?yDepartament d'Inform�atia, Universitat Jaume I, E-12071 Castell�o, SpainxInstitute of Pereption, Ation and BehaviorUniversity of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, UKAbstrat. We present a method for estimating the viewpoint from where a 3D image has been taken using a entral-projetion range sensor. We assume we have the 3D oordinates of the points, organized with a known topology, butonsiderable noise is present in the data. At points in the sene where there are surfae disontinuities we estimatestep rays through a linear interpolation. The viewpoint is found as the point of minimum distane to the set of steprays. To ope with noise, we de�ne an unbiased distane measure. The minimization of the sum of distanes providesthe viewpoint. We present results of several experiments arried out with 3D images of an old hurh.1 IntrodutionWith the introdution of long range, wide angle, laser-based range sensors, three-dimensional images arebeoming more and more available to the sienti� ommunity and to the general publi. On the Internetone an already �nd olletions of three-dimensional models made of polygons, or raw three-dimensionalimages onsisting of a matrix of 3D points.3D images onsist of a point loud or an be arranged as a matrix, but usually there is no informationavailable about the sensor: �eld of view, angular resolution, viewpoint, et.Furthermore, even if one has the range sensor, it is possible that it does not provide all this information.The oordinate system origin of the 3D points is not neessarily the sensor origin. Or even if the extrinsiparameters of the sensor are known (the exat position and orientation of the tripod where the sensor ismounted), the transformation from the extrinsi oordinate system to the true sensor origin (viewpoint) isoften unknown.This latter information, the viewpoint, is probably the most important one sine, as we assume the 3Doordinates of the point loud and neighborhood relationships between points in the 3D image are known,knowing the viewpoint allows us to infer other information, suh as the aperture of the �eld of view, sensororientation or angular resolution. It also allows dedution of olusion relationships, rejetion of outliers, et.3D images, like intensity images, are noisy [1℄. For example the 3D oordinates of the points may beomputed by reading in information from the line sanning devie (whih deets the laser beam horizontallyby rotating a mirror), or from the tilt head (whih modi�es the azimuth angle of the rotating mirror). Ifthe readings from the motor enoders are mistaken, it may result in a big angular drift of the points beingsanned. The depth may be quite orret, but the point loation in spae is not.Time-of-ight or phase-based range sensors also inlude depth error along the line of sight of eah sannedpoint, usually ategorized as Gaussian noise of zero mean and a ertain standard deviation. The deviation,of the order of m for some sensors [2℄, an be omparable to the sene struture at some areas.Triangulation sensors have both range and diretion errors from sensor noise and impreision in loatingorresponding features.If we know the viewpoint, we an predit the pan (tilt) angle of eah olumn (row) and disard or orretoutliers, that is, put drifted points bak in plae.In this work we assume the 3D image has been taken with a entral-projetion range sensor with geometryas shown in Figure 1. As an be seen, in this geometry all rays start from the enter of the mirror. We alsoassume that enough struture (surfae disontinuities) exists in the sene to allow us to estimate viewdiretions. So, the method would not work if the sene is just a plane (a wall, for example).Made expliit, our assumptions are:? Email: sanhiz�uji.es, rbf�dai.ed.a.uk



{ Enough depth disontinuities exist, and are in random positions.{ The depth disontinuity lines of sight interset at the viewpoint.The question we address is: is it possible to dedue the viewpoint given a 3D image ?, and weshow that it is possible to do this aurately. We know of no previous work addressing this problem, henethere are only a few referenes in this paper.
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Fig. 1.: Pan-tilt range sensor geometry2 Viewpoint detetionIf we knew the line-of-sight ray (view ray) from the enter of sanning to some sanned points, then theviewpoint ould be easily omputed from a number of rays. In theory two rays are enough to ompute it,sine all rays interset at the viewpoint, but if we aquire more than two rays, the viewpoint an be omputedby minimization as the point of minimum distane to all these rays.The problem is then to estimate the view rays at a number of points in the 3D image, by some geometri-based tehnique. One we aquire a set of estimated view rays, we have the problem of �tting a model (theposition of the viewpoint) to a set of noisy data (the estimated view rays) in the presene of outliers. Several�tting methodologies exist to address this problem [3℄ [4℄ [5℄ [6℄. We have applied (and disussed) one ofthem, the Random Sample Consensus (RanSaC ) [3℄. Here, the model �t is the estimated viewpoint and theset of onsensual data are the rays that agree with the model.It is easy to estimate view rays at points where the sanned surfae has a depth disontinuity, we allthese rays step rays. Figure 2 illustrates how a depth disontinuity an be deteted. The distane d betweentwo adjaent sanned points is d = aos  , where a an be approximated, for small angular resolutions, bythe ar length at a point between the two sanned points (Figure 2 (top)). a = �r, where � is the anglebetween the lines of sight of the two sanned points, and r is the average distane to the viewpoint. Thend = �ros  . A ommon harateristi of range sensors is that they annot observe surfaes viewed with an anglebetween the line of sight and the surfae normal bigger that a limiting value (max). So, if the two sannedpoints belong to the same surfae, whih is loally smooth in the area between them, the maximum distanebetween these points will be dmax = �maxrmaxos max . Figure 2 (bottom) shows two sanned points belonging todi�erent surfaes; the distane between them is now expeted to be muh bigger.In order to set a threshold h to selet step rays we have to ompute dmax. This an be done estimatingthe maximum angular resolution of the sensor, �max, the maximum distane to the surfaes in the sene,rmax, and the maximum view angle of the sensor, max. For this task, knowledge of the sensor and of thesene will help.For example, assuming a maximum distane rmax of 20 meters, a maximum viewing angle max of 45degrees, and an angular resolution �max of 20 steps per degree, we havedmax = ( �180 20 rad) (20metres) 1os (45 deg) = 0:024metres = 2:4 m.So we an use a distane threshold of h = 24 m (one order of magnitude above dmax, for example).
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surfaceFig. 2.: Two onseutive points p1 , p2, sanned on the same surfae (top), and on di�erent surfaes (bottom)Assume 2 that a 3D image is a matrix [prow;ol℄ (row 2 [0::M � 1℄, ol 2 [0::N � 1℄) where pi;j =(xi;j ; yi;j ; zi;j)0. The method to detet step rays is:{ Traverse the 3D image row by row and selet a horizontal step ray if the distane from pi;j to pi;j+1 isbigger than a threshold h.{ Traverse the 3D image olumn by olumn and selet a vertial step ray if the distane from pi;j to pi+1;jis bigger than a threshold h.The diretion of a step ray is omputed by estimating the point where the surfae would have beensanned if a disontinuity had not ourred. Figure 3 illustrates how this point is omputed by a linearinterpolation. As shown, a horizontal step ray hi;j+1 at point pi;j+1 is omputed as:hi;j+1 = pi;j+1 + �(bpi;j+1 � pi;j+1) (1)where � is the parameter that expands the ray, and bpi;j+1 is the interpolated point, omputed as bpi;j+1 =pi;j + (pi;j � pi;j�1).Similarly, a vertial step ray vi+1;j at point pi+1;j is omputed as:vi+1;j = pi+1;j + �(bpi+1;j � pi+1;j) (2)where now bpi+1;j = pi;j + (pi;j � pi�1;j).
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Fig. 3.: A step ray omputed by linear interpolationFrom the set of step rays (horizontal and vertial), the viewpoint is omputed as the point of minimumdistane to a subset S of rays, suh that the size of S is bigger than a threshold n, and the distane fromeah ray in S to the viewpoint is smaller than a threshold t. These are the onsensual rays.2 It is not neessary to have a regular array to apply this method. All that is required is knowing the topologial orneighborhood relations between points. A regular matrix is the most ommon topology.



For seleting the subset S we use RanSaC [3℄, an algorithm for general model �tting and onsensusseletion in noisy data.Among the most established �tting and data assoiation methodologies, RanSaC is a robust and simpleone. Its main ritiism may be that it is a lassify-then-�t approah, while it has been reported that alassify-while-�t approah [6℄ is more well suited for multiple-model problems. In this ase, we only have onemodel, and the data has to be lassi�ed as belonging or not to the model. The model is found by minimizationusing all the data that has been previously lassi�ed by a minimum amount of randomly seleted sampledata.Despite the years passed sine RanSaC was reported, its approah remains valid for many appliations.Its simpliity is also something to take into aount. Other alternative methods inlude the ones based onRobust Statistis [7℄ [4℄ [5℄. Here all the data is used to �nd the model by minimization using a measure ofdistane that tends to minimize the inuene of outliers (i.e. data that are at a relatively far distane fromthe model). As stated in [6℄, all these methods trade robustness for auray, and fail when the number ofoutliers inreases to more than 50%, whih ould really be the ase in our problem.With RanSaC the user an �x the minimum number of orret data to produe a valid model, as well asthe auray. We believe this is an advantage in the present problem.A short review of RanSaC is as follows: let A be a set of data, and m be the minimum number of dataneeded to ompute a model.Repeat for a maximum number of timesSelet m data at random from ACompute an exat model from the m dataPut the elements in A with distane to the model smaller than a threshold t into subset SIf ardinal(S) is bigger than a threshold n, exit loopEnd of RepeatCompute the model from all the elements in S by minimizationIn our ase the minimum number of data to ompute the model (viewpoint) is two rays, m = 2. Fromtwo rays the model is also omputed by minimization, as it is from any number of rays. One a viewpointis estimated from two sample rays, to hek if other rays agree with the model, we ompute the distanefrom eah step ray to the viewpoint. The threshold for this distane, t, an be set to a value of a few (3 forexample) orders of magnitude smaller than the sene dimensions. If the sene extends to several meters, tan be set to a few mm.The threshold n, that indiates how many data are onsidered suÆient to give a �nal solution to themodel, depends on the number of outliers present in the image. It is onvenient to express it as a frationof the data size (step rays). In our experiments we have obtained satisfatory results with a value of 60% ofthe total number of step rays deteted. This �gure has been set after a few initial tests. It should be biggerfor images with few outliers, and smaller for more noisy images.3 Error analysisAlthough the viewpoint is found by minimization of a distane measure from the set of step rays, we maybe introduing some errors in the way these step rays are estimated, whih may bias the further estimationof the viewpoint.As an be seen in Figure 3, if the surfae is not perpendiular to the view diretion, the linear interpolationof bpi;j+1 from points pi;j�1 and pi;j will fall in the next ray, hi;j+1, only if the viewpoint is at in�nity.Otherwise bpi;j+1 will fall before or after the real ray (from pi;j+1 to the viewpoint) depending on the surfaeorientation, resulting in step rays estimated with too muh or too little inlination. This error is unavoidable,sine we do not know the position of the viewpoint a priori, but we an onsider that the errors tend toanel if the sene ontains a big number of surfaes with random orientations.Let ri (i 2 [1::N ℄) be a set of rays, ri = i + �ini (i 2 [1::N ℄), where i is the starting point, ni is thediretion vetor, and �i is the parameter that expands the ray.In order to �nd the point of minimum distane to the set, v = (x; y; z)0, the standard proedure is tominimize the distane from a point v to a line with respet to x, y and z.The distane from a point to a line is expressed as:



di = kni � (v � i)kknik (3)The addition of the squared distanes to all rays is:D2 = NXi=1 d2i (4)The point of minimum distane is that for whih�D2=�x = �D2=�y = �D2=�z = 0 (5)If we assume that the 3D image points used to estimate the step rays inlude Gaussian noise of zeromean and variane �20 on eah omponent, then i is a random Gaussian vetor of a ertain mean andovariane �20I (I being a 3 � 3 identity matrix). ni is a random Gaussian vetor of a ertain mean andovariane �21I (�21 = 6�20), sine, from (1, 2), ni = �pi;j+1 + 2pi;j � pi;j�1 for horizontal step rays, orni = �pi+1;j + 2pi;j � pi�1;j for vertial step rays.To see if the expression in (3) is biased, we �nd its expetation, resulting in:E[d2i ℄ = k�ni�(v��i)k2+2�20k�nik2+6�20�21+2�21kv��ik2k�nik2+3�21 (6)where the mean values �i; �ni an be estimated by the measured values, i;ni (Maximum Likelihood or LeastSquares riterion [8℄).So, instead of using expression (3), we minimize the unbiased distane measure:d2unbiassed; i = kni � (v � i)k2 � 2�20knik2 � 6�20�21 � 2�21kv � ik2knik2 � 3�21 (7)Taking the partial derivatives (5) of (7), we obtain a linear system Av = b, whereA = 0B� PNi=1(n2iy + n2iz � 2�21) �PNi=1(nixniy) �PNi=1(nixniz)�PNi=1(nixniy) PNi=1(n2ix + n2iz � 2�21) �PNi=1(niyniz)�PNi=1(nixniz) �PNi=1(niyniz) PNi=1(n2ix + n2iy � 2�21)1CA (8)and b = 0B� PNi=1 ix(n2iy + n2iz � 2�21)�PNi=1(iynixniy)�PNi=1(iznixniz)�PNi=1(ixnixniy) +PNi=1 iy(n2ix + n2iz � 2�21)�PNi=1(izniyniz)�PNi=1(ixnixniz)�PNi=1(iyniyniz) +PNi=1 iz(n2ix + n2iy � 2�21)1CA (9)Solving the system we obtain the point v = (x; y; z)0 of minimum distane to the set of rays.4 ResultsWe have heked the approah with ten 3D panorami images taken with a range sanner (LARA 12600,Zoller&Frohlih) [9℄ inside an old hurh in Bornholm, Denmark. Eah image is of 8000� 1400 points, theground-truth viewpoint is known, (0,0,0)', and the extent of these images is of several meters.Although we only have ten images, the volume of data they ontain is onsiderable. The number of pointsused in the experiments has been of 1:12 � 108 and, by subsampling and extrating subimages of smallerangular extent, we have used more than 600 images in the tests.Figure 4 shows an overhead view of one of the test images, with the onsensual step rays after applyingRanSaC. The image overs quite a big area, and it is diÆult to appreiate details in it. As an be seen, therays point at the viewpoint, in the enter of the hurh. Similar results an be seen in Figure 5, but for amore detailed partial view of the hurh ontaining some hairs. In fat the method an be used not onlywith panorami images, but with whatever the aperture of the �eld of view.Figure 6 (left) shows the estimated view points for the test images. The mean distanes from theseenters to the ground truth (0,0,0)' is 1.26 mm and the standard deviation is 1.43 mm. Figure 6 (right)



Fig. 4.: Full 3D image (8000� 1400 points) of a hurh seen from above, with the onsensual step rays afterapplying RanSaC, onverging on the viewpoint in the entre of the hurh.shows plots with the mean distane from all of the onsensual rays to the estimated view point, and thestandard deviation of these distanes. Both �gures are of the order of few mm.Figure 7 shows the number of iterations of the RanSaC algorithm until the number of onsensual raysexeeds the threshold (60% of the total number of step rays), and the perentage of onsensual data found.The threshold value of 60% was hosen running RanSaC �rst with a threshold of 100% (all data should �tthe model), and observing the di�erent perentages of onsensual data obtained at eah iteration.To hek the dependene of the approah with the amount of data used, we ran two more experimentsfoused on using only part of the data. In the �rst experiment, we used di�erent sized horizontal setors ofpanorami images, but with the same image resolution. Figure 8 shows the mean distane from the onsensualrays to the estimated entroid, and their standard deviation taking di�erent setor sizes from the panoramiimage in Figure 4. It also shows the distane from the estimated viewpoint to the ground-truth viewpoint.The method works well until the setor width beomes quite small (about 20 degrees).In the seond experiment we sub-sampled the test images using one of every number of rows and one ofevery number of olumns. Sine the step rays estimation (1, 2) is based on assuming that points pi;j andpi;j�1, or pi;j and pi�1;j , belong to the same surfae, the method will start to fail when the sub-samplingrate is so big that this assumption does not hold any more. The experiment used the same thresholds asthe previous experiments, but we ran RanSaC one thousand times to determine, for every sub-samplingrate, the biggest number of onsensual rays that we ould use. Figure 9 orresponds to the sub-samplingof the panorami image in Figure 4. It shows how the mean and standard deviation of the distanes fromthe onsensual rays to the estimated viewpoint gradually inrease with the sub-sampling rate. Figure 9 alsoshows how the number of onsensual rays dereases with the sub-sampling rate sine, the more we sub-sample, the less aurate the step ray estimation is. This is probably the most indiative graph beause, forproblems where we only have one model to �t (the viewpoint), we would like to aquire the highest amountof useful data to ompute the model.



Fig. 5.: Detailed 3D subimage (1000�700 points), and onsensual step rays after applying RanSaC, the trueviewpoint is to the right.
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