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Some three dimensional scene analysis programs pair
data surface patches (i.e. as eztracted from range data)
to model surface patch features. From the correspon-
dences, a vartety of rotation and translation constraints
of the model can be deduced, depending on the assump-
tions behind the correspondences. This paper elaborates
some of the constraints available when single planar
patches are related. The constraints are ezpressed alge-
braically for paiches that are: nearby, touch, contained,
or registered. The constraints are used to estimate object
position, given a single patch correspondence. Ezamples
of their use are given.

Fisher and Orr [1] have been investigating algebraic
constraints as a representation of partial position con-
straints, much as in the ACRONYM system [2]. This
research is being undertaken as part of the IMAGINE II
scene analysis system (3, 4], which is currently concerned
with surface-based object recognition.

The data primitives in the matching are surface patches,
which can be obtained by a variety of techniques for seg-
menting range data (e. g. [5, 6]). These processes result
in data patches with consistent curvature signs. Ob-
jects are defined using the SMS models 7], with surface
patches as one of the primitive features,

The model matching process is not described here, but
results in making correspondences between model and
data surface patches. With these correspondences, it is
possible to estimate the position of the object containing
the patches (assuming the correct model has been chosen
and the correspondences were made correctly) or reject
the correspondences as inconsistent.

A key element of the geometric analysis is formulating
algebraic constraints between a rotated and translated
model and the observed surface patches. The constraints
attempt to define or refine the set of allowable positions
for the object, consistent with the observed data patches.
For example, pairing a planar data patch with a planar
model patch immediately constrains the rotations allow-
able, because the transformed model normal n;,, must
be aligned with the data normal ny, within an angular
observation error €. Hence,

T, - vig > cos(e)

is a constraint on the rotation component of the posi-
tion T (here expressed as a prefix transformation on the
model normal n;,.)

25

There are a variety of constraints on both the rotation
and translation, depending on the assumptions made
about the relationship between the model and data
patches, such as whether the patches overlap or one is
contained in the other. The generation of the constraints
is the responsibility of the matching program, which de-
pends on the constraint analysis program for solving
them. Each model-to-data correspondence may create
several constraints. Moreover, there may be several cor-
respondences that each add constraints. Altogether, an
analysis may generate many constraints that have to be
solved to generate a single position estimate.

We have been using a value passing network 1] based on
interval arithmetic [8] to solve the constraints, though
other representation and solution techniques are possi-
ble, such as symbolic algebra [2] or statistical [9] tech-
niques. The networks are created from an underlying
algebraic description of three-dimensional geometric re-
lations and transformations. These networks implement
the five key visual geometric reasoning functions: locate,
predict, transform, inverse and merge [10]. The networks
also produce tighter bounds than simply using symbolic
algebra and have greatly improved efficiency (over, e.g.

ACRONYM [2)).

The forms of the algebraic constraints tend to be few and
hence standard subnetwork modules can be developed,
with instances allocated as geometric constraints were
identified during model matching. For example, network
modules exist for constraints like: “a model vector is
transformed to a data vector” and “a data boundary
must lie inside a transformed model boundary”.

As there are a variety of model and data surface patches,
a variety of constraints can be generated. Elsewhere [11],
we consider the constraints generated from pairing in-
stances of planar, cylindrical, conical and generic surface
patches. This paper presents the algebraic position con-
straints that we have identified for simply pairing planar
model and data patches, under a variety of assumptions
about the correspondence.

There is some similarity between these results and our
earlier work [12], except that that work used two-
dimensional image measurements, whereas the new re-
sults use three-dimensional measurements, and the pre-
vious work also used a set of heuristics to infer the
positions, whereas here the position constraints are ex-
pressed explicitly and solved in a network computation.
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Figure 1: Planar Patch Descriptions
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Figure 2: Width Bounding of An Irregular Figure at One
Orientation

1 Data Patch Descriptions

In this paper, we assume that the features extracted from
the image data are planar surface patches. A planar
patch (see Figure 1) is flat and has bounded extent. Ir-
regular shapes cause problems, because it is possible that
a data patch might only be paired with a model patch
in one way, and we would like to exploit as much infor-
mation as possible. However, we would also like to use
a simple scheme that can be used with all patches, ir-
respective of shape. Hence, we represent planar patches
by the bounding width (w4(#)) at each orientation (4)
(see Figure 2) for our position constraints. This width is
a measure of the maximum extent of the surface in each
direction. The orientation ¢ = 0 is chosen arbitrarily,
and each width measure has an error range of +4, asso-
ciated with it. Additionally, we use the position (p3) of
the center-of-mass (with the isotropic error range +7),
the direction rig of the surface normal at that point (with
angular error +¢) and an arbitrary direction dy in the
patch (observed with angular error +8).

2 Model Patch Descriptions

The constraints given in the following sections are de-
signed for use with the planar surface primitives of
the SMS object representation system [7| used in the
IMAGINE II system (3] being developed.

SMS is a geometric modeling system, based on multi-
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ple, alternative representations (curve, surface or first
and second-order volumetric primitives). The models
need not have all features specified, and the features
are usually represented in a subcomponent hierarchy.
The features may have parameterized sizes and prop-
erties (e.g. surface curvatures) and there may be uncon-
strained degrees-of-freedom in the reference frame trans-
formations. The goal of SMS is to represent the visual
aspects of an object that characterize its identity, rather
than describe its shape. Hence, the modeling approach
aims to provide representations that closely correspond
to reliably extractable image features.

The model surface patches are characterized similarly to
the data patches except that they are represented with a
m subscript instead of a d subscript. Not all of the shape
information is modeled explicitly in the SMS scheme, but
all are straightforward and trivial extensions.

3 Constraints From The Planar
Patch Pairings

3.1 Specifying Position Constraints

Our key geometric reasoning data type for high-level
computer vision is the position. It represents the rel-
ative spatial relationship between two visual features
(e.g. world-to-camera, camera-to-model, or model-to-
subcomponent). Positions are represented using a 3-
vector representing for relative translation and a unit
quaternion (4-vector) for relative orientation (of the form
(cos(8/2), sin(0/2)@) for a rotation of § about the axis
).

The key geometric relationships concern relative position
and have two forms — exact and partially constrained.
An example of an exact form is: let object A be at global
position (74,%4), (rotation #4 and translation ) and
object B be at (74p,t4p) relative to A. Then, the global
position of B is:

(75,%p) = (rap *ra,raB *ta*rlsp +tap)
where * is the quaternion multiplication operator and '
is the quaternion inverse operator.

A partially constrained position is given by an inequality
constraint, such as:
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This means that the z component of A’s global position
is at least 50.

Other relationships concern vectors or points linked by
a common transformation, as in T'U; = ¥, or the prox-
imity of points or vectors:

P — Pall < €

A complication is that each data measurement may have
some error or uncertainity, and hence the estimated val-
ues may also have these. Or, a variable may be only
partially constrained in the model or by a priori scene



information. Hence, each numerical quantity is repre-
sented by an interval [8] of possible values.

Decisions about patch pairings is the responsibility of
the scene analysis program, that then determines which
constraints are generated. The main consideration is the
extent to which we can constrain their relative position,
based on a priort knowledge. For example, if we are
observing rigid man-made identical objects, then we can
assume that the observed data patch will be a subset of
the corresponding model patch. This is our assumption
A3, and there are both stronger and weaker assumptions
considered. The assumptions (from weak-to-strong) are:

A1l Both model and data patches are part of a larger
surface of bounded size R, but the patches need not
overlap.

A2 The model and data patches must touch or overlap.
A3 The data patch is a subset of the model patch.

A4 The centroids of both the model and data patches
correspond to the same point.

Note that each assumption is increasingly strict and so
any constraint that applies when Al holds also applies
when (e.g.) A3 holds.

Position constraints are expressed algebraically, using
the prefix transformation T' applied to some model fea-
ture (e.g. surface normal), and showing the relation the
transformed model feature must have with observed data
features. Where possible, both rotation and translation
constraints are specified. Also, some constraints are not
perfect, to simplify their formulation.

Translation constraints are usually of the form:
(Tpm — pa) € I(7)

meaning the vector distance between the transformed
model point and a given data point lies within the inter-
val vector [8] I(¥) defined by:

If ¥ = (rz, ry,r:) then
1(7) = {(z,9,2) :| @ [<] vz | [y [<] g |y [ 2 <] 72 [}

The interval vector expression I(@) + I(b) has the value:
{(¢+d:2eI(a),d e I(b)}

The translation constraints are based on displacements
in three orthogonal directions determined by the surface
normal (rig), the elongation axis (d3) and the cross prod-
uct (¢z) of the two:

rg X dg

€d=g=—=7
lI7a x dall

3.2 Planar Data-to-Model Patch Con-

straints

We now look at the constraints that can be generated
by pairing planar model and data patches. The main

rotation constraints are based on aligning normals and
elongation axes. The translation constraints are largely
based on proximity and distance between the designated
points on the surface.

The first rotation constraint relates the surface normals,
within the observed angular error of ¢, assuming Al:

Trim - rig 2> cos(e)

If A3 holds, we can relate the surface orientations, be-
cause the bounding widths may limit the rotation of the
model surface in the plane of the data surface, such that
it fits around the observed data patch. Let:

wm(¢) = bounding width (see Figure 2) of model
surface at orientation ¢

w4(4) = bounding width of the data surface at
orientation ¢

0= {0:V¢(wm($ —0) > wa(é) — 6.} is the set
of possible rotations of the model that can
fit around the data

dm = the nominal unit vector in the plane of the
model surface (at orientation ¢,,)

dy = average orientation of a;, over (] (at
orientation ¢4)

If stze()/2+ f < « then:
Tay, - dg > cos(size(0)/2 + B)
If more than one interval of angles exists in (1, then each

interval creates an independent constraint.

If assumption A4 holds, then a similar constraint can be
developed, except where w(¢) refers to the cross-section
width about the patch centers.

All translation constraints have the form:
(Tpm — pa) € I(Anyg) + I(Bdy) + I(Cca) + I(7)

where the constants A, B and C depend on the specific
assumptions:

(| Asmp. | A B |
Al [[eV/B?2+C2? | R— L(M + wa(44)) — 6.) ||
A2 E'\/82 + C? '.:'(N + wd(qbd) + 6w) u
A3 || eVB?+C? 2(U—wa(¢a) +6.) |

| Asmp. | C |
Al R—%(M-i—wd(tﬁd-l-wh)-—éu)
A2 2(N + wa(dq + 7/2) + 6,,)
A3 2(V — wq(da + 7/2) + b,)
Where:

M= m£n¢(wm(¢))

N = mazy(wm(4))

U = mazgy(wm(4)) over ¢ — ¢y + 44 € Q

V = mazy(wm(¢ + 7/2)) over ¢ — ¢, + ¢a €0

If assumption A1 or A2 holds, then the orientation of
dy is arbitrary, and is chosen to correspond with angle



¢a = 0. If assumption A4 holds, then all translation
constraints are of the form:

(Tpm — pa) € I(7)

and are not listed further below. (7 is the isotropic error
on the observed point py).

4 Examples

There are a great many constraints possible from the
results presented in this paper, and it is not useful to
present experiments for all. Instead, this section will
present results from the planar model patch to planar
data patches pairing relationships for both assumptions
A2 (overlap) and A3 (data subset of model).

The experiments will involve the estimation of the refer-
ence frame of a single data patch, given its observation,
and applying the constraints given in Section 3.

The experiments start with a known model surface nor-
mal (n;, = (0,0, 1)), axis (a7 = (1,0,0)) and central
point (pm = (0,0, 0)).

We then randomly pick a rotation quaternion (dis-
tributed uniformly over the 4-dimensional unit sphere)
and a translation (each component distributed uniformly
over the range +100). Using this position (Pirye), We
transform the input features to derive some scene fea-
tures: n,, a, and p,.

The scene features are then corrupted with randomly
generated noise to generate the observed features: riy,
dg and py. The corruptions were uniformly distributed
subject to:

—

1y - cos(e)

da, - cos(f)

(72 — pa) € 1(3)
The observed features were then paired with the modeled
features, to derive the geometric position constraints,
based on the results of Section 3.2.

ng >
ag >

The constraints were input into a geometric reasoning
network [1] set up for evaluating these constraints. Fig-
ure 3 shows the network for the experiments. This net-
work implements a SUP/INF interval bounding of all
components of the position, as a function of the inter-
vals bounding the inputs. The inputs for this network
are:

the model vectors n;,, a;, and p;, extended to form
intervals with width 0.0001,

the data vectors riy and d; extended to form inter-
vals with width 0.0001,

the estimated position p; extended to form a larger
interval given by the translation constraint and

the rotation dot product constraints dot, and dot,
given by the rotation constraints
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Figure 3: Geometric Reasoning Network For Estimating
Position

The main component of the network is the “TV2” mod-
ule near the center. This module relates the input and
output vectors according to the position P (near the bot-
tom left) and is defined by the algebraic relationships be-
tween the input and output vectors. Similarly, the trans-
lation component of P is estimated by the “TP” mod-
ule that relates the model and observed feature points.
There are also two “DOT3” modules that implement
the rotation dot product constraints. The vectors 1
and @; are intermediate results. Finally, there are sev-
eral “UNIT3” and “UNIT4” modules that enforce unit
3-vector and 4-vector constraints.

This sets up the network for estimating the position P.
We then evaluate the network to estimate the position.

The relationship between the true and estimated posi-
tion provides the statistical output described below. All
the reported results below are based on 100 randomly
generated trials of the particular experiment. All exper-
iments used the same 100 trial data sets.

The following parameters were used (where p is a per-
centage parameter described below):

l Model Value l Data Value Error l
wm(¢) * [wa(4) Pwm(9) [ 8, 10
i (0,0,-1) | ng transformed | ¢ 0.1
am, (1,0,0) | dq transformed | 0.1
ey (0,0,0) | pa transformed | v 1.0
* - the test figure was a rectangle of length 100 and

width 30

The experiment was run using assumptions A2 and A3
and the parameter p was allowed to vary from 1.0 to
0.1 in steps of 0.1. This allowed the exploration of the
constraint obtainable because the patch was limited in
its ability to rotate relative to the model patch.

In all experiments, the true object position was contained
within the estimated interval position, so the constraints



appear to be correct. There is then the question of how
tight the constraints are, and this iz the main point of
the experiments.

Five statistics were extracted from the experiments:

1. the number of times that the rotation had at least
two independent constraints and hence was fully
constrained (though subject to error).

. the mean angle between the input and output
quaternion vectors (a measure of how well the rota-
tion was estimated, and ideally should be zero)

. the average width of the interval of possible values
for a component of the rotation quaternion (a mea-
sure of how tight the estimates are)

. the mean distance between the input and estimated
translation (a measure of how well the translation
was estimated, and ideally should be zero)

. the average width of the interval of possible values
for a component of the translation (a measure of
how tight the estimates are)

More precisely, the error measures are defined by:

Angle = + Ef__l cos~(doigos + d1iq1i + d2iga
+33i93i)

QWidth = (& Y| width(Dy;) + width(Dy;)
swidth(Dy;) * width(Ds;)) %

Trans = l—tr 2?’;1 Vdist

dist = (tzi — v2i)? + (tys — vyi)® + (tai — vsi)?

T Width = (& YL, width(Ty;) * width(Ty;)
swidth(T,;))}

where:

gji is the j** component of the i*® true scalar
rotation quaternion g;

dj; is the mean value of the j** component (D;)
of the it® estimated rotation interval D;

dj; is the unit-quaternion normalized value of dj;

t,; is the mean value of the x-component (T%;)
of the it"* estimated translation interval
vector i'_':

g is the x-component of the it* true
translation v}

width(X) is the width of scalar interval X

The results of the experiment for assumption A3 are
shown in Table 1. As the shrinkage percentage was in-
creased, the rotation and translation errors increased, as
expected, because the model patch was freer to move
about the data patch. At 20% there was a dramatic in-
crease in the errors, because the patch size was small
enough that it could rotate freely within the model
patch, and hence only one direction vector was effec-
tively constrained (the surface normal). The mean trans-
lation error was constant and mainly resulted from the
isotropic error on the observed central point.
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Table 1: Plane-Plane Parameter Estimation Statistics
for Assumption AS

[ p (%) | Con | Angle | Q_Width | Trans | T_Width ||

100 | 100 | ©0.23 0.69 1.01 3.82
90 | 100 | 0.27 0.74 1.01 12.74
80 | 100 | 0.31 0.77 1.01 22.75
70 | 100 | 0.41 0.89 1.01 32.80
60 | 100 | 0.46 0.95 1.01 44 .52
6O | 100 | 0.563 1.04 1.01 56.83
40 | 100 | 0.77 1.25 1.01 72.26
30 | 100 1.07 1.48 1.01 92.86
20 0 1.42 1.52 1.01 | 100.28
10 0| 1.42 1.52 1.01 | 107.20

Table 2: Plane-Plane Parameter Estimation Statistics

for Assumption A2

[»_ (0 ] Con [ Angle [ Q_Width | Trans | T_Width

100 o[ 1.42 1.52 ] 1.01 ] 182.89 ||
90 0| 1.42 1.52 | 1.01| 176.03
80 0| 1.42 1.52 | 1.01 | 169.17
70 0| 1.42 1.52 | 1.01| 162.31
60 0| 1.42 1.52 | 1.01 | 155.44
50 0| 1.42 1.52 | 1.01 | 148.57
40 0| 1.42 1.52 | 1.01 | 141.69
30 0| 1.42 1.52 | 1.01| 134.81
20 o 1.42 1.52 | 1.01 | 127.92
10 o| 1.42 1.52 | 1.01 | 121.02

When assumption A2 was used, the results in Table 2
were obtained. Here, only one rotation constraint was
obtained (that of the aligned normals). This explained
the constant large rotation error. As before, the trans-
lation error was constant and small. The translation er-
ror range started larger, because of the larger area over
which the model surface could move and still have over-
lap with the data surface. However, unlike the assump-
tion A3 case, as the percentage of the observed surface
decreased, the translation error also decreased, because
the model surface had to overlap with the smaller data
surface.

In general, we can see below that as the size of the data
patch tends to zero, the two assumptions give nearly
the same results, as is expected (because the effective
translation constraints become the same).

5 Discussion

The paper identified several geometric constraints for es-
timating surface positions, given information about the
shapes of planar patches and the relationships between
the model and data patches. The experiments of the last
section showed both that the constraints are valid, and
how well they perform.



We would like to now discuss some of the implications
of the constraints and experiments.

For simplicity and uniformity, we mainly used properties
from a width bounding of the patches. Clearly, there are
some boundary shapes (such as with a long, narrow pro-
trusion) where this uniform bounding loses information.
Other types of bounding could be developed, but the use
of the width did allow a precise statement of the range
of allowable rotations.

It is possible that tighter constraints could be developed
for the cases. For example, the position constraints gen-
erally treated the three axis directions independently,
and then transformed the bounds relative to these to
bounds in the three coordinate directions. There is likely
to be some dependence between the factors, allowing
tighter position estimates.

The estimation of the patch orientation is not always
accurate. This stems from three problems:

1. the axis constraints are not particularly strong, so
the overall orientation is dramatically affected,

2. the TV2 rotation estimation module is not particu-
larly effective when estimating rotations from inputs
with substantial variation and

3. each stage of the TV2 rotation estimation process
increases the size of the output intervals, so that
modest errors are amplified in the output.

The result of these problems is that there are many rota-
tion estimates where the precise direction of the rotation
cannot be determined (i.e. determined to be § or —g)
and hence the output rotation intervals are large.

While some features are strong and reliable, such as the
normals on planar surfaces or curvature axes on strongly
curved surfaces, many other direction vectors are weak,
and do not greatly constrain object position. Work in
progress shows that using constraints from pairs of sur-
faces (e.g. two normals) gives better position estimates.
For example, the vector between two distant features
gives much more reliable data than the axis directions
on either.

Though our interval-based position estimation process
may not be ideal, the position constraints presented in
this paper hold, irrespective of the process used to esti-
mate the position parameters from the constraints.
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