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Abstract

Analysis and reconstruction of range images usually fo-
cuses on complex objects completely contained in the field
of view; little attention has been devoted so far to the re-
construction of partially occluded simple-shaped wide ar-
eas like parts of a wall hidden behind furniture pieces in an
indoor range image. The work in this paper is aimed at such
reconstruction. First of all the range image is partitioned
and surfaces are fitted to these partitions. A further step lo-
cates possibly occluded areas, while a final step determines
which areas are actually occluded. The reconstruction of
data occurs in this last step.

1 Introduction

Range images are used in a wide range of applications.
So far they have been used extensively in object recogni-
tion [9, 12], reverse engineering [5], and other applications,
nearly all focusing on small and rather complex objects and
scenes. While extending the use of range images to recon-
structing a whole environment rather than well-delimited
objects (an important example of these applications is the
CAMERA EU project [7]) new issues arose. Occlusion is a
major cause of information loss: even in moderately com-
plicated scenes it is virtually impossible or impractical to
obtain complete range scans. Even for simple indoor scenes
hundreds of scans might be needed to recover all of the
small surfaces hidden by the occluding features in a realistic
scene [11]. Even with today’s scanners this is very imprac-
tical. Still, an exhaustive description of the observed object
or environment is needed for some applications, like con-
struction of a 3-D model [7]. An alternative way of filling in
the gaps, at least partially, without performing extra scans,
is to hypothesize the layout of objects in the occluded area
by exploiting information from the surroundings. This pro-
cedure is termed reconstruction. Reconstruction of simple-
shaped wide regions occluded by objects located closer to

the sensor is an important point for this procedure.
This reconstruction is clearly cosmetic; however it is

necessary for removing the many missing data artifacts in
real scenes so as to produce visually acceptable reconstruc-
tions. Processes that do not require complete models would
not need this process.

In this paper we propose a method to reconstruct surfaces
behind occluding objects, such as a furniture piece in front
of a wall. This is a new problem, on which little previous
work [4] been done. The work presented here improves on
the methods used in [4] by 1) improving the techniques used
and 2) extending the method to cylindrical and spherical
structures and groups of surfaces.

The key to reconstruction is to identify contiguous sur-
face regions potentially connected behind closer occluding
surfaces. Hypothetical surfaces can then be created to con-
nect or fill in the contiguous surfaces behind the occluding
surfaces.

In this paper, section 2 presents the data that was used.
Section 3 discusses noise removal. The smoothed image is
segmented to yield smooth continuous surfaces of the same
shape, as described in section 4. Possible occlusions are de-
tected (section 5) by locating contiguous surfaces, finding
the areas between them, and hypothesising a possibly oc-
cluded surface. In the last section we demonstrate how the
choice between reconstructing or not is made.

2 The data

Range information can be obtained by a variety of meth-
ods [1]. Here part of the data was sensed and registered,
together with reflectance values, by a K2T 3-D laser scan-
ner. The system, placed roughly in the middle of a room,
performs a solid scan of 360 degrees azimuth, 63 degrees
elevation (half above, half below the horizon). Precision
of the range data is around one millimetre. Due to the
huge dimensions (8000�1400 pixels) of the raw range data
files (hundreds of Mb) of the K2T laser-scanner we exper-
imented only on subsets of the original images containing



Figure 1. Range image from the K2T scanner

observed occlusions.
Another source of data was the REVERSA laser stripe

ranger at the Machine Vision Laboratory at Edinburgh Uni-
versity. It uses structured light, and has an orthographic
scanning method. Its accuracy is about 15 microns in the z-
direction. The algorithm has been written to cope with both
types of images.

3 Noise reduction

One of the problems with the range data acquired by the
K2T laser-scanner was the high level of noise. On average,
4.62% of the pixels report a value higher than the highest
surrounding one or lower than the lowest. It appears that
the noise has a salt-and-pepper behaviour, but a closer in-
spection showed us that most of the noise occurs around
depth discontinuities, and not on smooth surfaces. Although
the noise in thexyz-data is non-uniform, we assume the
noise measured in the range data to be Gaussian. In [8] five
methods for removing Gaussian noise in three-dimensional
images are compared. Nearest neighbourhood smoothing
and maximum likelihood are found to perform the best. For
reasons of efficiency we choose for nearest neighbourhood
smoothing.

4 Image segmentation

The range data acquired by the K2T 3-D laser scanner is
spherical. Unfortunately, almost all the segmentation algo-
rithms available assume that data has been scanned ortho-
graphically [6], ignoring the geometrical distortions that are
found in therij form of a spherically scanned range image.

One algorithm for segmenting 3D datasets is [10]. We
have used a slight simplification of that segmentation al-
gorithm to do the segmentation in thexyz-domain (which

is much less troubled by geometric distortions) as much
as possible. Since we are only interested in reconstruct-
ing large surfaces, the segmentation algorithm can discard
smaller surfaces, processing only the larger ones. We by no
means claim this segmentation algorithm to be perfect, but
it is sufficient for our purposes.

Transforming the 2.5Drij form into the 3Dxyz form
uses the standard formulas for transformation described in
for instance [2]. The result of this transformation is a partly
unordered 3D point cloud, shown in figure 2. Note that the
very close object seen in lower left-hand corner of figure 1
has been clipped off this image. Of course it is not discarded
during computation. Because thexyz-data is unordered we
can no longer use local windows, as is customary in image
analysis. Instead of using the window as an estimator of
proximity we use the actual geometric distance as an exact
measure, defining points that are within a certain geometric
distance from each other asneighbours.

The neigbour-finding method takes one parameter: the
desired mean number of neighbours per point. A distance
threshold is computed such that the mean number of neigh-
bours per point is as specified. For reasons of efficiency we
only randomly sample 10% of the total number of points
to determine this threshold. The number of neighbours de-
pends on the number of points within this distance thresh-
old. A typical mean number of neighbours per point would
be 9.0. The actual number of neighbours then varies be-
tween 0 and 25. Every point keeps a list of its own neigh-
bours, so computing them only has to be done once.

Figure 2. The 3D point cloud

Our segmentation algorithm aims at finding large areas
of the same shape. Therefore we will do clustering of neigh-
bouring 3D points within depth discontinuities that are sim-



ilar in normal and curvature, yielding continuous surfaces
of roughly constant shape class.

4.1 First segmentation

Besides using the neighbour-relationship instead of win-
dows, our segmentation proceeds in much the same fashion
as previous segmentation algorithms such as described in
[6]. We do a local surface estimation at all the points, en-
abling the computation of Gaussian and mean curvature, as
well as the surface normal.

The local surface fitting is based on a local least squares
surface model using discrete orthogonal polynomials. This
method has been used successfully for curvature estimation
in range image segmentation (e.g.[2]).

After these surface characteristics have been computed,
we will do a first segmentation, using a simple region grow-
ing algorithm based on the local surface characteristics.
Points are considered to belong to the same region if they
meet the following requirements:

Must be neighbours: This clusters points that are close to
one another. It will locate depth discontinuities. Dis-
carding points with less than 2 neighbours (as defined
above) also removes a lot of noise around the edges.

Must have same curvature sign: This allows us to sepa-
rate regions that are of a different shape. This will give
us an idea about what kind of surface we should fit to
the region.

Angle between normals< 5 degrees: The dot-product
between the two normals must be smaller than 5
degrees. This locates fold-edges.

Furthermore, regions must be larger than a certain thresh-
old. We have chosen a minimum number of 200 points.
In these cases we feel that there is not enough information
available from the surroundings to justify a reconstruction.

The segmentation of figure 2 results in the regions shown
in figure 3. For reasons of clarity we have shown this result
in therij , although segmentation actually takes place in thexyz-domain.

4.2 Surface fitting

To acquire good comparative measures between the dif-
ferent clouds ofxyz-points we have found in the segmenta-
tion, we will fit surfaces to them. The geometric parameters
will be compared to yield continuity between surfaces. In-
spection of numerous images showed that planes, cylinders
and spheres are usually sufficient to describe most of the
surfaces in the image, especially where buildings are con-
cerned. In the following table the geometrical description
of the surfaces is shown.

Figure 3. The first segmentation.

Surface type Description

Planar surface normalsurf nl
displacementdisp

Cylindrical point on axisp
(circular) unit vector of axisaxis uv

radiusr
Spherical centre

radiusr
5 Finding Possibly Occluded Areas

Now that we have segmented the image into large sur-
faces, we compute if any surfaces are occluding other sur-
faces. First contiguous, but unconnected, surfaces are
matched and grouped. We then determine the areas lying
between the contiguous surfaces. If the intermediate re-
gions are closer to the sensor, then this indicates the possible
existence of occluded surface that connects the contiguous
surfaces. Assessment of this possibility is the main topic of
this section.

5.1 Matching surfaces

For two regions to be deemed possibly contiguous,
they must first be of the same type. We use the geometric
properties of the surfaces described in the previous section
for comparison. For planes we consider the angle between
the surface normals and the displacement between the two
planes. For cylinders we determine the vector pointing
from the first axial point to the second one (calledp1p2 uv
in the table). This vector, as well as the other two describing
the axis of the cylinder must all be approximately colinear
to each other. Also, the radii are compared. For spheres
the distance between two centres (dist(1; 2) in the table)
must not be too large. Again the radii must not differ too
much. The table below gives the parameters and thresholds



used for determining whether two surfaces match or not.

Surface type Requirements for matching

Plane surf nl1 � surf nl2 < 5 degjdisp1 � disp2j < 5m
Cylinder axis uv1 � axis uv2 < 5 degaxis uv2 � p1p2 uv < 5 degp1p2 uv � axis uv1 < 5 deg(2 � jr1 � r2j)=(r1 + r2) < 5%
Sphere (2 � dist(1; 2))=(r1 + r2) < 10%(2 � jr1 � r2j)=(r1 + r2) < 5%

Within an image all the possible surface pairs are com-
pared and organised into groups. Groups are such that each
surface within a group matches with each other surface
within the same group, according to the definitions given
above. Two non-matching surfaces can never be in the same
group. Suppose surfaces A&B and B&C match, but A&C
do not. In this case we will make two groups (A&B) and
(B&C), and not one large group (A&B&C). This differs
from the approach in [4].

Figure 4. Matching areas. These belong to
the same wall lying behind the chair. Areas
are gray, perimeter points are shown in black.

5.2 Area between two surfaces

Up till now we have been working in thexyz domain,
for reasons given in section 4. Because we only want to
reconstruct points at positions that could actually have been
sensed by the sensor at a certain element (i,j) in the range
image, it is necessary to go back to therij domain. Note
that this means a significant change in the way that distance
and proximity should be interpreted! Distance now means
the two dimensional distance between two pixels in therij

image in pixels. If we want to refer to geometric distance
we will do so explicitly.

Before reconstruction takes place, we have to determine
at which pixels in therij image reconstruction would be
justified. A first guess is to take the areas lying between
matching surfaces of the same group. As we shall see later
this is not enough, but for now it will do.

To avoid reconstructing between surfaces that lie very
far apart, we will also place a distance constraint. A cer-
tain point may only be reconstructed if it lies within a cer-
tain threshold distance from both matching surfaces. This
threshold varies between surfaces and is implicitly encoded
in the expansion size of the distance transform, which will
be discussed later in this section. The main idea is that the
larger the area of the surface is, and the better the fit of the
surface to the patch of points it represents, the more certain
we can be about reconstructing points in its neighbourhood.
This implies that we can allow reconstruction of points that
are further away from such a surface than a surface with a
small area or a bad surface fit.

There are two straightforward ways of acquiring the pix-
els between two regions. The first is to take the convex
hull containing the two regions. The pixels lying in this
hull (minus the two regions themselves of course) will ap-
proximately yield the points lying between the two regions.
Unfortunately, it yields no information about the distance
of the pixels to both matching surfaces needed for applying
the distance constraint. Another method [4] is to connect
all the perimeter points of the matching regions with lines.
Only lines that are shorter than the distance threshold and
that do not cross the matching regions themselves are ac-
cepted. The Bresenham algorithm [3] can then be used to
determine the area lying between the two regions. This al-
gorithm is robust, but computationally very expensive.

We propose a method that combines the robustness and
efficiency of the two. The greatest advantage is that infor-
mation about the distance from every point to both regions
is stored, allowing an easy computation of the hypothesised
occluded surface, as we will see in section 6.1. The idea
is to find perimeter points that are actually facing the other
area, as the convex hull method does. After that we use the
approach of drawing lines between the pixels facing each
other with the Bresenham algorithm, as in [4]. Points fac-
ing the other area are defined as follows: A line between
the point of interest and the closest point of the other area
should not be longer that the distance threshold, and may
not cross any other area besides the occluding surface.

The method relies ondistance transforms: If the input
is a binary image, in which the 1’s represent a certain area,
the pixels in a 2D distance transform will have a value that
encodes the distance (in pixels) to the nearest region point.
Points in the regions themselves thus have value 0. In our
enhanced distance transform, every element also encodes at



Figure 5. The distance transform for one of
the areas shown in figure 4. Perimeter points
have been added for clarity.

which location the nearest 1 can be found. Figure 5 shows
the distance transform of one of the matching areas in figure
4.

Finding the area between two surfaces can now be done
as follows:

1. Compute distance transforms for both surfaces. The
number of points it represents determine how far the
distance transform mayexpand. The expansion is
twice the square root of the number of points. More
points means that more information can be used to re-
construct surfaces, which means that we can recon-
struct further away from the surface. An absolute max-
imum has been set to 150.0 pixels.

2. Find all the points whose difference in values in the
distance transform is within a small threshold (� 5
pixels). These equidistant points have approximately
the same distance to both surfaces.

3. For all the equidistant points, determine which perime-
ter points fall within the distance transform range at
that equidistant point. This locates 5-10 perimeter
points from both surfaces which face that equidistant
point.

4. Connect all the perimeter points facing an equidistant
point to the matched perimeter points in the other area,
but only if the distance between them is smaller than
the distance threshold. Fill in the points on all the con-
necting lines using the Bresenham algorithm.

The final result for the matching areas in figure 4 can be
seen in figure 6. The black pixels are the perimeter points

Figure 6. The potentially reconstructible area
between the two surfaces shown in figure 4.

that are facing each other. Note that this requirement ex-
cludes a lot of the perimeter points shown in figure 4. The
area that might be occluded is gray.

6 Actual reconstruction

The possibly occluded area has been determined. We
still say possibly, because another requirement must be met
before we can be certain occlusion is taking place. It may
very well be that the actually observed area between the two
matching surfaces is further away from the sensor than the
surface to be reconstructed. This happens on many occa-
sions when niches such as doors or windows are involved.
The difference between a niche and an occlusion is shown
in figure 7.

Before we can determine whether we are dealing with a
niche or an occlusion we will have to compare the measured
points with the points of the reconstructed surface along the
corresponding line of sight. This means we will have to
reconstruct the surface anyhow for comparison. If it lies
behind the measured points (occlusion), we replace these
points with the reconstructed ones. If it lies in front of the
measured points (niche) we will discard the reconstructed
points and leave the situation unaltered. Because the recon-
struction requires hypothesising non-observable data, we
will be very conservative, and only reconstruct areas that
have a high likelihood of being correct.

6.1 Surface hypothesis: intersections

Given an occluding pixel and an occluded surface, a sim-
ple and intuitive way to perform reconstruction is to inter-
sect the ray from the sensor to the occluding point with the
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Figure 7. A real occlusion and a niche

occluded surface. As this ray overlaps the optical ray of the
laser scanning beam, the reconstructed pixel is placed in a
position that could actually have been sensed by the sensor.

In the unlikely event that no intersection is found, which
happens if the line is parallel to the plane, or if the line
passes the cylinder or sphere, no reconstruction takes place
for that point.

For planes there is usually one intersection. There is the
exception of a line parallel to the plane. Because this would
require the sensor to lie in the plane as well, it is impossible
since the sensor always has a certain volume.

For cylinders and spheres we usually find two intersec-
tions. There are certain exceptions such as a line tangent
to the cylinder or sphere. Considering that we are working
with floating point accuracy, the perfect alignment needed
for the tangent to a cylinder or sphere is also unlikely to
happen. Because we compute two intersections, it is neces-
sary to choose between them. First of all, priority is always
given to the point that would yield a positive range. A neg-
ative range would arise if the sensor is inside the cylinder,
causing one intersection to lie behind the sensor. We clearly
want the point that lies in the direction the sensor is facing.
If they both lie in this direction, the shape of the surface
is used. If it is the concave interior of a trough or bowl,
choose the more distant intersection. Similarly choose the
closer intersection on convex surfaces.

6.2 Interpolation between intersections

As expected due to noise, when the two (or more) sur-
faces are extrapolated into the possibly occluded area, they
never perfectly match each other. Instead of choosing to use
the intersection with only one of the surfaces, we will inter-
polate between them. The chosen solution is a weighted av-
eraging between all the intersections with the extrapolated
surfaces, with weights depending on the distances from the
intersection to the closest perimeter point of each surface. In
other words, given a pixel to be reconstructed, two or more
intersections are computed as explained above, one per each
candidate surface. The position of the reconstructed pixelis

computed as follows:~xinter = P(f(ds) ~xs)P f(ds) (1)f(ds) = (dmax � ds) 32 (2)

The summation in equation (1) takes place over all the sur-
faces involved in the reconstruction; that is, all the transi-
tively matching surfaces combined in a group.~xs is the
intersection with thes-th plane,ds is the distance to the
closest actually observed point in surfaces, andf(ds) a
weighting function. As discussed in section 5.2 the size of
expansion of the distance transform depends on the number
of points size in the surface. All the surfaces usually have
different sizes, causing their maximum expansion sizes to
differ. dmax is the maximum of the maximum expansion
sizes of all the surfaces taking place in the summation. Note
thatds will never exceeddmax.

Computing the distance of all the points~xs to the clos-
est point in all surfacess would be computationally expen-
sive problem, were it not that we have already computed the
distance fields of all the surfaces involved. Because the dis-
tance field of a region specifies the distance of a point at (i,j)
to the nearest point of that region, the problem is a simple
table look-up!

Because points that are closer to a certain surface should
be weighed heavier than points that are further away, the
weighting function should be decreasing with the input dis-
tance. The weighting function we chose is shown in equa-
tion (2).

6.3 Incorporating perimeter points

Interpolating between the different surfaces has proven
to be insufficient, because discontinuities around the edges
arise when the surface is not a perfect fit at these edges. We
solve this problem by again interpolating, but this time only
between the closest perimeter point of the closest surface
patch and the point found through interpolation of the in-
tersections. Remember that every pixel in the extended dis-
tance transform not only contains information about the dis-
tance to the closest perimeter point, but also exactly which
perimeter point this is. This allows us to find the perimeter
point we should use for interpolation easily.

This interpolation is based on a logarithmic decay func-
tion. The influence of the perimeter point on the recon-
struted point decays as the point to be reconstructed lies
further away from the known data. The decay function
we have chosen kan be seen in equation 4. At the transi-
tion from measured data to reconstructed data the perimeter
point completely overrides the influence of the intersection,
guaranteeing a smooth transition into the measured data.
Given equations 3 and 4 the influence of the perimeter point



at distances 0, 5, 10 and 20 pixels is 100%,53%,29% and
8% respectively.~xreon = g(ds) ~xperim + (1� g(ds)) ~xinter (3)g(ds) = e(�x=8) (4)~xreon is the final hypothesised reconstructed point.~xperim
is the closest perimeter point of the closest surface.~xinter
is the point found in equation 1.g(ds) is the weighting
function discussed in the previous paragraph.

This procedure is repeated for all the points lying be-
tween the regions of the matching group. In the end we
have a reconstructed surface that can be compared with the
original image.

6.4 Voting for reconstruction

We are now faced with the choice of whether to recon-
struct or not. Reconstruction is a severe change to the im-
age, so we want to be very careful in applying it.

We consider all the pixels in the area between the sur-
faces in a certain group of matching surfaces. For each
pixel, we determine if it is further away from the sensor than
the original range measured at that pixel. If this is the case
it is worth reconstructing; if it is not the case, it belongs to a
niche and should not be reconstructed. Considering recon-
struction of pixels individually is of course not very robust.
For this reason we introduce a voting system.

Basically, a pixel votes for or against reconstruction,
depending on the issues described above. The area be-
tween the surfaces itself might contain several other sur-
faces, which do not belong to the group of surfaces taking
part in its reconstruction. The votes of the pixels are polled
per surface. If enough pixels are in favour of this recon-
struction, it is reconstructed, otherwise it isn’t. A high per-
centage of 90% was chosen to ensure that reconstruction
was justified.

7 Results

Figure 8 shows some reconstructed images. They are
shown in bothrij - andxyz-form. Since the reconstruction
is mainly a cosmetic improvement, and the reconstructed
surfaces appeared unnaturally smooth, we added the same
amount of Gaussian noise in thez-direction as found in the
surfaces on which its reconstruction was based.

The left image is the image we have been processing
throughout the article. The right one is an image acquired
by the orthographical scanner. It shows the reconstruction
of two cylinders occluded behind a plane.

The computation times for the C++ program running on
a 440Mhz Sun workstation were 50 and 30 seconds for the
segmentation of these two images. This is mainly due to the

accurate surface fitting. The actual reconstruction algorithm
took 29 and 17 seconds respectively.

8 Conclusion and future work

A method for analysing range images, locating occlu-
sions of large homogeneous surfaces and reconstructing
these surfaces behind occluding objects has been presented.
Some results obtained from the research have also been
shown.

Future work will be aimed at reconstructing the intensity
texture on the reconstructed surface. In the present we have
simply added noise, but the rendering would be visually en-
hanced if the 3D texture, as well as patterns in the intensity
image, were modelled and projected on the reconstructed
surface.

Also, using knowledge about the world instead of the
low-level representation such as planes and cylinders might
prove useful in reconstruction. The reliability in recon-
structing a wall behind a chair would be much enhanced
if it was actually known that it was indeed a wall. Unfor-
tunately, we will have to await advances in other areas of
research before it becomes viable in this context.

A problem is that the images used are subimages of
larger scenes. The performance of this algorithm on large
scenes needs to be tested more extensively, but it is to be
expected that more reconstruction errors will be made in
more complex scenes. On the other hand, this is research in
progress, so the algorithm is improving as well!

One could also develop a reliability gauge for the re-
constructed pixel, as not all the pixels can be reconstructed
with the same confidence, and this should be taken into ac-
count when using reconstruction results for further process-
ing, e.g. triangulation. The distance to the closest perimeter
point has been used as an approximation of this measure,
but we would like to implement a more statistically-founded
measure.

One might argue that the solution to the occlusion prob-
lem is simply to acquire additional images. Recent results
by Sanchiz [11] show that even simple scenes can require
hundreds of images to obtain complete, high quality range
data. Thus, it may be preferable to reconstruct small miss-
ing regions instead of attempting to observe them.

An interesting idea is to merge the two systems. Parts
of the image that can be reconstructed with high certainty
will not have to be scanned from another angle. When ar-
eas of the image cannot be reconstructed, or only with low
certainty, Sanchiz’s next-best-view algorithm can compute
how to obtain information about this area, after which more
reconstruction can take place. Thisscan-reconstruct-scan
cycle may drastically reduce the number of scans needed to
obtain a complete description of the scene.
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Figure 8. Results for an occluded wall (left) and two occlude d cylinders (right)
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