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Abstract

This paper presents an empirical comparison of strategies for representing motion
trajectories with fixed-length vectors. We compare four techniques, which have all pre-
viously been adopted in the trajectory classification literature: least-squares cubic spline
approximation, the Discrete Fourier Transform, Chebyshev polynomial approximation,
and the Haar wavelet transform. We measure the class separability of five different tra-
jectory datasets - ranging from vehicle trajectories to pen trajectories - when described in
terms of these representations. Results obtained over a range of dimensionalities indicate
that the different representations yield similar levels of class separability, with marginal
improvements provided by Chebyshev and Spline representations. For the datasets con-
sidered here, each representation appears to yield better results when used in conjunction
with a curve parametrisation strategy based on arc-length, rather than time. However, we
illustrate a situation - pertinent to surveillance applications - where the converse is true.

1 Introduction
Motion trajectories form the basis for many current approaches to surveillance-related be-
haviour modelling and classification [5, 11, 12, 14, 23]. While trajectories provide a highly
efficient way to summarise surveillance footage, the unbounded dimensionality of trajectory
data presents an obstacle when applying machine learning techniques or building statistical
models from trajectory data.

It is, of course, possible to sidestep this issue in a variety of different ways. One promis-
ing approach is to decompose trajectories into prototype sequences corresponding - for ex-
ample - to motion vectors [12, 21, 23] or path segments [14], which can then form the basis
for constructing symbolic sequence models eg. [8, 14], or for constructing hierarchical mod-
els of prototype cooccurrence patterns eg. [21, 23]. Alternatively, it is possible to parametrise
trajectories so that a similarity function to be defined: in [17] trajectories are individually fit-
ted with HMMs to define a likelihood-based distance function, while in [11] trajectories are
resampled/padded to uniform length so that the Euclidean distance can be evaluated.

However, since anomalous behaviour detection forms a key motivation for trajectory
classification algorithms, it is also useful to be able to represent trajectories in a fixed low-
dimensional vector form, so that a wide range of current approaches to multivariate outlier
detection see eg. [15] could then be applied. Moreover, it may be useful (eg. for incre-
mental/online learning [20]) to be able to represent trajectories in a pre-defined parameter
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Figure 1: Representation of trajectory data as separate (X and Y vs time) signals.

space that does not need to be learned from data. Several recent trajectory classification ap-
proaches solve this problem by applying 1D signal approximation techniques to describe the
X and Y coordinate sequences of a given trajectory with a fixed set of parameters. An early
instance of this approach was proposed by Sahouria and Zakhor in [19], where Haar wavelet
coefficients are used to represent trajectories for video indexing purposes. More recently,
Naftel and Khalid have explored the use of the Discrete Fourier Transform and Chebyshev
polynomial approximations for trajectory classification in [16], while Sillito and Fisher have
adopted a least-squares cubic spline approximation as the basis for an incremental trajectory
modelling algorithm in [20].

Given the wide selection of different techniques, this paper poses and attempts to answer
a simple question: what is the best way to represent a set of trajectories with fixed-length
vectors? Firstly, Section 2 reviews the preceding trajectory parametrisation techniques and
clarifies the manner in which they are implemented in this paper; two useful non-parametric
techniques for quantifying class separability are then described in Section 3. Finally, Section
4 presents quantifications of the trade-off between dimensionality and class-separability for
each representation, using several different real trajectory datasets.

2 Trajectory Representations
As illustrated in Figure 1, a motion trajectory can be considered in terms of two independent
signals: X and Y positions vs time. This section briefly reviews the four approaches identi-
fied in the preceding section: each provides a means to describe arbitrary-length coordinate
vectors ~X and ~Y , sampled at times ~T = {t1, . . . tN}, with fixed-length parameter vectors ~CX

and ~CY , which can then be concatenated as a single vector describing the trajectory:{
~X ,~Y ,~T

}
→
[
CX

1 , . . . ,CX
M,CY

1 , . . . ,CY
M
]

(1)

In each case the parameters ~CX , ~CY extracted for a given coordinate sequence define a
curve with respect to an underlying curve parameter, over a fixed interval. As suggested by
Figure 1 a natural choice for this parameter is time, another possibility - relevant to trajectory
representation - is arc-length (ie. the total distance traversed at a given point) [9]. We explore
both possibilities - thus, in the remainder of this section, the parameter sn accompanying the
nth coordinate pair xn,yn could refer interchangeably to one of the following:

1. Proportion of total time: sn =
tn
tN

2. Proportion of total arc-length: sn = ∑
n
i=2

√
(xi− xi−1)2 +(yi− yi−1)2

∑
N
i=2

√
(xi− xi−1)2 +(yi− yi−1)2
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Each of the following trajectory representation strategies defines a curve approximation
as sum of M basis functions h1(s), . . . ,hM(s) weighted by a corresponding sets of coeffi-
cients ~CX and ~CY , so that X(s) = ∑

M
m=1 hm(s) ·CX

m and Y (s) = ∑
M
m=1 hm(s) ·CY

m. What dis-
tinguishes each method is the nature of the basis functions, and the manner in which the
coefficients are determined. In each case we describe how to determine a set of coefficients
~CX = [CX

1 , . . . ,CX
M] approximating an X coordinate sequence ~X = [x1,...xN ] with parameter

values ~S = [s1, . . .sN ]T , noting that exactly the same procedure can be applied to~Y .

Haar Wavelet Coefficients The Haar wavelet basis set is defined on the interval [0,1],
consisting of a scaling function φ(s), and wavelet functions ψ j,k(s), where the indices k ∈
[0 . . .2 j−1] and j determine location and scale respectively [3, p 60]:

φ(s) =

{
1 if 0≤ t < 1
0 otherwise

ψ j,k(s) = 2
j
2 ψ(2 js− k) : ψ(s) =


1 if 0≤ s≤ 1

2
−1 if 1

2 < s≤ 1
0 otherwise

(2)

Given a signal ~X = [x1, . . .xN ], where N is an integer power of 2, Haar wavelet coeffi-
cients can be calculated using the following closed-form expression [24, p 343] (or, far more
efficiently, by using a transformation matrix - see [3] for details):

α =
1
N

n

∑
i=1

φ(si) · xi β j,k =
1
N

n

∑
i=1

ψ j,k(si) · xi (3)

The requirement that signal length should be an integer power of 2 poses a problem
for trajectory parametrisation. We address this by resampling trajectories to an appropriate
length (as proposed in [19]): specifically, we linearly interpolate each coordinate sequence
to a uniform length of 1024 (ie. 210) elements. A vector of 2J coefficients (where J ≥ 1) can
then be constructed to represent the Jth resolution approximation to the resampled signal:

~CX =
[
α,β0,0, . . .βJ−1,2J−1

]
(4)

Discrete Fourier Transform The Discrete Fourier Transform (DFT) allows a series of
measurements sampled at regular intervals to be described as a weighted set of sinusoidal
functions with different frequencies, so that the weights for the constituent frequencies en-
code the information contained in the original signal. For a signal ~X of length N, there are N

2
distinct frequencies; a complex number capturing the magnitude/phase of the k-th frequency
can be calculated as follows (where i is the imaginary unit

√
−1) [18, p 607]:

fk(~X) =
1
N

N

∑
n=1

xn exp
(
−2πi(k−1)(n−1)

N

)
(5)

Noting that the imaginary component of f1 is always zero, an approximation to a set
of regularly sampled coordinates ~X = [x1, . . .xN ] can thus be represented with a 2M − 1
dimensional vector as follows (where ℜ(z) and ℑ(z) denote the magnitude of the real and
imaginary components of z):

~CX =
[
ℜ( f1(~X)),ℜ( f2(~X)),ℑ( f2(~X)), . . . ,ℜ( fM(~X)),ℑ( fM(~X))

]
(6)
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For trajectory data regularly sampled in time, the DFT implicitly yields a temporal parametri-
sation. To achieve spatial parametrisation for this method we linearly interpolate the original
trajectory to create a new coordinate sequence regularly sampled in terms of arc-length.

Chebyshev Polynomial Coefficients The nth Chebyshev polynomial function (n ≥ 0) is
defined on the interval s ∈ [−1,1] as follows:

Tn(s) = cos(narccos(s)) (7)

In order to calculate coefficients to approximate a function X(s) with the first M Cheby-
shev polynomials, it is necessary to evaluate X(s) and T0(s), . . . ,TM−1(s) for values of s
where TM(s) = 0. There are M such values for TM(s), with the kth one given by s0,k =
cos
( 1

M π(k + 1
2 )
)

[18, p 233]. Given a discrete sequence ~X with parameter values ~S (ranging
between 0 and 1), we rescale ~S to the interval [−1,1] and use linear interpolation to find an X
value, x0,k, for each s0,k. Finally, each coefficient c j can be calculated as follows [18, p 234]:

c0 =
1
M

M−1

∑
k=0

x0,k ·T0
(
s0,k
)

c j>0 =
2
M

M−1

∑
k=0

x0,k ·Tj
(
s0,k
)

(8)

Cubic B-Spline Control Points The ith member of a set of p cubic B-spline functions
can be defined as follows [10, p 160], where m denotes the order of the function (m = 4 for
cubic splines) and~τ denotes a “knot vector” with p+4 elements such that~τ1...4 = [0,0,0,0],
~τ5...p = 1

p−3 · [1, . . . , p−4], and~τp+1...p+4 = [1,1,1,1]:

Bi,1(t) =
{

1 if τi ≤ t < τi+1
0 otherwise Bi,m(t) = t−τi

τi+m−1−τi
Bi,m−1 + τi+m−t

τi+m−τi+1
Bi+1,m−1 (9)

An approximation for a set of N coordinates ~X with corresponding parameter values ~S
can be expressed in terms of a vector of p unknown coefficients ~CX , and an N× p matrix
Φ where Φn,i = Bi,4(sn), so that ~X ≈ Φ ~CX . The p coefficients which minimise the sum of
squared errors between the original coordinates and their approximation can then be found
using the pseudoinverse operator Φ† = (ΦT Φ)−1ΦT as follows [2, p 142]:

~CX = Φ
†~X (10)

3 Separability Measures
Given a set of trajectories sampled from several different classes of motion, and a potential
parametric representation, we wish to quantify the extent to which instances from each class
occupy class-specific regions in the space defined by the chosen representation. This section
highlights two measures that can be used to provide an indication of class separability.

Graph-based within-vs-between class edge-weight ratio (JRNG) In [25] Zighed et al.
proposed a non-parametric class separability measure which works by comparing the sets
of within- and between-class edges of a sparse weighted graph spanning the dataset. To
measure separability, a Relative-Neighbourhood Graph (see [22]) is constructed from the
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Figure 2: Comparing graph-based separability measure JRNG [25] with the within-vs-between class
scatter ratio [7, p 446] JS = Tr{S−1

W SB} (right). Plots of two-class datasets A and B (left, middle)
show relative neighbourhood graph edges (thick/thin edges indicate between/within class links, lighter
shades indicate lower weights). Although classes in dataset B overlap significantly, it has a higher JS
value than dataset A which has no overlap. In contrast JRNG provides a reasonable indication of class
overlap.

dataset, where each node represents an individual data point, and edges join only those pairs
of nodes that have no mutually closer neighbour. Each edge is then weighted by a similarity
function 1

1+d(xi,x j)
, based on the Euclidean distance d(xi,x j) between two data points.

The resulting graph can be described by a matrix W , with each element wi j given by:

wi j =

{
1

1+d(xi,x j)
if d(xi,x j)i6= j ≤max [d(xi,xk),d(x j,xk)]∀k/∈{i, j}

0 otherwise
(11)

Quantities analogous to within and between class scatter can be defined in terms of this
matrix, through summation of the weights of edges joining members of the same class/those
joining members of different classes as follows (where I(�) denotes the indicator function,
and Ln denotes the label of the nth data point):

Ewithin=
N−1

∑
i=1

(
N

∑
j=i+1

I(Li = L j) ·wi j

)
Ebetween =

N−1

∑
i=1

(
N

∑
j=i+1

I(Li 6= L j) ·wi j

)
(12)

Noting that edges are only present for pairs of data points that are (relatively [22]) prox-
imal, it is possible to measure separability in terms of Ewithin and Ebetween. In particular,
for datasets whose classes are well-separated, the sum of edge weights joining members
of the same class (Ewithin) will constitute the majority of the total sum of edge weights
(Ewithin + Ebetween). This leads to the following measure, ranging between 0 and 1, which
increases proportionally to class separability:

JRNG =
Ewithin

Ewithin +Ebetween
(13)

As illustrated in Figure 2, this provides a better separability measure for non-unimodal
datasets than the standard (see eg. [2, 7]) within-vs-between class scatter ratio JS = Tr{S−1

W SB},
where SW and SB denote within and between class covariance matrices respectively.
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Leave-one-out nearest-neighbour classification accuracy (JNN) As a supplementary in-
dicator of class separability, we also measure the average leave-one-out nearest-neighbour
classification accuracy for the dataset. This classification method assigns to each data point
the label of its nearest neighbour: it is thus reasonable to assume the proportion of correct
classifications will be proportional to the separation of a set of classes in a given feature
space. We quantify classification accuracy in a manner which is invariant to differences in
class proportion, by averaging the classification rates calculated separately for each of K
classes as follows (where Ln and Pn denote true and predicted labels for the nth data point):

JNN =
1
K

K

∑
k=1

(
1

Nk
∑
∀i∈Ck

I (Li = Pi)

)
(14)

This measure therefore provides a useful supplement to JRNG since the latter is affected
by class proportions (because classes with fewer members contribute fewer graph edges).

4 Experiments

Datasets We use the approaches described in Section 2 to represent the following trajectory
datasets for a range of dimensionalities, before measuring separability as described earlier.

CAVIAR NGSIM ASL Gun point Pen digits

Figure 3: Trajectory datasets (examples coloured by class). See text for description.

1. The CAVIAR dataset [6]. We use a set of 111 trajectories corresponding to a side-on view of a
shopping centre, each labelled according to one of 6 possible routes (this dataset is used/labelled
in a similar fashion in [16]).

2. The NGSIM dataset [4]. We use a set of 1758 vehicle trajectories from the “Peachtree St.”
scenario, labelled according to their entry/exit point combination, yielding 33 different classes
(we disregard tracks lasting <2 seconds / classes with <10 examples).

3. The Australian Sign Language dataset [1]. We use a set of 2565 right-hand trajectories corre-
sponding to 95 different words. (Right-hand trajectories from this dataset have previously been
used to assess trajectory classification in [16].)

4. The Gun-point dataset [13]. This dataset contains 233 hand trajectories with two distinct classes.
One class corresponds to the to drawing/pointing of a gun, while a second class corresponds to
innocuously pointing forwards without a gun.

5. The Pen-Based Recognition of Handwritten Digits dataset [1], which contains 10,992 pen tra-
jectories corresponding to instances of the digits ’0’ to ’9’ written on a graphics tablet. We use
2000 randomly selected examples from this dataset (200 per digit).
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Figure 4: Graph-based separability measure JRNG calculated for each dataset, using different trajec-
tory representations over a range of dimensionalities. (Please note that the Y axis scale differs between
plots - the observed differences in separability are small.) See text for discussion.
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Figure 5: Leave-one-out 1-nearest neighbour classification rate JNN (corrected for differences in class
size) for the CAVIAR and NGSIM datasets (which both have unequal class sizes), using different
trajectory representations over a range of dimensionalities. See text for discussion.

Results Figure 4 shows the separability values obtained using JRNG (as described in Sec-
tion 3) for each representation and its corresponding range of dimensionalities (within the
range 8-32). In both figures, each row shows results for a given dataset: the left hand
plot shows results for representations parametrised by arc-length while the right hand plot
shows results for those parametrised by time; plots within each row have identical Y-axis
scale/limits to facilitate the comparison of time/arc-length parametrisations.

It can immediately be seen that in most cases the differences in separability values
are small, with the observed values typically spanning a range of around 0.05 (the JRNG
measure assigns values between 0 and 1). The results do not, therefore, indicate that the
choice of representation makes more than a small difference to class separability. A nat-
ural question to ask, however, is whether there is any persistent “ordering” corresponding
to different representations within the small range of observed variation. In most cases,
the Haar representation appears to improve upon the DFT representation, and the highest
separability values are yielded by either the Chebyshev or Spline representations. For the
DFT/Chebyshev/Haar representations, separability appears to increase with dimensionality
before reaching a plateau at around 20 dimensions. This trend is less clear for the Spline
representation: this may be a consequence of the least-squares fitting procedure, indicating
that greater fidelity to the original trajectory (as measured by the sum-of-squared errors) may
not directly correspond to better class separation.

The impact of the two different curve parametrisation strategies (ie. either proportion of
total time or of total arc-length) can be examined by comparing the left/right hand plots for
each dataset. For the CAVIAR, Pen Digits and Gun-point datasets, parametrisation by arc-
length appears to improve separability in all cases. For the ASL and NGSIM datasets this
trend is less clear, although in both cases the highest observed separability values correspond
to arc-length parametrisation. Noting that the CAVIAR and NGSIM datasets contain widely
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Figure 6: Comparing the separability of simulated trajectories with 6 distinct spatiotemporal classes
(right, coloured by class) when represented using splines parametrised by time and arc-length (left).
Trajectories follow two possible directions, with three possible temporal profiles: the simulated pedes-
trian may either pause (in one of two locations) or progress without pausing.

varying class-proportions, we also measure the class-corrected nearest neighbour classifi-
cation rate JNN for these datasets, shown in Figure 5. In both cases the relative ordering
of separability values is very similar to that observed for the JRNG plots. Again arc-length
parametrisation yields an improvement over time-based parametrisation: however, this is
most significantly manifested for the NGSIM dataset where arc-length parametrisation yields
a large (∼ 10%) improvement in classification rate.

A clear potential reason for the sharp improvement observed when using arc-length
parametrisation to represent the NGSIM dataset pertains to the wide range of different spatio-
temporal profiles present in this data: since this data contains vehicle trajectories from a road
segment which includes traffic lights etc., it is likely to yield a widely differing set of spatio-
temporal profiles for a given route. While one would not automatically rule out the possibil-
ity of a single representation which captures spatial and spatiotemporal characteristics, the
results obtained for NGSIM dataset indicate that a single spatio-temporal representation may
be inadequate if a sufficiently large number of different spatial and spatiotemporal categories
are present - regardless of the particular method used.

However, while the results presented here favour the use of arc-length parametrisation,
this strategy is likely to be inadequate for many trajectory classification purposes: for surveil-
lance applications, the spatiotemporal characteristics of trajectory may capture the most im-
portant information for behaviour classification. To illustrate this point, Figure 6 shows
a set of simulated trajectories with 6 distinct spatio-temporal categories, together with its
corresponding separability values when represented using splines with time and arc-length
parametrisation: it is clear that temporal parametrisation allows near-perfect separation of
the 6 classes, while arc-length parametrisation only allows partial separation. This type of
spatio-temporal classification problem is likely to be important in a surveillance context,
where loitering in different locations may have very different implications.

5 Conclusions

This paper has explored the impact of different parametric trajectory representations on the
class separability of a range of datasets. The results obtained indicate two things: Firstly, for
a given curve parametrisation strategy, the difference between the separability of different
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trajectory representation strategies is small, but the Chebyshev and cubic Spline representa-
tions appear to provide the best results.

Secondly, although temporal parametrisation is essential if spatio-temporal categories are
to be distinguished, curve-parametrisation based on arc-length yields improved separability
for the datasets considered here. This is particularly noticeable for the NGSIM dataset, in-
dicating that an all-encompassing spatio-temporal parametric trajectory representation may
be an unrealistic prospect for complex real-world surveillance scenarios, where the need to
compromise between adequately representing the spatial and temporal characteristics of tra-
jectories may prove unacceptable. Thus, if parametric trajectory representations are to be
used, the logic of hierarchical modelling strategies (eg. [11] where spatio-temporal charac-
teristics are modelled separately for different spatially-defined trajectory clusters) becomes
apparent.

Finally, it is important to note that the experiments presented in this paper measured class
separation based on Euclidean distances between raw/unprocessed coefficient vectors: it is
thus possible that further processing of these vectors (eg. by re-weighting or rescaling at-
tributes) may yield improved separation for a given representation. In this light, it is possible
that the potential levels of classification performance achievable for each representation may
follow a very different pattern to that observed here. In a similar vein, it should be also be
noted that the set of trajectory representations examined here merely represents the choices
previously adopted in the literature: it is not unlikely that there exist other representations
(eg. one of many different families of wavelets) that may be preferable.
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