
Strutural Learning from Ioni RepresentationsHerman M. Gomes� and Robert B. FisherDivision of Informatis, Edinburgh University5 Forrest Hill, Edinburgh EH8 9SH, Sotland UK,fhermang,rbfg�dai.ed.a.ukAbstratThis paper addresses the important problem of how to learn geometri relation-ships from sets of ioni (2-D) models obtained from a sequene of images. It as-sumes a vision system that operates by foveating at interesting regions in a sene,extrating a number of raw primal sketh-like image desriptions, and mathingnew regions to previously seen ones. A solution to the struture learning prob-lem is presented in terms of a graph-based representation and algorithm. Vertiesrepresent instanes of an image neighbourhood found in the senes. An edgerepresents a relationship between two neighbourhoods. Intra and inter model re-lationships are inferred by means of the liques found in the graph, whih leadsto rigid geometri models inferred from the image evidene.1 IntrodutionWithin the ontext of visual learning, our ultimate goal is to design a vision system thatis apable of automatially learning objets or parts of objets and their relationships fromgeneri senes. But this is not an easy task in a ompletely autonomous ontext, in whihthere is no one to de�ne the appropriate training sets with its objets already segmented,normalised and separated into lasses. In order to deliver objets in suh way, a system hasto somehow dedue the objet's shape, and its position, sale and orientation in the sene.Generally, objet reognition researh falls into three main ategories: (1) geometri,symboli, or struture based reognition; (2) property, vetor or feature based reognition;and (3) ioni (image) based reognition. Most of the researh found in the �rst ategory isrelated to 3-D objet reognition systems and usually involves either volumetri relationships[1℄ or surfae relationships [2℄. Relational or graph mathing [13, 8℄ are ommon tehniquesused in this area to do the mathing between two relational or graph-based desriptions. Theseond ategory presents a wider range of tehniques varying from the use of spei� featurevetors, multiple �ltering to global desriptors for shape, texture and olour, or a ombinationof tehniques [10, 12℄. This kind of approah is popular amongst appliations involving imagedatabase indexing [9℄. Finally, the third ategory is haraterised by the diret use of images.In this ase, the most popular tehnique to reognise objets is template mathing. But, when�Supported by CNPq, Brazil. On leave from DSC/COPIN/UFPB - Federal University of Para��ba, CampinaGrande PB, Brazil, hmg�ds.ufpb.br 1



using the traditional sensor arhiteture, the number of pixels involved an be too high toallow for a more elaborate omputation. An alternative is to use a log-polar representation[11℄ whih requires less pixels to represent an image one it is spae variant.Within this ontext, an ioni vision system based on primal sketh features extrated froma log-polar representation was developed [6, 3℄. In this system, ioni models are representedby geometri relations, whih are in turn used during reognition to strengthen the evidenethat a partiular objet model has been found based on other nearby mathes. But thetraining sets to build the models and the model relationships themselves had to be de�nedmanually. The work presented in this paper �ts in the ategory of ioni based reognitionusing geometri relationships and expands the work desribed in [6, 3, 5℄. It addresses theimportant question of whether or not is possible to to learn rigid geometri models from 2-Dimage evidene (ioni models) aquired from a sequene of senes. An aÆrmative answer tothis question is given.We assume that a model onsists of 2-D representations learnt from unsegmented andluttered senes by means of an ioni vision system whih is inspired by some of the meha-nisms found in the mammalian visual system: (a) Foveated vision: the input light is proessedthrough a set of overlapping reeptive �elds (resembling the human retina) whih produesan image smaller in size but retaining high resolution in the middle; (b) Visual attention:�xating the retina at interesting regions of a sene prevents having to proess the entire seneat one, and, provided that an appropriate attention mehanism is de�ned, the �xation pointsan be seen as plaes where objet features (or omponents) are most likely to be found; ()Primal sketh: it is hypothesised that primal sketh features, like edges, bars, blobs and ends[7℄ are used by humans as more ompat and intelligible representations for image data andalso as ues for an attention mehanism. The following setions explain how to ombine theabove mehanisms and present an algorithm to solve the struture learning problem.2 Learning objet feature modelsThis setion explains how the proess of learning of objet features or primitive models is im-plemented. The algorithm for learning relationships between these objet features, desribedin the following setion, relies upon ertain aspets of the above solution.We assume a vision system arhiteture whih is based on an existing system desribedin [6℄, see Fig. 1. The �gure shows only four main modules that are diretly related tothis paper. Module (a) is responsible for onverting input pixels into a retina-like (log-polar) image representation, whih in turn is used by module (b) to generate primal skethfeatures at a number of orientations and ontrasts through a neural network [5℄. During seneexamination an attention mehanism () ontinuously updates a map whih weights pointsof interest in the senes based upon the primal sketh features and olour information. Thefoveation area is smaller than the senes so that just a smaller setion of the input image isanalysed at a given time. Finally, module (d), desribed in this setion, lusters primal skethplanes (representing primitive objets) into model lasses. It also stores information aboutthe sale, position, orientation and similarity between the lustered objets in order to allowfor a subsequent examination of the possible relationships between primitive models to formlarger strutured models. When these relationships are identi�ed, they an in turn be usedto improve the attention and mathing proesses.The position of the retina, and any underlying loal objet feature, is obtained by simply2
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Figure 1: System's main modules.looking at the interest map. The log-polar map implemented in our retinal representationhelps the proess of �guring out the relative sale and orientations of an objet feature withregard to another previously stored luster. This is possible by translating the log-polar mapin both radial and angular diretions to inexpensively transform the features into a numberof new orientations and sales, whih are then mathed against already learnt ourrenesof feature instanes for all the existing feature models. The best math will possibly bewith the model the feature is represented by. Then the feature together with its position,relative orientation and sale are stored. Algorithm 1 gives a straightforward solution tolustering. Without loss of generality this an be used as a prototype for designing moreeÆient algorithms.Algorithm 1: Clustering objet featuresfor eah sene image Si dofor eah foveation point P i;j on the sene doobtain the objet feature f i;j at position P i;jif the model base is empty, then reate a new model and store f i;j on it.elsegenerate a set of saled and rotated versions f 0i;j of f i;j�nd the model Ft that gives the highest average similarity sore �Cbetween its internal objet features fk;l and one of the f 0i;j variations.if �C > threshold thenstore f i;j in Ft.store the similarity sores Sm(f i;j; fk;l), the relative sales rS(f i;j; fk;l)and the relative orientations rO(f i;j; fk;l) 8fk;l 2 Ft.else reate a new model and store f i;j on it.3 Learning relationships via a representational graphIn this setion we explain how geometri relationships between objet feature models anbe found. A general priniple adopted here is that the reognition of onsistent geometrirelations allows the inferene of larger strutural objet models. We assume that objetsan only have 2-D rigid body transformation. The approah adopted to solve the struturelearning problem was to build a graph-based representation. Verties are de�ned as theCartesian produt of the sets of objet feature instanes of a same model lass found in eahof the images. Verties are ranked aording to a funtion of the similarities between their3



omponent objet instanes. An edge in the graph represents a hypothesis for the relationshipbetween the features desribed by the two onneting verties and is valued aording tothe ompatibility between these two verties. The problem is redued to �nding liques ofmaximum sores within this graph.3.1 VertiesEah objet feature model Ft; reated by the algorithm desribed in Setion 2, ontains aset of instanes f i;j found in eah sene image Si. An initial problem when designing analgorithm to learn relationships from these sets was to deal with the ourrene of multipleunrelated model instanes of a same lass in the senes. In other words, how to aount for theombinations of instanes that appear at onsistent positions and orientations and separatethem from those who don't? We solve this problem by taking the omplete ombinatorial setof instanes. Eah N-tuple from this set will be a vertex in our graph. The set of all vertiesVt of a given feature type is the Cartesian produt between the sets of instanes f it of type tfound in sene i (Eq. (1)). Vt = f1t � f2t � : : :� fNt (1)where N is the total number of sene images analysed.Equation (1) an be expanded as Vt = fv1; v2; : : : ; vMg where M is the total number ofverties. Eah vertex vr an be expanded as vr = (f1;jt ; : : : ; fN;lt ), where j 2 f1; : : : ;#(f1t )gand l 2 f1; : : : ;#(fNt )g. As we will not need the positions j; l of the instane within an image,for the sake of simpliity, we are going to remove these indexes throughout this setion, unlessotherwise stated. Also, we are going to drop the type t for the feature model lass, as fromnow on they will be distinguished by the letter representing the instane itself.In order to ope with the possibility of model instanes being missing in some images,as the attention mehanism might fail searhing at some loations, olusion might havehappened and so on, we introdue a * (wild-ard) model instane, whih is added to thesets of instanes f i found in sene i before omputing the ombinatorial sets that de�ne theverties.Vertex ranking. If the similarity sores between pairs of vertex elements Sm(f i; f j) arethought as the probability of those elements belonging to a same feature lass, then a naturalway of de�ning the rank of a vertex is by multiplying all the similarity sores (Eq. (2)). Asa result, for a vertex to be strong all of its elements have to be very similar to eah other.Rank(vr) = NYi<j Sm(f i; f j) (2)where N is the number of feature instanes in the vertex (N is also the number of imagesanalysed), Sm is the similarity funtion between two verties f i; f j (this funtion is obtainedvia the Algorithm 1, and produes values within the range [0; 1℄). We assume that the simi-larity between the wild-ard and any other feature instane is one: Sm(�; �) = Sm(�; f j) =Sm(f i; �) = 1 8i; j.
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Vertex pruning. One side e�et of the addition of the wild-ard instanes is that therewill be now a number of verties with many *'s when ompared to the number of real objetfeatures, whih an ause relationships being learned between loose features, or verties thatdo not represent any plausible real objets. To redue the number of this kind of verties,we allow only K *'s per node during the node reation proess, where K << N (N is thetotal number of images). Limiting K also redues the ombinatorial explosion of verties.For simpliity, we have hosen K = 1 for the ase study developed in this paper.3.2 EdgesAn edge e = (a; b) onnets two ompatible verties a and b in the graph. The vertiesa = (a1; : : : ; aN ) and b = (b1; : : : ; bN ) are ompatible if for eah pair of feature instanesin di�erent images (ai; aj) and found in the �rst vertex, whih are related by a given saleand orientation R = (rS(ai; aj); rO(ai; aj)), the orresponding pair (bi; bj) in the seondvertex has its omponents related through a similar relative sale and orientation. Moreover,eah pair of feature instane oordinates (Pai ; Pbi) and (Paj ; Pbj ) taken from the same vertexpositions will roughly de�ne a unique vetor angle A and length D (Q = (A;D)) when takinginto aount the feature's relative sales and orientations. We illustrate the above oneptsin Fig. 2.
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Figure 2: Relations between vertex omponents: a = (ai; : : : ; aj ; : : : ; aN ), b =(bi; : : : ; bj ; : : : ; bN ) are verties onneted through an edge e(a; b). R has the relative saleand orientation between two vertex omponents aross images. Q has the angle and norm ofa vetor linking two omponents from distint verties in a single image.Edge ranking. From the previous paragraph is possible to onlude that the rank ofan edge is de�ned as a funtion of four main quantities: (a) the relative sales and (b) therelative orientations within pairs of features of the onneting verties; () the angles and(d) the norms of the vetors de�ned by a pair of orresponding instane oordinates takenfrom the two onneting verties. One of the simplest, yet powerful, ways of omparing thesequantities is by using normalised absolute di�erenes. Equation (3) shows how to omparethe relative sales of orresponding features (ai; aj); (bi; bj) found in two verties a and b.�Si;j = 1� abs(rS(bi; bj)� rS(ai; aj))rS(bi; bj) + rS(ai; aj) (3)Equation (4) shows the same for relative orientations, with the di�erene that a normal-isation funtion Ô (Eq. (5)) is now required to take into aount the fat that orientationsare measured in a losed irle. 5



�Oi;j = 1� Ô(abs(rO(bi; bj)� rO(ai; aj)))180 (4)Ô(x) = � 360� x; if x > 180x; otherwise (5)The angle A(aj ; bj) of the vetor de�ned by a pair of orresponding instane oordinates(from a same sene), taken from the two onneting verties, is expeted to be the same anglefound in any other pair of instane oordinates (at another sene), apart from the rotationthat eah of the feature pairs might have su�ered from one sene to another. Here we haveto deide whih feature pair gives the best estimate for the angle on the seond sene, so weompute two di�erenes (Eq. (6)) and take the minimum between these di�erenes (Eq. (7)).Although normally both values are the same, there is the possibility of impreise alulationsat earlier stages, due to noise for example. Note that the normalisation funtion Ô has to beused again as orientations are ompared.dAi;ja = abs(A(aj ; bj)� (rO(ai; aj) +A(ai; bi)))dAi;jb = abs(A(aj ; bj)� (rO(bi; bj) +A(ai; bi))) (6)�Ai;j = 1� MIN(Ô(dAi;ja ); Ô(dAi;jb ))180 (7)Similarly to the angle omparison, the length of the vetor onneting two features in animage should be preserved in any other image, apart from the hange in sale that eah ofthe feature pairs might have su�ered from one sene to another. Again, the feature pair thatgives the best estimate for the sale on the seond sene (Eq. (8)) has to be hosen (Eq. (9)).Note that this time, the normalisation fator (alled here qi;j) depends on the minimum valuethat is hosen (Eq. (10)).dDi;ja = abs(D(aj ; bj)� (rS(ai; aj)�D(ai; bi)))dDi;jb = abs(D(aj ; bj)� (rS(bi; bj)�D(ai; bi))) (8)�Di;j = 1� MIN(dDi;ja ; dDi;jb )qi;j (9)qi;j = � D(aj ; bj) + (rS(ai; aj)�D(ai; bi)); if dDi;ja < dDi;jbD(aj ; bj) + (rS(bi; bj)�D(ai; bi)); otherwise (10)Finally, we de�ne the rank of an edge e as the average of all four quantities explainedabove (Eq. (11)). Edges onneting verties that have at least one wild-ard are not takeninto aount by this funtion.Rank(e) = X8i;j21;:::;Nai;bi;aj ;bj 6=� �Si;j +�Oi;j +�Ai;j +�Di;j2�N � (N � 1) (11)
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Edge pruning. The number of edges that an potentially be reated from a set of vertiesis quadrati in the size of the verties. Two mehanisms are used to prune the edge spae.The �rst one ats during the edge reation proess by eliminating edges that link pairs ofverties ontaining at least one ommon instane at the same feature within the vertex list,as they annot orrespond to any real feature relationships. The seond, thresholding, is usedonly after all edges have been reated and evaluated.3.3 CliquesA standard algorithm is used to �nd liques. The algorithm takes as input a graph G = (V;E)and returns in the superset CLIQUES all the liques found:Algorithm 2: Finding liques G = (V;E)i := 1; C := CLIQUES := ;; L(k) = ; 8 k = 1; : : : ; size(V )while i > 0if 9 va 2 V with va =2 L(k), for all k � i thenL(i) := L(i) [ fvagif 9 an edge ea = (va; wa) 2 E for all wa 2 C thenC := C [ fvaglet CLIQUES := CLIQUES [ fCgi := i+ 1else remove the i� 1th vertex from CL(i) := ;i := i� 1Clique ranking. The �nal stage is to rank the liques. The rank of a lique is the produtof the averages of all its internal vertex and edge ranks.Rank(CLIQUE) = �V � �E � #CLIQUE#CLIQUEmax (12)where �V and �E are the average values of all verties and edges in the lique, respetively.#CLIQUE is the lique size and #CLIQUEmax is the size of the maximal lique(s).4 Case StudyIn order to help fousing on the struture learning proess, and to keep away from otheraspets of our system (like attention, lighting invariane, dealing with lutter and so on)whih are not the main issue of this paper, we tried to make this ase study as simple aspossible. Three sene images were reated from two top view pitures of a telephone handsetand its base unit, taken against a blak bakground. The two pitures were plaed inside alarge blak image under varying sales and orientations. In sene S1 the handset and basewere plae parallel to eah other. In sene S2, the handset was translated, rotated by 90oand saled down by a fator of 70% with respet to its �rst ourrene. Finally, in sene S3the base unit was saled down by a fator of 60% of its original size and the handset wasrotated by 300o with respet to its �rst ourrene, see Fig. 3. A set of interest points havebeen manually seleted and passed to the system. These points onsisted of: three pairs ofentral mirophone/speaker positions within the telephone handsets; three onsistent `led'positions in the base units and three dark spots within the base units. A set of two distrator7



points (not belonging to any distinguishable feature) have also been seleted in two of thesenes. From this, we want our system to learn that the handset and base units are eah onea strutured model, but, as the handset and base do not obey a rigid body transformation,they should not form a strutured model.
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Figure 3: Senes used in the ase study. In order to failitate visualisation, the original imageintensities were inverted. The irles represent the retinal areas entred at the interest points.The feature types a; b; ; d; e obtained by Algorithm 1 are also shown.Algorithm 1 (Setion 2) was applied to the set of interest points. The results are sum-marised on Table 1. As one might expet, �ve di�erent feature types were automatiallyidenti�ed: type a for desribing speaker and mirophone areas within a telephone handset; bfor desribing the features entred on the `led' of the base unit;  for the dark spot features;and d; e for the distrator features. The next step was to use the objet feature models andrelations to build the graph aording to what is desribed in Setion 3. By using a thresholdof 0.8, �ve liques were obtained, whih are listed below:(a1;1; a2;1; a3;1) 0:92 ! (a1;2; a2;2; a3;2) (a1;1; a2;1; a3;2) 0:91 ! (a1;2; a2;2; a3;1)(a1;1; a2;2; a3;1) 0:90 ! (a1;2; a2;1; a3;2) (a1;1; a2;2; a3;2) 0:89 ! (a1;2; a2;1; a3;1)(b1;1; b2;1; b3;1) 0:94 ! (1;2; 2;1; 3;1)The four liques involving features of type a indiate that the telephone handset featuresde�ne a rigid geometri model governed by the relationships between the lique vertex om-ponents. The reason why there are four liques desribing the same geometri relation isbeause the handset features were lassi�ed as the being of the same type, so they an be in-terhanged within a vertex without breaking the geometri onstraint. The remaining liqueorresponds to a strutural model for the base unit.5 ConlusionsIn this paper we provide an answer to the question of whether or not is possible to to learn rigidgeometri models from 2-D image evidene (ioni objet models) aquired from a sequene ofsenes. We found that strutured models an indeed be learned in suh a ontext by using agraph-based representation and algorithm. In a ase study we have shown how our approahworks in pratie. More omplex ase studies are urrently under development and will be8



a1;1(236,587) a1;2(562,589) a2;1(598,431) a2;2(598,659) a3;1(177,676) a3;2(342,395)a1;1 1,0,1 1,180,0.96 0.70,90,0.96 0.70,270,0.95 1,300,0.97 1,120,0.96a1;2 1,0,1 0.70,270,0.96 0.70,90,0.98 1,120,0.97 1,300,0.99a2;1 1,0,1 1,180,0.96 1.44,210,0.96 1.44,30,0.97a2;2 1,0,1 1.44,30,0.96 1.44,210,0.98a3;1 1,0,1 1,180,0.97a3;2 1,0,1b1;1(488,313) b2;1(476,256) b3;1(587,225)b1;1 1,0,1 1,0,0.99 0.58,0,0.99b2;1 1,0,1 0.58,0,0.99b3;1 1,0,1 1;1(188,188) 2;1(176,131) 3;1(408,152)1;1 1,0,1 1, 0,0.99 0.58,0,0.962;1 1,0,1 0.58,0,0.973;1 1,0,1Table 1: Results of the Algorithm 1. The three smaller sub-tables present the relationships(rS; rO; Sm)) between feature instanes of type a; b; , respetively, in di�erent images aswell as the positions (x; y) where these features were found. The lower diagonals of thesub-tables are not shown beause they are symmetri. The feature types d and e have onlyone instane and therefore were not inluded in the table, their oordinates are as follows:Pd1;1 = (314; 226) and Pe2;1 = (441; 215).available in [4℄. An important di�erene between the way we learn models and the existingtraditional approahes is that our system is designed to searh the visual �eld for objets inan attentive way, like humans and some other animals do. In this way, the relative positionof lustered features an be reorded and, with the help of the features' relative sale andorientation, possible relationships amongst features an be worked out.Obviously, there are some issues related to the algorithms desribed in this paper thatrequire further researh. For instane, there are other ways of de�ning the rank of a vertex,as for example the average of the similarity sores between all the pairs of vertex elements.A study on how the funtions used to rank verties, edges and liques inuene the learningresults is urrently under investigation. The vertex reation proess is not yet the optimalsolution to the problem as it su�er from a salability problem: the size of the resulting om-binatorial set grows exponentially with the number of images. However it is still a reasonablesolution for a few tens of images. One way to redue the number of ombinations would be topre-group multiple instanes of same model lass as if it were a new type of objet. Findinga more omputationally attrative vertex de�nition is left as future work.Referenes[1℄ I. Biederman. Human image understanding: reent researh and a theory. In A. Rosen-feld, editor, Hum. and Mah. Vision II, pp 13{57. Aad. Press, 1986.[2℄ R. B. Fisher. From Surfaes to Objets. John Wiley and Sons, 1989.[3℄ R. B. Fisher and A. MaKirdy. Integrating ioni and strutured mathing. In Pro. ofEurop. Conf. on Comp. Vision, vol. II, pp 687{698, Freiburg, June 1998.[4℄ H. M. Gomes. Model learning in ioni vision. PhD Thesis, Division of Informatis,Edinburgh University, to be submitted, August 2000.9
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