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Color Homography
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Fig. 1. Top left, panel (a), images of two planes are related by an homography.
Right, panel (b), 4 images of a colored ball are shown. Ball 1 is the reference
image where the illumination color is white and placed behind the camera.
Ball 2 is the object illuminated with a blue light from above. Respectively,
Ball 3 and Ball 4 are the least-squares mapping and the homography match
from Ball 2 to Ball 1, Bottom right, panel (c), the chromaticities from Ball 2
matched to corresponding chromaticities in Ball 1.

I. INTRODUCTION

Homographies are at the center of geometric methods in
computer vision and are used in geometric camera calibration,
3D reconstruction, stereo vision and image mosaicking among
other tasks. In this paper, we show the surprising result that
colors across a change in viewing condition (changing light
color, shading and camera) are also related by a homography.

In geometry computer vision, an homography relates two
planes. In Figure 1a, π1 and π2 might denote the same 3D
plane viewed in two different images related by the homog-
raphy H . In color, an homography relates two photometric
views. In Figure 1b, Ball 1 is the image of the side-view of
a 4-color ball where the ball is lit from behind the camera
with a white light. The same ball is lit from above with
a bluish light, image Ball 2. The images are in pixel-wise
correspondence. We first color correct Ball 2 to match Ball 1
by using linear regression. Its results is shown in image Ball 3
where the colors are incorrectly mapped and the red color
segment looks particularly wrong. Ball 4 is a better example
that Ball 2 is color corrected by using the linear transform
by color homography. In this paper, we propose that to map
one photometric view to another we must map the colors
correctly independent of shading. Since shading only affects
the brightness, or magnitude, of the RGB vectors, it is possible
to find the 3×3 map which maps the color rays (the RGBs with
arbitrary scalings) in one photometric view to corresponding
rays in another. We note that this ”ray matching” is precisely
the circumstance in geometric mapping for co-planar and
corresponding points in two images [1]. An RGB without
shading can be encoded as the rg-chromaticity coordinate.
In Figure 1c, the 4 reflectances from the ball correspond

to 4 points in an rg-chromaticity diagram which define the
quadrilaterals shown in the left and right of the panel (for
respectively for the images Ball 2 and Ball 1). The mapping
between the two chromaticity diagrams is an homography. We
show that the color calibration problem – mapping device
RGBs recorded for a color chart to corresponding XYZs –
can be formulated as a homography problem. Because in real
shading varies across the chart solving for the homography
can deliver a 50% improvement in color correction compared
with direct linear least-squares regression.

II. BACKGROUND

For the geometric planar homography problem, we write: αx
αy
α

ᵀ

=

 x′

y′

1

ᵀ  h11 h12 h13
h21 h22 h23
h31 h32 h33

 , x = H(x′)

(1)
In Equation 1, (x, y) and (x′, y′) denote corresponding image
points – the same physical feature – in two images. In
homogeneous coordinates the vector [a b c]ᵀ maps to the
coordinates [a/c b/c]ᵀ and so, in Equation 1, the scalar α
cancels to form the image coordinate (x, y). For all pairs of
corresponding points (x, y) and (x′, y′) that lie on the same
plane in 3 dimensional space, Equation 1 exactly characterises
the relationship between their images [1]. To solve for an
homography (e.g. for image mosaicking), we need to find at
least 4 corresponding points in a pair of images.

III. COLOR HOMOGRAPHY

Let us map an RGB ρ to a corresponding RGI (red-green-
intensity) c using a full-rank 3× 3 matrix C:

ρᵀC = cᵀ R
G
B

ᵀ  1 0 1
0 1 1
0 0 1

 =

 R
G

R+G+B

ᵀ (2)

The r and g chromaticity coordinates are written as
r = R/(R+G+B) , g = R/(R+G+B) interpreting the
right-hand-side of Equation 2 as a homogeneous coordinate
we see that c ∝

[
r g 1

]ᵀ
. In the following proof it is

useful to represent 2-d chromaticities by their corresponding
3-d homogeneous coordinates.

Theorem 1 (Colour Homography). Chromaticities across a
change in capture condition (light color, shading and imaging
device) are a homography apart.

Proof: First we assume that across a change in illumina-
tion or a change in device where the shading is the same (for
the Mondrian-world) the corresponding RGBs are related by
a linear transform M. Clearly, H = C−1MC maps colors in
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sRGBRGBraw
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Fig. 2. Color correction (mapping raw to display sRGB) is an homography
problem. This figure is also a color chart example which was used for our
color correction evaluation.

RGI form between illuminants. Due to different shading, the
RGI triple under a second light is represented as c′ᵀ = α′cᵀH ,
where α′ denotes the unknown scaling. Without loss of
generality let us interpret c as a homogeneous coordinate i.e.
assume its third component is 1. Then, [r′ g′]ᵀ = H([r g]ᵀ)
(chromaticity coordinates are a homography H() apart).

A. Solving color Homography by Alternating Least Squares
Suppose A and B denote respectively n× 3 matrices of n

corresponding pixels with respect to two images of the same
scene where the illumination changes (and, also possibly the
camera properties). The color change is modeled as a linear
transform. And, due to the relative positions of light and
surfaces, the per-pixel shading intensities are usually different.
Assuming the Lambertian image formation, DAH ≈ B where
D is an n× n diagonal matrix of shading factors and H is a
3×3 color correction matrix. We solve this equation by using
Alternating Least-Squares (ALS) described in Algorithm 1.
The effect of the individual Hi and Di can be combined into

Algorithm 1: Homography from alternating least-square

1 i = 0, A0 = A;
2 repeat
3 i = i+ 1;
4 minDi

∥∥DiAi−1 −B
∥∥;

5 minHi

∥∥DiAi−1Hi −B
∥∥;

6 Ai = DiAHi;
7 until

∥∥Ai −Ai−1
∥∥ < ε;

a single matrix D =
∏

iD
i and H =

∏
iHi.

Alternately, we can solve for H in direct analogy to
computer vision. Specifically, we randomly select sets of 4
corresponding points and find the best H and then test the
goodness of fit for the H discovered on the rest of the dataset.
This RANSAC method (Random sampling consensus) has the
advantage that we can robustly minimize any chosen error
including CIE Lab.

Finally, we note that existing works have already developed
intensity invariant color matching [2], [3]. Though, neither has
reported the homography formalism or exploded the enhanced
flexibility it offers.

IV. COLOR CORRECTION

In color correction - mapping raw RGBs to a display color
space - the target RGBs, are known to vary in intensity. In

Method mean median 95% max
Least-squares 3.70 3.30 7.73 8.39
Homography 2.34 2.09 5.02 5.43

TABLE I
CIE ∆E ERROR COMPARISON

Figure 2, we show the picture of an image in the raw RGB
space of a camera and the corresponding reproduction when
the colors are corrected for display. Very professional imaging
scientist might take a picture of a color checker and a second
picture of a uniform gray target with same size in the same
location. By dividing the RGB image of the checker by the
image of the gray-target the shading is removed and then the
shading corrected RGBs can be mapped to known reference
display color coordinates using simple least-squares. However,
this two-step approach is inconvient and in some cases cannot
be done at all (e.g. in an on-going surveillance situation). In
our evaluation, this two-step approach is applied to obtain
ground truth RGB inputs with corrected shading. For each
method, we obtain a 3 × 3 color correction matrix from the
non-shading-corrected RGB inputs to a reference target and
then apply this matrix to the shading corrected RGB inputs.
This experimental methodology is described in detail in [3].

The color correction error is measured using the CIE
Lab metric [4]. All 3 of our evaluation images were taken
around a local historical site that is popular with amateur and
professional photographers alike (e.g. Figure 2). The mean,
median, 95% quantile and max ∆E errors are reported in
Table I. It is clear that homography-based color correction
supports a significantly improved color correction performance
(all error measures are ≈ 40% improved).

V. CONCLUSION

In this paper, we shown the surprising result that colors
across a change in viewing condition (changing light color,
shading and camera) are related by a homography. Our ho-
mography color correction application delivers improved color
fidelity compared with the linear least-square.
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