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.ukAbstra
tThe purpose of this paper is to dis
uss pros and 
ons of �tting general 
urves and surfa
es to2D and 3D edge and range data using the Eu
lidean distan
e. In the past resear
hers have usedapproximate distan
e fun
tions rather than the Eu
lidean distan
e. But the main disadvantage ofthe Eu
lidean �tting, 
omputational 
ost, has be
ome less important due to rising 
omputing speed.Experiments with the real Eu
lidean distan
e show the limitations of suggested approximations likethe Algebrai
 distan
e or Taubin's approximation. We 
ompare the performan
e of various �ttingalgorithms in terms of eÆ
ien
y, 
orre
tness, robustness and pose invarian
e.1 Introdu
tionThe ability to 
onstru
t CAD or other obje
t models from edge and range data has a fundamentalmeaning in building a re
ognition and positioning system. While the problem of model �tting has beensu

essfully addressed, the problem of a high a

ura
y and stability of the �tting is still an open problem.On the one hand it is imperative to solve the problem of how 
urves and surfa
es 
an be �tted to a givendata set. But on the other hand it is obvious that a

ura
y and stability of the �tting has a substantialimpa
t on the re
ognition performan
e espe
ially in reverse engineering where we desire an a

uratere
onstru
tion of 3D geometri
 models of obje
ts from range data. Thus it is very important to get goodshape estimates from the data.Impli
it polynomial 
urves and surfa
es are potentially among the most useful obje
t or data repre-sentations for use in 
omputer vision and image analysis. Their power appears by their ability to smoothnoisy data, to interpolate through sparse or missing data, their 
ompa
tness and their form being 
om-monly used in numerous 
onstru
tions. An impli
it 
urve or surfa
e is the zero set of a smooth fun
tionf : Rn ! Rm of the n variables: Z(f) = f~x : f(~x) = 0g. Let f(~x) be an impli
it polynomial of degree dgiven by f(~x) =X(i+j+k)�dfi;j;kg�0aijk � xi � yj � zk = 0 : (1)Then, we only have to determine the parameter set faijkg that des
ribes the given data best.2 Least squares �tting of general 
urves and surfa
esParameter estimation, usually 
ast as an optimization problem, 
an be divided into three general te
h-niques: least-squares �tting (e.g. [1, 3, 9, 10, 12℄), Kalman �ltering (e.g. [4, 5℄), and robust te
hniques(e.g. [2, 6℄). Given a �nite set of data points D = f~xpg, p 2 [1; P ℄, the problem of �tting a general 
urveand surfa
e Z(f) to D by a least-squares method is to minimize a distan
e measure1P PXp=1 dist (~xp;Z(f))! Minimum (2)from the data points ~xp to the 
urve or surfa
e Z(f), a fun
tion of the parameter set faijkg. Thedistan
e from the point ~xp to the zero set Z(f) is de�ned as the minimum of the distan
es from ~xp topoints ~xt 2 Z(f): dist(~xp;Z(f)) = min fk ~xp � ~xt k : f(~xt) = 0g : (3)�The work was funded by the CAMERA (CAd Modelling of Built Environments from Range Analysis) proje
t, an ECTMR network (ERB FMRX-CT97-0127).



In the past resear
hers have often repla
ed the real Eu
lidean distan
e by an approximation. But itis well known that a di�erent performan
e fun
tion 
an produ
e biased results, and for a lot of primitive
urves and surfa
es a 
losed form expression exists for the Eu
lidean distan
e. In the following wesummarize the Algebrai
 �tting, Taubin's �tting [13, 14℄ and an Eu
lidean �tting [7, 8℄.Algebrai
 �tting (AF) is based on the approximation of the Eu
lidean distan
e by the algebrai
distan
e distA (~xp;Z(f)) = f(~xp). Given the Algebrai
 distan
e for ea
h point, Eq.(2) 
an beformulated as an Eigenve
tor problem. To avoid the trivial solution faijkg = ~0 and any multipleof a solution, the parameter set faijkg may be 
onstrained in some way. The pros and 
ons ofusing algebrai
 distan
es are the gain in 
omputational eÆ
ien
y, be
ause 
losed form solutions 
anusually be obtained, but often the results are unsatisfa
tory.Taubin's �tting (TF) uses the �rst order approximation of Eq. (1) to estimate distT (~xp;Z(f)) [13℄.distT (~xp;Z(f)) = jf(~xp)jkrf(~xp)k (4)The pros and 
ons of using Taubin's distan
e are no iterative pro
edures are required and it isa �rst order approximation to the exa
t distan
e, but the approximate distan
e is also biased insome sense. If, for instan
e, a data point ~xp is 
lose to a 
riti
al point of the polynomial, i.e.,krf(~xp)k � 0, but f(~xp) 6= 0, the distan
e be
omes large whi
h is 
ertainly a limitation. Tominimize Eq.(2) the usage of the Levenberg-Marquardt (LM) algorithm is proposed.Eu
lidean �tting (EF) repla
es the approximated distan
es again by the Eu
lidean distan
e, whi
h isinvariant to transformations in Eu
lidean spa
e and not biased. For primitive 
urves and surfa
eslike straight lines, ellipses [15, 16℄, planes, 
ylinders, 
ones, and ellipsoids, a 
losed form expressionexists for the Eu
lidean distan
e from a point to the zero set and we use these. However, as thegeneral expression of the Eu
lidean distan
e is more 
ompli
ated and there exists no known 
losedform expression, an iterative optimization pro
edure must be 
arried out. Given the Eu
lideandistan
e distE(~xp;Z(f)) for ea
h point the following simple algorithm 
an be used:1. The Eu
lidean �tting requires an initial estimate for the parameters faijkg and we have foundthat the result of Taubin's �tting method is more suitable than others. We get the initialparameter set faijkg[0℄.2. In the se
ond step faijkg[s℄,s = 0; 1; : : :, is updated using the LM algorithm, minimizing thesum of Eu
lidean distan
es for all data points.3. Finally, ea
h faijkg[s+1℄ is evaluated by a M-estimator L on the basis of distE(~xp;Z(f)). IfL(faijkg[s+1℄) < L(faijkg[s℄), faijkg[s+1℄ is a

epted and the �tting will be 
ontinued with step2. Otherwise the �tting is terminated and faijkg[s℄ is the desired solution.3 Evaluating the Eu
lidean �ttingTo work out the pros and 
ons of Eu
lidean �tting we 
ompare the performan
e of the EF method withthe performan
e of AF and TF in terms of eÆ
ien
y, 
orre
tness and robustness for both simulated andreal data. In 
ase of simulated data we have generated data sets whi
h des
ribe (ellipti
al) 
ylindersand 
ones. The 3D data were generated by adding isotropi
 Gaussian noise � = f1%; 5%; 10%; 20%g.Additionally the surfa
es were partially o

luded. The visible surfa
es were varied between 1=2 (maximal
ase) and 1=6 of the full 3D 
ylinder. To show that the EF works even for real data we have used severalrange data sets. For all experiments we in
lude in all three �tting methods the same 
onstraints whi
hdes
ribe the expe
ted surfa
e type to enfor
e the �tting of a spe
ial surfa
e type. Finally, we look to thepose invarian
e of the �tting methods.3.1 EÆ
ien
yA good �tting algorithm has to be eÆ
ient as possible in terms of run time and formal 
omplexity.While the problem of 
omputational 
ost is no longer a really hard problem be
ause of the rapidlyin
reasing ma
hine speed, we should guarantee the �tting with a

eptable 
omputational 
ost as wellas the algorithm with relatively low 
omplexity. All algorithms have been implemented in C and the
omputation was performed on a Pentium III 466 MHz. The average 
omputational 
osts for the AF, TFand EF are in Tab. 1. As expe
ted the AF and TF supply the best performan
e. The EF algorithm2



Table 1: Average 
omputational 
osts in millise
onds per 1000 points.AF TF EFPlane 0.958 1.042 2.417Sphere 1.208 1.250 3.208Cir
ular 
ylinder 3.583 3.625 12.375Ellipti
al 
ylinder 13.292 13.958 241.667Cir
ular 
one 15.667 15.833 288.375Ellipti
al 
one 15.042 15.375 291.958General quadri
 18.208 18.458 351.083requires a repeated sear
h for the point xt 
losest to xp and the 
al
ulation of the Eu
lidean distan
e.A qui
k review of the values in Tab.1 shows that the 
omputational 
osts in
rease if we �t an ellipti
al
ylinder, a 
ir
ular or an ellipti
al 
one respe
tively a general quadri
, be
ause the distan
e estimationis more 
ompli
ated. In summary the eÆ
ien
y is a 
on of EF, but is bounded by a fa
tor of about 20times the performan
e of the other algorithms and is still 
omputationally reasonable for up to 106 datapoints if real-time performan
e is not needed.3.2 Corre
tnessIt is obvious that the �tting result should des
ribe the data set by the 
orre
t 
urve or surfa
e type. Thatmeans that it should not �t a false type to the data. To verify the 
orre
tness we tested if the �ttingresult of the (
onstrained) eigenvalue analysis 
orresponds to the general 
urve or surfa
e invariants. Ifone solution satis�es the 
onditions for one 
urve or surfa
e type, it is assumed that the �tting is 
orre
tin sense of an interpretable real 
urve or surfa
e. Otherwise, the �tting will be de�ned as failure. In ourexperiments AF failed sometimes (up to 23 per
ent) respe
ting our expe
tations, espe
ially with highernoise levels or a sparse data set (see Se
. 3.3). For TF and EF we had no failures in our experiments. Insummary the 
orre
tness is a pro of EF.3.3 RobustnessA �tting method must degrade gra
efully with in
reasing noise in the data, with a de
rease in the availablerelevant data, and with an in
rease in the irrelevant data. To evaluate the robustness of the proposedEF, we use syntheti
 generated data des
ribing an ellipti
al 
ylinder by adding isotropi
 Gaussian noise� = f1%; 5%; 10%; 20%g and partially o

lusion varied between 1=2 (maximal 
ase) and 1=6 of the full3D 
ylinder. In the �rst experiment the number of 3D points for the simulated 
ylinder was n = 100 andto measure the average �tting error ea
h experiment runs 100 times. The reported error is the Eu
lideangeometri
 distan
e between the 3D data points and the estimated surfa
es. The mean squares errors(MSE 's) and standard deviations of the di�erent �ttings are in Fig. 1. As expe
ted, TF and EF yield
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1%a. Algebrai
 �tting. b. Taubin's �tting. 
. Eu
lidean �tting.Figure 1: Average least squares error �tting a syntheti
 generated 
ylinder with added Gaussian noise� = f1%; 5%; 10%; 20%g. The visible surfa
es were varied between 1=2 (maximal 
ase) and 1=6 of thefull 3D 
ylinder. The number of trials was 500.the best results respe
t with to the mean and standard deviation, and the mean for EF is always lowerthan for the other two algorithms. The results of AF are only partially a

eptable, be
ause of the mean3



and the standard deviation. In the dire
t 
omparison of TF with EF the results of EF are mu
h betterand the mean of EF is always lower than the mean of the other two algorithms. As mentioned in Se
.3.2,AF 
an give sometimes wrong results whi
h means that the �tted 
urve or surfa
e types does not 
omeup with our expe
tations. We removed all failed �ttings out of the 
onsiderations.In the se
ond experiment, the number of 3D points was stepwise de
reased from n = 1000 down ton = 10 3D data points to evaluate the behaviour of the several �tting methods. Ea
h experiment runs100 times. The mean squares errors (MSE 's) and standard deviations of the di�erent �ttings are inFig. 2. As expe
ted, TF and EF yield also the best results in this experiment. With de
reased point
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1%a. Algebrai
 �tting. b. Taubin's �tting. 
. Eu
lidean �tting.Figure 2: Average least squares error �tting a syntheti
 generated 
ylinder with added Gaussian noise� = f1%; 5%; 10%; 20%g. The number of 3D points was stepwise de
reased from 1000 up to 10. Thevisible surfa
es was 5=12 of the full 3D 
ylinder. The number of trials was 500.density espe
ially the AF be
omes more and more unstable whi
h is re
e
ted in the mean and standarddeviation. Unexpe
tedly, the EF is very stable even with only n = 10 3D data points. This underlineson
e more the outstanding performan
e of the EF. In summary the robustness is 
learly a pro of EF.3.4 Pose invarian
eIt is obvious that the �tting results should be pose invariant. But, it is well known that this reasonableand ne
essary requirement 
annot be always guaranteed by all three �tting methods. To evaluate thepose invarian
e we use a real data set (see Fig. 3a.) des
ribing an ellipti
al 
ylinder. The normalized dataset was a) shifted, b) rotated, and 
) both rotated and shifted. A qui
k review of the residuals (MSE ) inTab. 2 shows AF and TF are not pose invariant while the EF is pose invariant. To illustrate the posedependen
y, the �tting results for position 3 are visualized in Fig. 3. In summary the pose invarian
e is
learly a pro of EF.Table 2: Residuals �tting an ellipti
al 
ylinder (see Fig. 3). The normalized 
ylinder was shifted byt = [0:3; 0:2; 0:1℄ (pos. 1), rotated by # = �=12 and n = [0:5; 1:0; 0:5℄ (pos. 2), shifted and rotated (pos.3). normal pos position 1 position 2 position 3AF [10�3℄ 0:5242 2:0181 2:6950 1:8271TF [10�3℄ 0:5024 1:5143 2:0277 1:3817EF [10�3℄ 0:4021 0:4152 0:8634 0:60884 Con
lusionThe fo
us was on the pros and 
ons of Eu
lidean �tting 
ompared with the 
ommonly used Algebrai
�tting and Taubin's �tting. Referring to our obje
tive we 
an �nally 
on
lude that we have more pros than
ons for the Eu
lidean �tting. While the main disadvantage of the Eu
lidean �tting, 
omputational 
ost,has be
ome less important due to rising 
omputing speed, robustness and a

ura
y in
reases suÆ
iently
ompared to both other methods. Additionally, the Eu
lidean �tting is pose invariant.4



a. normalized data. b. Algebrai
 �tting.

. Taubin's �tting. d. Eu
lidean �tting.Figure 3: Fitting results for a real range data (� 3300 points). The normalized data set was shifted byt = [0:3; 0:2; 0:1℄ and rotated by # = �=12 and n = [0:5; 1:0; 0:5℄.Referen
es[1℄ Allan, F. E. The general form of the orthogonal polynomial for simple series with proofs of theirsimple properties. In Pro
. Royal So
. Edinburgh, pp. 310{320, 1935.[2℄ Besl, P. J. and R. C. Jain. Three-dimensional obje
t re
ognition. Computing Survey, 17(1):75{145,1985.[3℄ Bookstein, F. L. Fitting 
oni
 se
tions to s
attered data. CGIP, 9:56{71, 1979.[4℄ Chui, C. K. and G. Chen. Kalman �ltering with real time appli
ations. Springer, Berlin-Heidelberg-New York, 1987.[5℄ Di
kmanns, E. D. and V. Graefe. Dynami
 mono
ular ma
hine vision. MVA, 1:223{240, 1988.[6℄ Duda, R. O. and P. E. Hart. The use of Hough transform to dete
t lines and 
urves in pi
tures.Comm. Asso
. Comp. Ma
hine, 15:11{15, 1972.[7℄ Faber, P. and R. B. Fisher. Eu
lidean �tting revisited. In 4th IWVF, pp. 165{175, 2001.[8℄ Faber, P. and R. B. Fisher. Estimation of General Curves and Surfa
es to Edge and Range Data byEu
lidean Fitting. submitted to the MVA.[9℄ Fitzgibbon, A. W. and R. B. Fisher. A buyer's guide to 
oni
 �tting. In 6th BMVC, pp. 513{522,1995.[10℄ Kanatani, K. Renormalization for biased estimation. In 4th ICCV, pp. 599{606, 1993.[11℄ Ray, W. J. J. Introdu
tion to Robust and Quasi-Robust Statisti
al Methods. Springer, Berlin-Heidelberg-New York, 1983.[12℄ Rosin, P. L. A note on the least square �tting of ellipses. PRL, 14:799{808, 1993.5



[13℄ Taubin, G. Estimation of planar 
urves, surfa
es and non-planar spa
e 
urves de�ned by im-pli
it equations, with appli
ations to edge and range image segmentation. IEEE Trans. on PAMI,13(11):1115{1138, 1991.[14℄ Taubin, G. An improved algorithm for algebrai
 
urve and surfa
e �tting. In 4th ICCV, pp. 658{665,1993.[15℄ Voss, K. and H. S�u�e. Adaptive Modelle und Invarianten f�ur zweidimensionale Bilder. Shaker,Aa
hen, 1995.[16℄ Zhang, Z. Parameter estimation te
hniques: a tutorial with appli
ation to 
oni
 �tting. IVC,15:59{76, 1997.

6


