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Abstract

The purpose of this paper is to discuss pros and cons of fitting general curves and surfaces to
2D and 3D edge and range data using the Euclidean distance. In the past researchers have used
approximate distance functions rather than the Euclidean distance. But the main disadvantage of
the Euclidean fitting, computational cost, has become less important due to rising computing speed.
Experiments with the real Euclidean distance show the limitations of suggested approximations like
the Algebraic distance or Taubin’s approximation. We compare the performance of various fitting
algorithms in terms of efficiency, correctness, robustness and pose invariance.

1 Introduction

The ability to construct CAD or other object models from edge and range data has a fundamental
meaning in building a recognition and positioning system. While the problem of model fitting has been
successfully addressed, the problem of a high accuracy and stability of the fitting is still an open problem.
On the one hand it is imperative to solve the problem of how curves and surfaces can be fitted to a given
data set. But on the other hand it is obvious that accuracy and stability of the fitting has a substantial
impact on the recognition performance especially in reverse engineering where we desire an accurate
reconstruction of 3D geometric models of objects from range data. Thus it is very important to get good
shape estimates from the data.

Implicit polynomial curves and surfaces are potentially among the most useful object or data repre-
sentations for use in computer vision and image analysis. Their power appears by their ability to smooth
noisy data, to interpolate through sparse or missing data, their compactness and their form being com-
monly used in numerous constructions. An implicit curve or surface is the zero set of a smooth function
f:R* = R™ of the n variables: Z(f) = {# : f(#) = 0}. Let f(#) be an implicit polynomial of degree d
given by

F@) = ay-at -yl 2k =0, (1)

(i+j+k)<d
{i,4,k}>0

Then, we only have to determine the parameter set {a;;i} that describes the given data best.

2 Least squares fitting of general curves and surfaces

Parameter estimation, usually cast as an optimization problem, can be divided into three general tech-
niques: least-squares fitting (e.g. [1, 3, 9, 10, 12]), Kalman filtering (e.g. [4, 5]), and robust techniques
(e.g. [2, 6]). Given a finite set of data points D = {%,}, p € [1, P], the problem of fitting a general curve
and surface Z(f) to D by a least-squares method is to minimize a distance measure

p
% Z dist (Zp, Z(f)) = Minimum (2)
p=1

from the data points #, to the curve or surface Z(f), a function of the parameter set {a;jr}. The
distance from the point #, to the zero set Z(f) is defined as the minimum of the distances from &, to
points & € Z(f):

dist(Zy, Z(f)) = min {|| &, — Z || : f(£1) = 0} . (3)
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In the past researchers have often replaced the real Euclidean distance by an approximation. But it
is well known that a different performance function can produce biased results, and for a lot of primitive
curves and surfaces a closed form expression exists for the Euclidean distance. In the following we
summarize the Algebraic fitting, Taubin’s fitting [13, 14] and an Euclidean fitting [7, 8].

Algebraic fitting (AF) is based on the approximation of the Euclidean distance by the algebraic
distance dista (&, Z(f)) = f(#p). Given the Algebraic distance for each point, Eq.(2) can be
formulated as an Eigenvector problem. To avoid the trivial solution {a;jx} = 0 and any multiple
of a solution, the parameter set {a;;r} may be constrained in some way. The pros and cons of
using algebraic distances are the gain in computational efficiency, because closed form solutions can
usually be obtained, but often the results are unsatisfactory.

Taubin’s fitting (TF) uses the first order approximation of Eq. (1) to estimate distr(Z,, Z(f)) [13].

= (@)
distr (7. 2U0) = 97,1 @
The pros and cons of using Taubin’s distance are no iterative procedures are required and it is
a first order approximation to the exact distance, but the approximate distance is also biased in
some sense. If, for instance, a data point #, is close to a critical point of the polynomial, i.e.,
IVf(Zp)] =~ 0, but f(Z,) # 0, the distance becomes large which is certainly a limitation. To
minimize Eq.(2) the usage of the Levenberg-Marquardt (L M) algorithm is proposed.

Euclidean fitting (EF) replaces the approximated distances again by the Euclidean distance, which is
invariant to transformations in Euclidean space and not biased. For primitive curves and surfaces
like straight lines, ellipses [15, 16], planes, cylinders, cones, and ellipsoids, a closed form expression
exists for the Euclidean distance from a point to the zero set and we use these. However, as the
general expression of the Euclidean distance is more complicated and there exists no known closed
form expression, an iterative optimization procedure must be carried out. Given the Euclidean
distance distg(Z,, Z(f)) for each point the following simple algorithm can be used:

1. The Euclidean fitting requires an initial estimate for the parameters {a;; } and we have found
that the result of Taubin’s fitting method is more suitable than others. We get the initial
parameter set {a;jz }°.

2. In the second step {a;;}[*/,s = 0,1,..., is updated using the LM algorithm, minimizing the
sum of Euclidean distances for all data points.

3. Finally, each {a;;,}**! is evaluated by a M-estimator £ on the basis of distg(#,, Z(f)). If
L({aij ) < £({ain 3, {aijr}*+ is accepted and the fitting will be continued with step
2. Otherwise the fitting is terminated and {ai]’k}[s] is the desired solution.

3 Evaluating the Euclidean fitting

To work out the pros and cons of Euclidean fitting we compare the performance of the EF method with
the performance of AF and TF in terms of efficiency, correctness and robustness for both simulated and
real data. In case of simulated data we have generated data sets which describe (elliptical) cylinders
and cones. The 3D data were generated by adding isotropic Gaussian noise o = {1%,5%,10%,20%}.
Additionally the surfaces were partially occluded. The visible surfaces were varied between 1/2 (maximal
case) and 1/6 of the full 3D cylinder. To show that the EF' works even for real data we have used several
range data sets. For all experiments we include in all three fitting methods the same constraints which
describe the expected surface type to enforce the fitting of a special surface type. Finally, we look to the
pose invariance of the fitting methods.

3.1 Efficiency

A good fitting algorithm has to be efficient as possible in terms of run time and formal complexity.
While the problem of computational cost is no longer a really hard problem because of the rapidly
increasing machine speed, we should guarantee the fitting with acceptable computational cost as well
as the algorithm with relatively low complexity. All algorithms have been implemented in C and the
computation was performed on a Pentium IIT 466 MHz. The average computational costs for the AF, TF
and FEF are in Tab. 1. As expected the AF and TF supply the best performance. The EF algorithm



Table 1: Average computational costs in milliseconds per 1000 points.

AF TF EF
Plane 0.958 1.042 2417
Sphere 1.208 1.250 3.208
Circular cylinder 3.583 3.625 12.375
Elliptical cylinder 13.292 13.958 241.667
Circular cone 15.667 15.833 288.375
Elliptical cone 15.042 15.375 291.958
General quadric 18.208 18.458 351.083

requires a repeated search for the point z; closest to z, and the calculation of the Euclidean distance.
A quick review of the values in Tab.1 shows that the computational costs increase if we fit an elliptical
cylinder, a circular or an elliptical cone respectively a general quadric, because the distance estimation
is more complicated. In summary the efficiency is a con of EF, but is bounded by a factor of about 20
times the performance of the other algorithms and is still computationally reasonable for up to 10 data
points if real-time performance is not needed.

3.2 Correctness

It is obvious that the fitting result should describe the data set by the correct curve or surface type. That
means that it should not fit a false type to the data. To verify the correctness we tested if the fitting
result of the (constrained) eigenvalue analysis corresponds to the general curve or surface invariants. If
one solution satisfies the conditions for one curve or surface type, it is assumed that the fitting is correct
in sense of an interpretable real curve or surface. Otherwise, the fitting will be defined as failure. In our
experiments AF' failed sometimes (up to 23 percent) respecting our expectations, especially with higher
noise levels or a sparse data set (see Sec. 3.3). For TF and EF we had no failures in our experiments. In
summary the correctness is a pro of EF.

3.3 Robustness

A fitting method must degrade gracefully with increasing noise in the data, with a decrease in the available
relevant data, and with an increase in the irrelevant data. To evaluate the robustness of the proposed
EF, we use synthetic generated data describing an elliptical cylinder by adding isotropic Gaussian noise
o = {1%,5%,10%,20%} and partially occlusion varied between 1/2 (maximal case) and 1/6 of the full
3D cylinder. In the first experiment the number of 3D points for the simulated cylinder was n = 100 and
to measure the average fitting error each experiment runs 100 times. The reported error is the Euclidean
geometric distance between the 3D data points and the estimated surfaces. The mean squares errors
(MSE’s) and standard deviations of the different fittings are in Fig. 1. As expected, TF and EF yield
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Figure 1: Average least squares error fitting a synthetic generated cylinder with added Gaussian noise
o = {1%,5%,10%,20%}. The visible surfaces were varied between 1/2 (maximal case) and 1/6 of the
full 3D cylinder. The number of trials was 500.

the best results respect with to the mean and standard deviation, and the mean for EF is always lower
than for the other two algorithms. The results of AF are only partially acceptable, because of the mean



and the standard deviation. In the direct comparison of TF with EF the results of EF are much better
and the mean of EF is always lower than the mean of the other two algorithms. As mentioned in Sec.3.2,
AF can give sometimes wrong results which means that the fitted curve or surface types does not come
up with our expectations. We removed all failed fittings out of the considerations.

In the second experiment, the number of 3D points was stepwise decreased from n = 1000 down to
n = 10 3D data points to evaluate the behaviour of the several fitting methods. Each experiment runs
100 times. The mean squares errors (MSE’s) and standard deviations of the different fittings are in
Fig. 2. As expected, TF and EF yield also the best results in this experiment. With decreased point
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Figure 2: Average least squares error fitting a synthetic generated cylinder with added Gaussian noise
o = {1%,5%,10%,20%}. The number of 3D points was stepwise decreased from 1000 up to 10. The
visible surfaces was 5/12 of the full 3D cylinder. The number of trials was 500.

density especially the AF becomes more and more unstable which is reflected in the mean and standard
deviation. Unexpectedly, the EF is very stable even with only n = 10 3D data points. This underlines
once more the outstanding performance of the EF. In summary the robustness is clearly a pro of EF.

3.4 Pose invariance

It is obvious that the fitting results should be pose invariant. But, it is well known that this reasonable
and necessary requirement cannot be always guaranteed by all three fitting methods. To evaluate the
pose invariance we use a real data set (see Fig. 3a.) describing an elliptical cylinder. The normalized data
set was a) shifted, b) rotated, and c¢) both rotated and shifted. A quick review of the residuals (MSE) in
Tab. 2 shows AF and TF are not pose invariant while the EF is pose invariant. To illustrate the pose
dependency, the fitting results for position 3 are visualized in Fig. 3. In summary the pose invariance is
clearly a pro of EF.

Table 2: Residuals fitting an elliptical cylinder (see Fig. 3). The normalized cylinder was shifted by
t =10.3,0.2,0.1] (pos. 1), rotated by ¢ = 7/12 and n = [0.5,1.0,0.5] (pos. 2), shifted and rotated (pos.

normal pos position 1 position 2 position 3
AF  [1077] 0.5242 2.0181 2.6950 1.8271
TF 1073 0.5024 1.5143 2.0277 1.3817
EF  [1073] 0.4021 0.4152 0.8634 0.6088

4 Conclusion

The focus was on the pros and cons of Euclidean fitting compared with the commonly used Algebraic
fitting and Taubin’s fitting. Referring to our objective we can finally conclude that we have more pros than
cons for the Euclidean fitting. While the main disadvantage of the Euclidean fitting, computational cost,
has become less important due to rising computing speed, robustness and accuracy increases sufficiently
compared to both other methods. Additionally, the Euclidean fitting is pose invariant.



a. normalized data. b. Algebraic fitting.

c. Taubin’s fitting. d. Euclidean fitting.

Figure 3: Fitting results for a real range data (= 3300 points). The normalized data set was shifted by
t =1[0.3,0.2,0.1] and rotated by ¥ = w/12 and n = [0.5,1.0,0.5].
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