
Eulidean Fitting RevisitedPetko Faber and Bob FisherDivision of Informatis, University of Edinburgh,Edinburgh, EH1 2QL, UKnpf|rbf�dai.ed.a.ukAbstratThe fous of our paper is on the �tting of general urves and surfaes to 3D data. In the pastresearhers have used approximate distane funtions rather than the Eulidean distane beauseof omputational eÆieny. We now feel that mahine speeds are suÆient to ask whether it isworth onsidering Eulidean �tting again. Experiments with the real Eulidean distane show thelimitations of suggested approximations like the Algebrai distane or Taubin's approximation. Inthis paper we present our results improving the known �tting methods by an (iterative) estimationof the real Eulidean distane. The performane of our method is ompared with several methodsproposed in the literature and we show that the Eulidean �tting guarantees a better auray withan aeptable omputational ost.1 MotivationOne fundamental problem in building a reognition and positioning system based on impliit 3D urvesand surfaes is how to �t these urves and surfaes to 3D data. This proess will be neessary forautomatially onstruting CAD or other objet models from range or intensity data and for buildingintermediate representations from observations during reognition. Of great importane is the ability torepresent 2D and 3D data or objets in a ompat form. Impliit polynomial urves and surfaes arevery useful representations. Their power appears by their ability to smooth noisy data, to interpolatethrough sparse or missing data, their ompatness and their form being ommonly used in numerousonstrutions. Let f2(~x) be an impliit polynomial of degree 2 given byf2(~x) = p0 + ~x0 � ~p1 + ~x0 � ~P2 � ~x = 0; ~x 2 R2 or ~x 2 R3 : (1)Then, we only have to determine the set of parameters whih desribes the data best. The parameter es-timation problem is usually formulated as an optimization problem. Thereby, a given estimation probleman be solved in many ways beause of di�erent optimization riteria and several possible parameteri-zations. Generally, the literature on �tting an be divided into two general tehniques: lustering (e.g.[4, 6℄) and least-squares �tting (e.g. [2, 5, 7℄). While the lustering methods are based on mapping datapoints to the parameter spae, suh as the Hough transform and the aumulation methods, the least-squares methods are entered on �nding the sets of parameters that minimize some distane measuresbetween the data points and the urve or surfae. Unfortunately, the minimization of the Eulideandistanes from the data points to a general urve or surfae has been omputationally impratial, be-ause there is no losed form expression for the Eulidean distane from a point to a general algebraiurve or surfae, and iterative methods are required to ompute it. Thus, the Eulidean distane hasbeen approximated. Often, the result of evaluating the harateristi polynomial f2(~x) is taken, or the�rst order approximation, suggested by Taubin [12℄ is used. However, experiments with the Eulideandistane show the limitations of approximations regarding quality and auray of the �tting results.The quality of the �tting results has a substantive impat on the reognition performane espeiallyin the reverse engineering where we work with a onstrained reonstrution of 3D geometri models ofobjets from range data. Thus it is important to get good �ts to the data.2 Fitting of algebrai urves and surfaesAn impliit urve or surfae is the set of zeros of a smooth funtion f : Rn ! Rk of the n variables:Z(f) = f~x : f(~x) = 0g. In our appliations we are interested in three speial ases for their appliations1



in omputer vision and espeially range image analysis: Z(f) is a planar urve if n = 2 and k = 1, it isa surfae if n = 3 and k = 1 and it is a spae urve if n = 3 and k = 2.Given a �nite set of data points D = f~xig, i 2 [1;m℄, the problem
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Figure 1: Eulidean distanedist(~xi;Z(f)) of a point ~xi toa zero set Z(f)
of �tting an algebrai urve or surfae Z(f) to the data set D is usuallyast as minimizing the mean square distane1m mXi=1 dist (~xi;Z(f))2 ! Minimum (2)from the data points to the urve or surfae Z(f), a funtion of the setof parameters of the polynomial. The problem that we have to dealwith is how to answer whether the distane from a ertain point ~xi toa set Z(f) of zeros of f : Rn ! Rk is the (global) minimum or not.The distane from the point ~xi to the zero set Z(f) is de�ned as the minimum of the distanes from ~xito points ~xt in the zero set Z(f)dist(~xi;Z(f)) = min fk ~xi � ~xt k : f(~xt) = 0g : (3)Thus, the Eulidean distane dist(~xi;Z(f)) between a point ~xi and the zero set Z(f) is the minimaldistane between ~xi and the point ~xt in the zero set whose tangent is orthogonal to the line joining ~xiand ~xt (see Fig.1). As mentioned above there is no losed form expression for the Eulidean distanefrom a point to a general algebrai urve or surfae and iterative methods are required to ompute it.In the past researhers have often replaed the Eulidean distane by an approximation. But it is wellknown that a di�erent performane funtion an produe a very biased result. In the following we willsummarize the methods used to approximate the real Eulidean distane by the algebrai distane andan approximation suggested by Taubin ([12℄, [13℄).Algebrai �tting. The algebrai �tting is based on the approximation of the Eulidean distane betweena point and the urve or surfae by the algebrai distanedistA (~xi;Z(f)) = f2(~xi) : (4)To avoid the trivial solution, where all parameters are zero, and any multiple of a solution, theparameter vetor may be onstrained in some way (e.g. [1, 5, 7℄ and [10℄). The pros and ons ofusing algebrai distanes are a) the gain in omputational eÆieny, beause losed form solutionsan usually be obtained, on the one hand and b) the often unsatisfatory results on the other hand.Taubin's �tting. An alternative to approximately solve the minimization problem is to replae theEulidean distane from a point to an impliit urve or surfae by the �rst order approximation[13℄. There, the Taylor series is expanded up to �rst order in a de�ned neighborhood, trunatedafter the linear term and then the triangular and the Cauhy-Shwartz inequality were applied.distT (~xi;Z(f)) = jf2(~xi)jkrf2(~xi)k (5)Besides the fat that no iterative proedures are required, the fundamental property is that it is a�rst order approximation to the exat distane. But, it is important to note that the approximatedistane is also biased in some sense. If, for instane, a data point ~xi is lose to a ritial point ofthe polynomial, i.e., krf2(~xi)k � 0, but f2(~xi) 6= 0, the distane beomes large. This is ertainly alimitation.Note, neither the Algebrai distane nor Taubin's approximation are invariant with respet to Eu-lidean transformations.2.1 Eulidean distaneTo overome the problems with the approximated distanes, it is natural to replae them again by thereal geometri distanes, that means the Eulidean distanes, whih are invariant to transformations inEulidean spae and are not biased. For primitive urves and surfaes like straight lines, ellipses, planes,ylinders, ones, and ellipsoids, a losed form expression exists for the Eulidean distane from a pointto the zero set and we use these. However, as the expression of the Eulidean distane to other 2nd orderurve and surfaes is more ompliated and there exists no known losed form expression, an iterativeoptimization proedure must be arried out. For more general urves and surfaes the following simpleiterative algorithm will be used (see also Fig.2):



1. Selet the initial point ~x[0℄t . In the �rst step we determine the initial solution by interseting theurve or surfae with the straight line de�ned by the enter point ~xm and the point ~xi. By theinitial solution, the upper bound for the distane is estimated.2. Update the atual estimation ~x[k+1℄t = F (~x[k℄t ), k = 0; 1; 2; : : :. In the seond step a new solution isdetermined. The searh diretion will be determined by the gradient of the urve r(f(~x[k℄t )).~x[k+1℄t = ~x[k℄t + �[k℄rf �~x[k℄t � : (6)The method is an adaptation of the steepest desent method. As the result we get two possiblesolutions, ~x[k℄t and ~x[k+1℄t (f. Fig 2), and we have to deide by an objetive funtion F , if ~x[k+1℄twill be aepted as new solution.
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Figure 2: Steps to estimate the Eulidean distane distE(~xi;Z(f)) of a point ~xi to the zero set Z(f) ofan ellipse3. Evaluate the new estimation ~x[k+1℄t . The set of solutions is evaluated by the objetive funtionF(~xi; ~x[k+1℄t ;Z(f)) = min(distE(~xi; ~x[k℄t ); distE(~xi; ~x[k+1℄t ). If the distane from the new estimation~x[k+1℄t is smaller, we aept this as the new loal solution. Otherwise ~x[k+1℄t = ~x[k℄t and �[k+1℄ =���[k℄, � > 0. Then, the algorithm will be ontinued with step 2 until the di�erene between thedistanes of the old and the new estimation is smaller then a given threshold. To speed up theestimation a riterion to terminate the updating may be used like e.g. k~x[k+1℄t � ~x[k℄t k � �d, ork � �k.2.2 Estimation error of surfae �tGiven the Eulidean distane error for eah point, we then ompute the urve or surfae �tting erroras distE(~xi;Z(f)). The standard least-squares method tries to minimize Pi dist2E(~xi;Z(f)), whih isunstable if there are outliers in the data. Outlying data an give so strong an e�et in the minimizingthat the parameters are distorted. Replaing the squared residuals by another funtion an redue thee�et of outliers. Appropriate minimization riteria inluding funtions were disussed in for instane [3℄and [14℄. It seems diÆult to selet a funtion whih is generally suitable. Following the results givenin [11℄ the best hoie may be the so-alled Lp (least power) funtion: Lp := jdistE(~xi;Z(f))j�=�. Thisfuntion represents a family of funtions inluding the two ommonly used funtions L1 (absolute power)with � = 1 and L2 (least squares) with � = 2. Note, the smaller �, the smaller is the inuene of largeerrors. For values � � 1:2, a good error estimation may be expeted [11℄.2.3 OptimizationGiven a method of omputing the �tting error for the urves and surfaes, we now show how to minimizethe error. Many tehniques are readily available, inluding Gauss-Newton algorithm, Steepest GradientDesent, and Levenberg-Marquardt algorithm. Our implementation is based on the Levenberg-Marquardt(LM) algorithm [8, 9℄ whih has beome the standard of nonlinear optimization routines. The LM methodombines the inherent stability of the Steepest Gradient Desent with the quadrati onvergene rate ofthe Gauss-Newton method. The (iterative) �tting approah onsists of three major steps:1. Selet the initial �tting P [0℄. The initial solution P [0℄ is determined by Taubin's �tting method.2. Update the estimation P [k+1℄ = FLM(P [k℄) using the Levenberg-Marquardt (LM) algorithm.3. Evaluate the new estimation P [k+1℄. The updated parameter vetor is evaluated using the Lpfuntion on the basis of the distE(~xi;Z(f)). P [k+1℄ will be aepted if Lp(P [k+1℄) < Lp(P [k℄) andthe �tting will be ontinued with step 2. Otherwise the �tting is terminated and P [k℄ is the desiredsolution.



3 Experimental resultsWe present experimental results omparing Eulidean �tting (EF ) with Algebrai �tting (AF ), andTaubin's �tting (TF ) in terms of quality, robustness and speed.3.1 RobustnessTo test the robustness of the proposed EF method, we used three di�erent surfae types: ylinders,ones, and general quadris. Note that plane estimation is the same for all three methods. To enforethe �tting of a speial surfae type we inlude in all three �tting methods the same onstraints whihdesribe the expeted surfae type. The 3D data were generated by adding isotropi Gaussian noise� = f1%; 5%; 10%; 20%g. Additionally the surfaes were partially oluded. The visible surfaes werevaried between 1=2 (maximal ase), 5=12, 1=3, 1=4, and 1=6 of the full 3D ylinder (see Fig.4). In all our

a) b) c) d)Figure 3: View of the 3D data points for a ylinder (maximal ase) with added isotropi Gaussian noisea) � = 1%, b) � = 5%, ) � = 10%, and d) � = 20%.experiments the number of 3D points was 5000. And �nally, eah experiment runs 100 times to measurethe average �tting error. The mean least power errors (MLPE 's) of the di�erent �ttings are in Tab.1.We determined the real geometri distane between the 3D data points and the estimated surfaes usingthe method desribed in Se.2.1. That means we alulated the MLPE for all �tting results on the basisof the estimated Eulidean distane. Otherwise, a omparison of the results will be useless. Based onthis table we evaluate the three �tting methods with respet to quality and robustness. The EF requires

a) b) c) d)Figure 4: View of the 3D data points of partially oluded ylinders, a) 1=2 (maximal ase), b) 5=12, 1=3(see Fig.3b)), ) 1=4, and d) 1=6. Added isotropi Gaussian noise � = 5%.an initial estimate for the parameters, and we have found that the results depend on the initial hoie.A quik review of the values in Tab.1 shows that the results of TF are better for initializing than the



results of AF. Maybe another �tting method an give a better initialization, but here we use TF beauseof its advantages. As expeted, the TF and EF yield the best results respet with to the mean andAF TF EF[ � � ℄ � 10�2 [ � � ℄ � 10�2 [ � � ℄ � 10�2

ylinder1(rad
=50,length=5
00) �=1% 6=12 [ 9:06� 1:55℄(0:08) [ 1:14� 0:06℄ [ 0:71� 0:03℄5=12 [33:19� 3:90℄(0:22) [ 1:30� 0:13℄ [ 0:65� 0:04℄4=12 [44:91� 3:72℄(0:02) [ 2:75� 0:43℄ [ 0:72� 0:05℄3=12 [55:06� 2:04℄(0:08) [ 3:82� 0:80℄ [ 0:94� 0:11℄2=12 [58:05� 3:07℄(0:13) [ 3:94� 0:49℄ [ 1:30� 0:10℄�=5% 6=12 [14:80� 1:88℄(0:03) [ 1:32� 0:17℄ [ 0:62� 0:03℄5=12 [36:11� 2:21℄(0:14) [ 2:92� 0:13℄ [ 0:93� 0:12℄4=12 [25:56� 2:76℄(0:08) [ 5:27� 0:32℄ [ 1:35� 0:32℄3=12 [55:13� 3:50℄(0:02) [ 5:07� 0:75℄ [ 1:97� 0:45℄2=12 [55:93� 3:08℄(0:15) [ 4:13� 1:03℄ [ 2:34� 0:81℄�=10% 6=12 [10:44� 1:09℄(0:10) [ 2:05� 0:29℄ [ 0:97� 0:12℄5=12 [23:10� 3:47℄(0:18) [ 3:48� 0:74℄ [ 1:71� 0:63℄4=12 [37:76� 3:45℄(0:23) [ 3:90� 0:79℄ [ 1:78� 0:49℄3=12 [56:37� 2:73℄(0:09) [ 4:28� 1:04℄ [ 1:83� 0:34℄2=12 [58:46� 3:33℄(0:03) [ 8:98� 3:46℄ [ 3:02� 1:13℄�=20% 6=12 [15:34� 1:93℄(0:03) [ 2:38� 0:35℄ [ 1:09� 0:10℄5=12 [49:40� 3:18℄(0:13) [ 2:90� 0:56℄ [ 1:07� 0:07℄4=12 [55:61� 3:24℄(0:11) [ 3:69� 0:64℄ [ 1:41� 0:11℄3=12 [22:49� 2:66℄(0:10) [ 4:05� 0:95℄ [ 1:72� 0:38℄2=12 [41:37� 3:22℄(0:12) [ 9:20� 3:55℄ [ 3:00� 1:13℄

ylinder2(rad
=250,length=
500) �=1% 6=12 [26:68� 1:37℄(0:02) [ 6:40� 0:05℄ [ 4:26� 0:02℄5=12 [21:82� 0:96℄ [ 6:83� 0:13℄ [ 3:68� 0:21℄4=12 [25:39� 0:88℄ [ 7:28� 0:25℄ [ 4:12� 0:17℄3=12 [21:93� 1:76℄(0:01) [10:67� 0:74℄ [ 3:18� 0:48℄2=12 [25:80� 2:26℄ [23:24� 1:67℄ [ 5:43� 0:70℄�=5% 6=12 [25:31� 1:26℄(0:03) [ 6:67� 0:21℄ [ 4:73� 0:33℄5=12 [18:54� 0:83℄ [ 8:06� 0:71℄ [ 3:22� 0:18℄4=12 [25:32� 1:05℄ [ 8:38� 0:72℄ [ 5:26� 0:70℄3=12 [18:29� 1:10℄(0:07) [15:91� 1:60℄ [ 6:47� 1:08℄2=12 [40:08� 1:90℄(0:02) [25:38� 1:57℄ [ 8:88� 1:36℄�=10% 6=12 [26:27� 1:45℄(0:09) [ 6:71� 0:23℄ [ 3:99� 0:30℄5=12 [19:31� 0:84℄ [ 7:46� 0:48℄ [ 3:79� 0:45℄4=12 [27:33� 0:84℄ [ 8:19� 0:90℄ [ 4:11� 0:52℄3=12 [23:42� 1:92℄ [15:87� 1:70℄ [ 5:32� 0:85℄2=12 [31:89� 1:85℄(0:02) [25:68� 2:04℄ [ 7:15� 0:92℄�=20% 6=12 [24:74� 1:33℄(0:02) [ 6:80� 0:27℄ [ 3:49� 0:13℄5=12 [18:55� 0:87℄(0:07) [ 7:11� 0:56℄ [ 3:95� 0:33℄4=12 [27:08� 0:90℄ [ 7:43� 0:35℄ [ 5:24� 0:35℄3=12 [22:32� 1:36℄(0:04) [15:17� 1:79℄ [ 6:60� 0:91℄2=12 [35:18� 2:28℄(0:02) [38:71� 8:81℄ [11:30� 2:22℄Table 1: Least power error �tting ylinder 1 and 2. The visible surfaes were varied between 1=2 (maximalase), 5=12, 1=3, 1=4, and 1=6 of the full 3D ylinder. Gaussian noise � was 1%, 5%, 10%, and 20%. ForAF the perentage of failed �ttings is given in brakets. The number of trials was 100.standard deviation, and the mean for EF is always lower than for the other two algorithms. The resultsof AF are not aeptable beause of their high values for mean and standard deviation. The results ofTF are muh better, ompared with the AF. But, in the diret omparison with the EF these resultsare also unaeptable. Furthermore, note that AF give sometimes wrong results whih means that the�tted urve or surfae typo does not ome up with our expetations. We removed all failed �ttings outof the onsiderations. The perentage of failures is given as footnote in Tab.1. For TF and EF we hadno failures in our experiments.



3.2 Noise sensitivityThe seond experiment is perhaps more important and assesses the stability of the �tting with respetto di�erent realizations of noise with the same variane. The noise has been set to a relatively high levelbeause the limits of the three methods are more visible then. It is very desirable that the performane isa�eted only by the noise level, and not by a partiular realization of the noise. In Tab.1 the �'s and �'sare shown for four di�erent noise levels. If we analyze the table regarding noise sensitivity, we observe:� The stability of all �ttings, reeted in the standard deviation, is inuened by the noise level ofthe data. The degree of olusion has an additional inuene on stability. Partiularly serious isthe ombination of both high noise level( � � 20%) and strong olusion (visible surfae < 1=4).� AF is very unstable, even with a noise level of � = 1%. In some experiments with AF the �ttingfailed and the estimated mean least power error between the estimated surfae and the real 3D datawas greater than a given threshold. We removed all failed �ttings, sometimes up to 23 perent (seeTab.1: �tting ylinder 1, 1=4 visible and � = 10%). Thus, the performane of the Algebrai �ttingis strongly a�eted by the partiular realization of the noise, whih is absolutely undesirable.� TF is also a�eted by partiular instanes of the noise, but on a signi�antly lower level.� The noise sensitivity of EF has a similar good performane. The ause for the instability of the EFis the initialization.3.3 Sample densityIn the third experiment we examined the inuene of the sample density. The ardinality of the 3D pointset was varied aordingly. On the basis of the MLPE for the several �ttings (see Tab.2) it an be seenthat, with inreasing the number of points, the �tting beomes a) more robust and b) less noise sensitive.Note, not only is the absolute number of points important, but the point density is ruial.However noise sensitivity inreases with inreasing olusion for both TF and EF, so that the �ttingbeomes altogether more unstable. Similar onlusions about AF as in Se.3.1 and Se.3.2 also applyhere.3.4 Computational ostThe algorithms have been implemented in C and the omputation was performed on a SUN Spar ULTRA5 workstation. The average omputational osts in milliseonds per 1000 points for the three algorithmsare in Tab.3.As expeted. the AF and TF supply the best performane, beause the EF algorithm requires arepeated searh for the point xt losest to xi and the alulation of the Eulidean distane. A quikreview of the values in Tab.3 shows that the omputational osts inrease if we �t an elliptial ylinder,a irular or an elliptial one respetively a general quadri. The algorithm to estimate the distaneby the losed form solution respetively the iterative algorithm is more ompliated in these ases (f.Se.2.1).The number of neessary iterations is also inuened by the required preision of the LM algorithmto terminate the updating proess.4 ConlusionWe revisited the Eulidean �tting of urves and surfaes to 3D data to investigate if it is worth onsideringEulidean �tting again. The fous was on the quality and robustness of Eulidean �tting ompared withthe ommonly used Algebrai �tting and Taubin's �tting. Now, we an onlude that robustness andauray inreases suÆiently ompared to both other methods and Eulidean �tting is more stable withinreased noise.The main disadvantage of the Eulidean �tting, omputational ost, has beome less important dueto rising omputing speed. In our experiments the omputational osts of Eulidean �tting were onlyabout 2-19 times worse than Taubin's �tting. This relation probably annot be improved substantially infavor of Eulidean �tting, but the absolute omputational osts are beoming an insigni�ant deterrentto usage, espeially if high auray is required.



AF TF EF[ � � ℄ � 10�2 [ � � ℄ � 10�2 [ � � ℄ � 10�2
ylinder1

500 6=12 [15:88� 2:54℄(0:03) [ 2:94� 0:80℄ [ 1:17� 0:30℄5=12 [29:73� 3:31℄(0:03) [ 1:55� 0:11℄ [ 0:86� 0:06℄4=12 [32:96� 2:55℄(0:05) [ 4:39� 0:90℄ [ 2:30� 0:68℄3=12 [23:67� 3:01℄(0:04) [ 3:81� 0:51℄ [ 1:55� 0:12℄2=12 [24:36� 1:51℄(0:06) [ 6:86� 2:45℄ [ 4:37� 1:63℄1000 6=12 [16:61� 2:42℄(0:08) [ 1:57� 0:17℄ [ 0:85� 0:11℄5=12 [36:17� 3:52℄(0:17) [ 3:52� 1:40℄ [ 1:75� 0:59℄4=12 [35:06� 2:70℄(0:06) [ 2:79� 0:33℄ [ 1:24� 0:15℄3=12 [22:01� 3:03℄(0:02) [ 4:51� 0:71℄ [ 1:68� 0:16℄2=12 [25:43� 1:91℄ [ 4:10� 1:17℄ [ 1:47� 0:12℄2000 6=12 [16:85� 3:00℄(0:08) [ 1:61� 0:26℄ [ 0:72� 0:03℄5=12 [45:99� 2:94℄(0:07) [ 1:93� 0:43℄ [ 0:73� 0:04℄4=12 [38:38� 2:81℄(0:15) [ 3:30� 0:76℄ [ 1:22� 0:29℄3=12 [19:79� 2:52℄(0:06) [ 4:60� 1:16℄ [ 2:05� 0:56℄2=12 [24:28� 1:64℄(0:07) [ 2:22� 0:28℄ [ 1:30� 0:08℄
ylinder2
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