
Construction of Articulated Models fromRange DataA. P. Ashbrook, R. B. Fisher, N. Werghi and C. RobertsonThe Division of InformaticsThe Institute of Perception, Action and BehaviourThe University of Edinburgh5, Forrest Hill, Edinburgh, EH1 2QLanthonya@dai.ed.ac.ukAbstractIn this paper we present an algorithm for automatically buildingmodels of articulated objects from range data. These models not onlydescribe the surface shape of the object but also describe the kinematicsthat constrain the movement of one object component in relation toanother. This is more di�cult than building models of rigid objectsbecause the association of surface measurements to object componentsmust be determined. The algorithm is demonstrated on a di�cultobject with free-form surfaces.1 IntroductionThe ability to automatically acquire geometric models from example objects isuseful in a growing number of application areas. In the �eld of computer graphics,the need for improvements in realism requires more complex models, but manualmodel construction is time-consuming and di�cult. Users of Computer-AidedDesign technology would like to be able to make improvements to a manufacturedpart and then update their CAD model to reect this. This provides a verye�ective design cycle. In an industrial production setting it is useful to comparethe geometry of manufactured parts with models of the design so that aws canbe detected.The established approach for automatic model construction begins by takingsurface measurements from a number of viewpoints so that all of the object'ssurface is captured. Typically, this will be done with a range �nder such as alaser striper or stereo vision system. The problem then is to determine a rigidtransformation for each viewpoint that maps all of the measurements from thatviewpoint into a common coordinate frame. This is commonly known as theregistration problem. Finally, the measurements are used to construct a surfacerepresentation. This might be a CAD model for an industrial application or apolyhedral mesh for a graphics application.A limitation of this approach is that it assumes that the object does not changeshape between views. This is �ne for rigid objects but presents a problem for



modelling more complex, deformable objects. In this paper we consider the morecomplex problem of modelling both the geometry and the kinematics of articulatedobjects from example range images. Articulated objects are the simplest objectsin the class of deformable objects. For clarity we de�ne articulated objects asthose objects consisting of a number of rigid parts that are connected by non-rigidjoints [1]. In this paper we refer to a rigid part of an articulated object as acomponent.Most of the related work on modelling articulated objects utilises manuallyconstructed models for either motion analysis or recognition of articulated objects,for example [2] and [3]. Recently Kakadiaris et al [4] presented a system forreconstructing the shape and kinematics of people from video images but speci�cknowledge of the human form was exploited. Also, this approach utilises a longsequence of images through which features can be tracked. Our objective is toconstruct arbitrary models from small numbers of example range images in whichthe objects are observed in di�erent pose con�gurations.The problem of automatically building models of articulated objects from rangedata is complex because data points in each range image that belong to the samerigid component of the articulated object must be brought into registration butthe association between surface measurements and object components is unknown.Without knowing this association registration is di�cult and without knowing theregistration determining this association is di�cult. In previous work we haveconsidered the problem of identifying rigid subsets of data from pairs of rangeimages of articulating objects [5, 6, 7].Our approach to this problem is to search for local registration solutions bymatching local surface shape features between pairs of surfaces. Surface measure-ments brought into registration are then labelled as being part of a rigid surfaceand are associated with a component of the articulated model. Results for eachpair of range images are then merged to produce a complete geometric model ofthe object. Finally the relationship between components of the model seen indi�erent views is used to estimate the position of joint axes.This pairwise approach does not provide an optimal solution to the problem al-though the results are very satisfactory. An optimal solution should simultaneouslyregister all surface measurements whilst also taking account of the constraints im-posed by the joints. In the future we intend to use the solution given by ourcurrent approach as an initial solution in an iterative, optimal algorithm.2 The Model Construction AlgorithmGiven a number of range images of an articulated object we would like to build amodel that describes the object's surface geometry and kinematics. This suggeststhe following three objectives:1. To determine the association of surface measurements in each range imageto components of the articulated object.2. To establish the transformation that registers surfaces measurements belong-ing to the same object component between viewpoints.



3. To estimate the position of the joints that connect di�erent object compon-ents.In this paper we simplify the problem by only considering rotational joints witha single degree of freedom. This is not a fundamental limitation of our approachhowever.Here we present an overview of the model construction algorithm that we havedeveloped. The details of each stage of the algorithm are presented in the followingsubsections.1. A surface representation of triangular facets is constructed for each of theexample range images.2. For each pair of surfaces, the rigid transformations that bring a substantialproportion of the surfaces into registration are determined.3. Surface facets in good registration, for each rigid transformation, are usedto form partial component models.4. Overlapping partial component models are grouped to form complete com-ponent models.5. The relationship between pairs of components is used to estimate the relativeposition of the model joints.2.1 Surface ReconstructionThe data used to build the articulated model comprises a number of range im-ages of the articulated object in di�erent poses. Each range image is a set of3-dimensional measurements of the underlying object surface. For each range im-age a representation, Si, of the object's surface is determined. In this work thesurface representation used is a mesh of triangular facets.Si = �t1i; � � � ; tiNi	 (1)where ti is a triangular facet of the mesh with vertices ui, vi and wi.ti = [uiviwi] (2)A number of algorithms have been proposed for reconstructing a triangular facetedmesh from a set of points. In the work presented here an initial, regular meshwas constructed by forming a scalar �eld from the sampled point data and thenusing the Marching Cubes algorithm to �nd the iso-surface [8]. The resultingregular mesh was then re�ned to minimise the number of facets whilst maintainingmost of the surface shape using a mesh simpli�cation algorithm by Garland andHeckbert [9].



2.2 Surface RegistrationGiven two surface meshes, each representing an articulated object in a di�erentpose, a number of rigid transformations exist that bring parts of the surfaces intomutual alignment. Each of these transformations, T a, brings surface measure-ments belonging to the ath object component into registration. The objective ofthis part of the algorithm is to determine all of the rigid transformations thatregister rigid subsets of the two surfaces.Many of the registration algorithms in the literature are based on the IteratedClosest Point algorithm of Besl and McKay [10]. These algorithms are generallyunsuitable for the registration of articulated data because they adopt a globalmethodology. The solution to the registration of articulated data is a numberof local transformations each of which brings only one of any number of rigidcomponents into alignment.Here we perform surface registration using a technique we have developed pre-viously [11, 12]. This method uses a novel representation of local surface shapeto �nd local surface correspondences. A RANSAC [13] algorithm is then used toestimate the registration transformations that bring signi�cant areas of the twosurfaces into alignment.2.3 Partial Component ModelsIf a rigid transformation can be found that brings a substantial proportion of twosurfaces into registration then it is concluded that the overlapping sections of thesurfaces represent some part of a rigid component of the articulated object. Theseoverlapping sections of the surfaces are then used to build a partial model of theobject component. Non-overlapping sections of either surface might also representthe same component but this cannot be determined without reference to otherexample surfaces and are not included in the partial component model. For twosurfaces, Si and Sj , brought into registration by a rigid transformation, T aij , thepartial component model is represented by the following graph.
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awhere Saij and Saji are the subsets of the surfaces Si and Sj that are brought intomutual alignment by the rigid transformation. The superscript is used to indicatethat these surface patches represent part of object component a. The surfacepatches Saij and Saji are de�ned formally as follows.Saij = �t 2 Si : d(T aij t; Sj) < �	 and Saji = �t 2 Sj : d(T ajit; Si) < �	 (3)where the function d(T t; S) provides a measure of how well a triangle, t, is alignedwith a surface S when it is transformed by T . We use the integral of the squareddistance from each point on the triangle to the nearest point on the completesurface. Note that in our convention Tij = T�1ji . � is a distance tolerance.



2.4 Complete Component ModelsAfter all of the partial component models have been constructed for all possiblesurface pairings, partial component models belonging to the same object compon-ent are merged to form complete component models. This is achieved by mergingpartial components representing surface data that moves rigidly together. As eachpartial component model represents a rigid subset of data, two partial componentmodels that share some common surface data must be rigidly attached and can bemerged. If two surface patches, Saji and Sbjk share one or more surface facets thenit is deduced that they belong to the same model component and are merged.
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Awhere Saji \ Sbjk 6= ;. Notice that the superscripts have now been updated toindicate that the patches belong to a large model component A. The originalsuperscripts represent an arbitrary assignment of a surface patch to an objectcomponent but it was not possible to maintain consistency between di�erent pairsof views. This problem is resolved when merging partial component models andis indicated by using a capital superscript.The partial component merging procedure begins with an arbitrary partialcomponent model which acts as a seed. This model is then grown by mergingwith other partial component models that share surface facets. When merging iscomplete the object component is represented by a connected graph whose nodesrepresent a collection of surface patches and whose arcs describe the transform-ations that register those patches. This process is repeated for any remainingpartial component models until a complete model of each object component hasbeen constructed.2.5 Estimating the Joint AxisOnce the shape of each of the model components has been determined the artic-ulated model is completed by determining the relationship between each of thecomponents.If a pair of object components are both visible in two range images then therelative transformation from one component to the other can be determined. Wede�ne the joint transformation, JABij , as the transformation of component A withrespect to component B, determined from the data present in surfaces Si and Sj .The joint transformation is given by the expression:JABij = TBji TAij = �TBij ��1 TAij (4)The relationship between these transformations is presented in Figure 1. The jointtransformation is easily represented as a rotation angle, a rotation axis directionvector and an axis position using standard results.For each pair of views in which two components appear a separate estimate of thejoint axis direction and position can be determined. We combine these estimates toderive an improved estimate of the joint in the �nal model. The �nal axis direction
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Figure 1: Determining the joint transformation JABij connecting components Aand B from the two views Si and Sj .is calculated as the mean of the individual axis direction estimates. For the �nalaxis position we determine the position of the point whose squared distance to eachof the estimated axes is a minimum. The details of this calculation are presentedin Appendix A.3 ExperimentsIn this section the results of an experiment are presented in which a model ofa doll's leg is constructed from eight range images. Figure 2 presents six of theeight surface meshes constructed from eight range images taken of the doll's legin di�erent poses. The range images were taken at approximately equal intervalsaround an axis parallel to the length of the leg. Each mesh comprises 1000 trian-gular facets and each face is represented by a geometric histogram which is 32 by32 bins in size. A spherical window of radius 25mm around the centroid of eachfacet was used to de�ne the local geometry represented by each histogram. Themean time to construct the 1000 histograms for each range image was 47 seconds.The �rst row of Figure 3 presents the best two solutions for the registrationof surfaces 1 and 2. The two surface meshes have been rendered in two di�erentshades of grey. It can be seen that each of the main components of the articu-lated object have been brought into approximate registration. The second rowof Figure 3 presents the facets of the two surfaces in mutual alignment. Thesefacets form partial component models. The mean time to �nd the registrationtransformations for each pair of surface meshes was 277 seconds.The �nal, articulated model is presented in Figure 4. The �rst two rows presenta number of views of each of the rigid components of the model. The overall shapeof the components is good although the accumulation of registration errors dueto the sequential nature of the algorithm can be seen in row 2, column 2. Thelower part of the leg also has some faces which would be expected to belong to thethigh. These faces are almost orthogonal to the joint axis and overlap the thigheven when faces belonging to the lower leg are brought into registration. Somepost processing is required to assign these faces to the correct component.



Figure 2: Six of the eight surface meshes constructed from the range data takenof the doll's leg in di�erent poses.

Figure 3: The best two solutions for the registration of surface meshes 1 and 2.The second row shows the surface facets in mutual alignment.



Figure 4: The �rst two rows present a number of views of each of the rigid com-ponents of the articulated model. The third row presents the estimated joint axes.The dotted lines are the estimates determined from each pair of views and thesolid line is the combined estimate. The �nal row presents a view of the �nalmodel in a number of di�erent poses.



The third row presents the estimated joint axis positions. The dotted linesrepresent the axes estimated from each pair of images in which both object com-ponents have been successfully registered. The solid line presents the �nal, com-bined axis estimate. Although the individual estimates vary substantially the �nalestimate is very satisfactory. This is evident from the fourth row which shows the�nal model in di�erent poses which have been generated using the estimated jointaxis.To provide a quantitative assessment of the algorithm the variation of eachof the axis estimates, compared to the �nal combined estimate, is presented inTable 1. Axis direction error (degrees) Axis position error (mm)5.174 3.026Table 1: The variation (standard deviation) in the estimates of the direction andposition of the joint axis.4 Conclusions and Future WorkIn this paper we have presented a technique for constructing an articulated modelfrom a small number of example range images of an articulating object in di�er-ent pose con�gurations. The �nal model captures both the surface shape of theobject's components and the object's kinematics. The technique has been demon-strated on a di�cult problem of building a model of an object with free-formsurfaces.Although the results of this technique are satisfactory, by adopting a pairwiseapproach to the registration of the surfaces the �nal solution is suboptimal. Also,the estimation of the joint axes is determined after the surface registration has beencompleted. We are currently investigating how we can simultaneously register allof the data points whilst imposing the constraints imposed by the joints' axes.This is a di�cult, non-linear optimisation problem. The approach presented herewill provide an initial estimate which will be invaluable when searching for theoptimal solution.AcknowledgementsThe work presented in this paper was funded by a UK EPSRC grant GR/H86905.A Closest Point to a Set of LinesGiven a number of lines we would like to determine the position of a point such thatthe sum of the squared distances from the point and each line is minimised. Thisproblem is simpli�ed if each line is replaced by any two orthogonal planes whoseintersection is the line. The squared distance to the line can then be replaced bythe sum of the squared distances to the planes.
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