
Pros and Cons of Eulidean Fitting�Petko Faber and Bob FisherDivision of Informatis, University of Edinburgh,Edinburgh, EH1 2QL, UKnpf|rbf�dai.ed.a.ukAbstratThe purpose of this paper is to disuss pros and ons of �tting general urves and surfaes to2D and 3D edge and range data using the Eulidean distane. In the past researhers have usedapproximate distane funtions rather than the Eulidean distane. But the main disadvantage ofthe Eulidean �tting, omputational ost, has beome less important due to rising omputing speed.Experiments with the real Eulidean distane show the limitations of suggested approximations likethe Algebrai distane or Taubin's approximation. We ompare the performane of various �ttingalgorithms in terms of eÆieny, orretness, robustness and pose invariane.1 IntrodutionThe ability to onstrut CAD or other objet models from edge and range data has a fundamentalmeaning in building a reognition and positioning system. While the problem of model �tting has beensuessfully addressed, the problem of a high auray and stability of the �tting is still an open problem.On the one hand it is imperative to solve the problem of how urves and surfaes an be �tted to a givendata set. But on the other hand it is obvious that auray and stability of the �tting has a substantialimpat on the reognition performane espeially in reverse engineering where we desire an auratereonstrution of 3D geometri models of objets from range data. Thus it is very important to get goodshape estimates from the data.Impliit polynomial urves and surfaes are potentially among the most useful objet or data repre-sentations for use in omputer vision and image analysis. Their power appears by their ability to smoothnoisy data, to interpolate through sparse or missing data, their ompatness and their form being om-monly used in numerous onstrutions. An impliit urve or surfae is the zero set of a smooth funtionf : Rn ! Rm of the n variables: Z(f) = f~x : f(~x) = 0g. Let f(~x) be an impliit polynomial of degree dgiven by f(~x) =X(i+j+k)�dfi;j;kg�0aijk � xi � yj � zk = 0 : (1)Then, we only have to determine the parameter set faijkg that desribes the given data best.2 Least squares �tting of general urves and surfaesParameter estimation, usually ast as an optimization problem, an be divided into three general teh-niques: least-squares �tting (e.g. [1, 3, 9, 10, 12℄), Kalman �ltering (e.g. [4, 5℄), and robust tehniques(e.g. [2, 6℄). Given a �nite set of data points D = f~xpg, p 2 [1; P ℄, the problem of �tting a general urveand surfae Z(f) to D by a least-squares method is to minimize a distane measure1P PXp=1 dist (~xp;Z(f))! Minimum (2)from the data points ~xp to the urve or surfae Z(f), a funtion of the parameter set faijkg. Thedistane from the point ~xp to the zero set Z(f) is de�ned as the minimum of the distanes from ~xp topoints ~xt 2 Z(f): dist(~xp;Z(f)) = min fk ~xp � ~xt k : f(~xt) = 0g : (3)�The work was funded by the CAMERA (CAd Modelling of Built Environments from Range Analysis) projet, an ECTMR network (ERB FMRX-CT97-0127).



In the past researhers have often replaed the real Eulidean distane by an approximation. But itis well known that a di�erent performane funtion an produe biased results, and for a lot of primitiveurves and surfaes a losed form expression exists for the Eulidean distane. In the following wesummarize the Algebrai �tting, Taubin's �tting [13, 14℄ and an Eulidean �tting [7, 8℄.Algebrai �tting (AF) is based on the approximation of the Eulidean distane by the algebraidistane distA (~xp;Z(f)) = f(~xp). Given the Algebrai distane for eah point, Eq.(2) an beformulated as an Eigenvetor problem. To avoid the trivial solution faijkg = ~0 and any multipleof a solution, the parameter set faijkg may be onstrained in some way. The pros and ons ofusing algebrai distanes are the gain in omputational eÆieny, beause losed form solutions anusually be obtained, but often the results are unsatisfatory.Taubin's �tting (TF) uses the �rst order approximation of Eq. (1) to estimate distT (~xp;Z(f)) [13℄.distT (~xp;Z(f)) = jf(~xp)jkrf(~xp)k (4)The pros and ons of using Taubin's distane are no iterative proedures are required and it isa �rst order approximation to the exat distane, but the approximate distane is also biased insome sense. If, for instane, a data point ~xp is lose to a ritial point of the polynomial, i.e.,krf(~xp)k � 0, but f(~xp) 6= 0, the distane beomes large whih is ertainly a limitation. Tominimize Eq.(2) the usage of the Levenberg-Marquardt (LM) algorithm is proposed.Eulidean �tting (EF) replaes the approximated distanes again by the Eulidean distane, whih isinvariant to transformations in Eulidean spae and not biased. For primitive urves and surfaeslike straight lines, ellipses [15, 16℄, planes, ylinders, ones, and ellipsoids, a losed form expressionexists for the Eulidean distane from a point to the zero set and we use these. However, as thegeneral expression of the Eulidean distane is more ompliated and there exists no known losedform expression, an iterative optimization proedure must be arried out. Given the Eulideandistane distE(~xp;Z(f)) for eah point the following simple algorithm an be used:1. The Eulidean �tting requires an initial estimate for the parameters faijkg and we have foundthat the result of Taubin's �tting method is more suitable than others. We get the initialparameter set faijkg[0℄.2. In the seond step faijkg[s℄,s = 0; 1; : : :, is updated using the LM algorithm, minimizing thesum of Eulidean distanes for all data points.3. Finally, eah faijkg[s+1℄ is evaluated by a M-estimator L on the basis of distE(~xp;Z(f)). IfL(faijkg[s+1℄) < L(faijkg[s℄), faijkg[s+1℄ is aepted and the �tting will be ontinued with step2. Otherwise the �tting is terminated and faijkg[s℄ is the desired solution.3 Evaluating the Eulidean �ttingTo work out the pros and ons of Eulidean �tting we ompare the performane of the EF method withthe performane of AF and TF in terms of eÆieny, orretness and robustness for both simulated andreal data. In ase of simulated data we have generated data sets whih desribe (elliptial) ylindersand ones. The 3D data were generated by adding isotropi Gaussian noise � = f1%; 5%; 10%; 20%g.Additionally the surfaes were partially oluded. The visible surfaes were varied between 1=2 (maximalase) and 1=6 of the full 3D ylinder. To show that the EF works even for real data we have used severalrange data sets. For all experiments we inlude in all three �tting methods the same onstraints whihdesribe the expeted surfae type to enfore the �tting of a speial surfae type. Finally, we look to thepose invariane of the �tting methods.3.1 EÆienyA good �tting algorithm has to be eÆient as possible in terms of run time and formal omplexity.While the problem of omputational ost is no longer a really hard problem beause of the rapidlyinreasing mahine speed, we should guarantee the �tting with aeptable omputational ost as wellas the algorithm with relatively low omplexity. All algorithms have been implemented in C and theomputation was performed on a Pentium III 466 MHz. The average omputational osts for the AF, TFand EF are in Tab. 1. As expeted the AF and TF supply the best performane. The EF algorithm2



Table 1: Average omputational osts in milliseonds per 1000 points.AF TF EFPlane 0.958 1.042 2.417Sphere 1.208 1.250 3.208Cirular ylinder 3.583 3.625 12.375Elliptial ylinder 13.292 13.958 241.667Cirular one 15.667 15.833 288.375Elliptial one 15.042 15.375 291.958General quadri 18.208 18.458 351.083requires a repeated searh for the point xt losest to xp and the alulation of the Eulidean distane.A quik review of the values in Tab.1 shows that the omputational osts inrease if we �t an elliptialylinder, a irular or an elliptial one respetively a general quadri, beause the distane estimationis more ompliated. In summary the eÆieny is a on of EF, but is bounded by a fator of about 20times the performane of the other algorithms and is still omputationally reasonable for up to 106 datapoints if real-time performane is not needed.3.2 CorretnessIt is obvious that the �tting result should desribe the data set by the orret urve or surfae type. Thatmeans that it should not �t a false type to the data. To verify the orretness we tested if the �ttingresult of the (onstrained) eigenvalue analysis orresponds to the general urve or surfae invariants. Ifone solution satis�es the onditions for one urve or surfae type, it is assumed that the �tting is orretin sense of an interpretable real urve or surfae. Otherwise, the �tting will be de�ned as failure. In ourexperiments AF failed sometimes (up to 23 perent) respeting our expetations, espeially with highernoise levels or a sparse data set (see Se. 3.3). For TF and EF we had no failures in our experiments. Insummary the orretness is a pro of EF.3.3 RobustnessA �tting method must degrade graefully with inreasing noise in the data, with a derease in the availablerelevant data, and with an inrease in the irrelevant data. To evaluate the robustness of the proposedEF, we use syntheti generated data desribing an elliptial ylinder by adding isotropi Gaussian noise� = f1%; 5%; 10%; 20%g and partially olusion varied between 1=2 (maximal ase) and 1=6 of the full3D ylinder. In the �rst experiment the number of 3D points for the simulated ylinder was n = 100 andto measure the average �tting error eah experiment runs 100 times. The reported error is the Eulideangeometri distane between the 3D data points and the estimated surfaes. The mean squares errors(MSE 's) and standard deviations of the di�erent �ttings are in Fig. 1. As expeted, TF and EF yield
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1%a. Algebrai �tting. b. Taubin's �tting. . Eulidean �tting.Figure 1: Average least squares error �tting a syntheti generated ylinder with added Gaussian noise� = f1%; 5%; 10%; 20%g. The visible surfaes were varied between 1=2 (maximal ase) and 1=6 of thefull 3D ylinder. The number of trials was 500.the best results respet with to the mean and standard deviation, and the mean for EF is always lowerthan for the other two algorithms. The results of AF are only partially aeptable, beause of the mean3



and the standard deviation. In the diret omparison of TF with EF the results of EF are muh betterand the mean of EF is always lower than the mean of the other two algorithms. As mentioned in Se.3.2,AF an give sometimes wrong results whih means that the �tted urve or surfae types does not omeup with our expetations. We removed all failed �ttings out of the onsiderations.In the seond experiment, the number of 3D points was stepwise dereased from n = 1000 down ton = 10 3D data points to evaluate the behaviour of the several �tting methods. Eah experiment runs100 times. The mean squares errors (MSE 's) and standard deviations of the di�erent �ttings are inFig. 2. As expeted, TF and EF yield also the best results in this experiment. With dereased point
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1%a. Algebrai �tting. b. Taubin's �tting. . Eulidean �tting.Figure 2: Average least squares error �tting a syntheti generated ylinder with added Gaussian noise� = f1%; 5%; 10%; 20%g. The number of 3D points was stepwise dereased from 1000 up to 10. Thevisible surfaes was 5=12 of the full 3D ylinder. The number of trials was 500.density espeially the AF beomes more and more unstable whih is reeted in the mean and standarddeviation. Unexpetedly, the EF is very stable even with only n = 10 3D data points. This underlinesone more the outstanding performane of the EF. In summary the robustness is learly a pro of EF.3.4 Pose invarianeIt is obvious that the �tting results should be pose invariant. But, it is well known that this reasonableand neessary requirement annot be always guaranteed by all three �tting methods. To evaluate thepose invariane we use a real data set (see Fig. 3a.) desribing an elliptial ylinder. The normalized dataset was a) shifted, b) rotated, and ) both rotated and shifted. A quik review of the residuals (MSE ) inTab. 2 shows AF and TF are not pose invariant while the EF is pose invariant. To illustrate the posedependeny, the �tting results for position 3 are visualized in Fig. 3. In summary the pose invariane islearly a pro of EF.Table 2: Residuals �tting an elliptial ylinder (see Fig. 3). The normalized ylinder was shifted byt = [0:3; 0:2; 0:1℄ (pos. 1), rotated by # = �=12 and n = [0:5; 1:0; 0:5℄ (pos. 2), shifted and rotated (pos.3). normal pos position 1 position 2 position 3AF [10�3℄ 0:5242 2:0181 2:6950 1:8271TF [10�3℄ 0:5024 1:5143 2:0277 1:3817EF [10�3℄ 0:4021 0:4152 0:8634 0:60884 ConlusionThe fous was on the pros and ons of Eulidean �tting ompared with the ommonly used Algebrai�tting and Taubin's �tting. Referring to our objetive we an �nally onlude that we have more pros thanons for the Eulidean �tting. While the main disadvantage of the Eulidean �tting, omputational ost,has beome less important due to rising omputing speed, robustness and auray inreases suÆientlyompared to both other methods. Additionally, the Eulidean �tting is pose invariant.4



a. normalized data. b. Algebrai �tting.
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