DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

DAI Software Paper No. 12
Date: August 1987

A PROLOG Version of ACRONYM's CMS - Version l.L)

Robert Fisher

Abstract:

This document summarizes a re-implementation of ACRONYM's [1] alge-
braic constraint manipulation system (in PROLOG), largely developed us-
ing Brooks original rules. It gives the syntax for the algebraic ex-
pressions bounded, how the CMS is invoked and explanations of error mes-
sages produced. Debugging facilities are described. Some previously
unpublished details of operation are reported, concerning program struc-
ture, expression simplification, efficiency approximate bounding and
parity determination. Various extensions, improvements and bug fixes
are also given, along with an example.

Acknowledgements

Funding for this paper was under Alvey grant GR/D/1740.3. The ideas in
this paper benefited greatly from discussions with J. Aylett and M. Orr.

Copyright (c) R Fisher, 1987

1-9 Introduction

This document describes a PROLOG implementation of ACRONYM's Con-
straint Manipulation System [CMS), as described in Brooks' thesis
[Brooks 1981]. Little effort is made (here) to describe how the CMS
works, except that needed for understanding this particular implementa-
tion. The main body of this note describes the format of expressions
and constraints wused by the CMS, how to invoke the CMS to bound an ex-
pression and how expressions are simplified. Some improvements are

described as are some debugging tools.

2.0 Declarations, Expressions and Constraints

All variables must have their type defined. The two types are
'linear', for the usual unbounded variables, and 'wraparound' for modu-
lar variables, like angles. The wraparound variables also have an upper
and lower bound associated with them. The syntax for declarations is:

declare (<string> , <variable type>)
<variable type> <- linear
wraparound (<number> , <number>)
where the <string> is the variable name, and the two <number>s are the
low and high bounds for the wraparound variables range [usually 0 and
2*PI). This also implicitly declares expressions over the declared

variables. Expressions may not mix variables of different types, unless
converted by some operator (such as a 'cos' function].

Expressions are defined using nested lists of descriptive terms,
embedding numbers, variables and operators. The syntax for expressions
is:

<expression> <- [value, <number>]
defines a constant. <number> can be positive or negative, integer or
floating point, or 'p_infinity' or 'n_infinity' or 'undefined’ [section
7.12).

{expression> <- [variable, <string>, <positive_integer>]

defines a variable of name {string> raised to the power
{positive_integer>

<expression> <- [plus, <expression>, <expression>]
defines the sum of two expressions

<expression> <- [times, <expression>, <expression>]
defines the product of two expressions

<expression> <- [recip, <expression>]
defines the reciprocal of an expression

<expression> <- [srecip, <expression>]

defines the signed reciprocal of an expression (see section 7)
<expression> <- [cos, <expression>]
defines the cosine of an expression
{expression> <- [sin, <expression>]
defines the sine of an expression
<expression> <- [sqrt, <expression>]
defines the positive square root of an expression
<expression> <- [min, [<expression_list>]]
defines the minimum of a list of expressions
<expression> <- [max, [<expression_list>]]
defines the maximum of a list of expressions
<{expression_list> <- <expression>
<{expression> , <expression_list>
Multiple powers of a variable is expressed using the exponent field
of the variable variable construct. Hence,
2¥x ¥y ¥x
is represented by
[times, [value, 2], [variable, X, 3]]

Division is expressed by multiplying by the reciprocal and subtraction
by adding -1 times the value. That is,

<expressioni> / <expression2>
is represented by
[times, <expressionl>, [recip, {expression2>]]
and
<expressionl> - <expression2>
is represented by
[plus. <expressionl>,
] times, [value, —1], <expression2>]
This seems awkward, but simplifies the cases needed handling by the CMS.

Constraints are defined over isolated variables, and give a bound-

ing expression that must have the relation < or 2 to the variable. The
syntax for a constraint is:

<constraint> <- constraint (<string> , <relation> ,
<expression>)

<relation> <- greatereq | lessegq

where <string> gives the name of the bound variable and <expression> is
the bounding expression.

For example, the representation of the constraint
a s 4/p
is
constraint(a,lesseq,[times, [value, f],
v

recip, ariable, b, 1]]]).

3.0 Bounding in Variables

The general form for invoking ACRONYM's bounding of expressions is:

cms((input_expression>,[<variab1e_list>],<bound>,
<result_expression>)

where
<input_expression> and <resu1t_expression>
are expressions as defined above
<variable_list> <- <string> | <string> , <variable_list>

is a 1ist of variable names over which the expression is to be bounded,
and

<bound> <- sup inf
depending on which bound is desired.

The first three values are inputs. The program executes to comple-
tion silently, producing the bounding expression.

4.0 Simplification

Expressions get simplified at various points in the processing.
This 1is partly necessary for cancelling terms (e.g. "y - x" or "x / x")
and partly for efficiency by reducing the complexity of the expressions
being manipulated (e.g. reducing "0 + x" or "1 + 2"). Brooks used three
simplification applications each in his sup and inf functions and
claimed that further applications would not affect correctness, but
would reduce efficiency. To get the algorithm to work, we needed to

-

also apply simplification whenever a constant value was required, be-
cause otherwise there might be an unsimplified expression having a con-
stant value (e.g. "o+ 2") [We also tried applying simplification after
each completed application of sup and inf, and generally found that
ACRONYM did run slower - especlally on larger expressions.]

The simplifications 'simp' enacts on each of the different expres-
sion types are:

min - simplifies all arguments, flattens nested 'min's, removes dupli-
cate entries, keeps only the smallest 'value' and removes
'min' if only one element is left in the list

max - simplifies all arguments, flattens nested 'max's, removes dupli-
cate entries, keeps only the largest 'value' and removes 'max'
if only one element is left in the list

times - simplifies arguments, does constant multiplications (0,1), mul-
tiplies together ‘'value's and flattens out multiply lists to
collect variables and values

lus - simplifies arguments, removes zero additions, reduces additions
prs .
of infinity, adds 'value's and reduces terms of the form ax +
bx, where a and b are constants.

distribution laws - simplifies arguments, distributes 'times' over 'min'
and 'max' (accounting for parity) and distributes 'plus' over
'‘min' and 'max'

recip - simplifies argument, divides 'value's and distributes 'recip'
over 'times'

srecip - simplifies argument and divides 'value's

sqrt, cos, sin - simplifies argument and evaluates the function if the
result is a 'value'

5.0 Debugging

If the CMS fails, then the most likely cause is an improperly con-
structed constraint. Then, the result of constraining an expression
will be 'no'. Unfortunately, because this is a rule-application pro-
gram, if one rule fails because of a bug, another might apply, leading
to a weaker result.

Bugs in the CMS are difficult to detect, but a tool is provided
that allows checking of the constraints. This is the function 'check-
allconstraints' which checks all constraints for correct form and re-
ports errors.

Some tracing tools are provided (besides the usual prolog tracing).
These allow listing of the inputs into and out of each rule application,
and into and out of the simplifier. No interactive control is allowed.
Rule tracing 1is enabled by asserting the clause 'debug(rule)' and sim-
plification tracing is enabled by asserting 'debug(simp)'. Retracting

the clauses disables tracing.

An example of the rule tracing comes from applying:
cms([variable, a, 1],[],sup,Ans)
over the constraints:

constraint(a,greatereq,[value,2]).
constraint{a,lesseq,[times, [value,

y],
recip, [v

1) ariable, b, 1]]
l).
constraintEb,greatereq,[valu¢,1]).)
constraint b,lesseq,[times, | value, HJ,

]) | recip, [variable, a, 1]]

producing:

Apply{0) sup rule2d over [H:Svariable,a,1]

Apply(1) sup rule3a over |a :[times,[value,u],
recip,[variable,b,1]]]
apply(2) sup rule9 over [a :5recip,[variable,b,1]]

Apply(3) inf rule2d over [a]:[variable,b,1]

Apply(Y4) inf rulel over |b,a :[value,1
Result:|value,1]
Apply(4) inff rulel over [a]:[value,1]
Result:|value,l
Result:[value,1
Result:[recip,[value,1]ﬂ

Result:|times,[value,4], recip,[value,1]]]

Apply(1) supp rulel over []:[value,i]

Result: value,u]

Result:[value,u]

Ans =[vﬁueﬂ]

The input tracing gives the depth level number (0}, the rule applied
(sup rule2d), the set of variables ([]) and the input expression
([variable,a,1]). The corresponding output tracing gives the resulting
expression. The trace messages are indented according to depth level
for easier inspection.

Some examples of the simplifier tracing on the above example are:

Simp in:[min,[[times,[valug,u],{rgcip,[variable,b,1]]]]]
Simp out: times,[value,U],[recip,[variable,b,l]

Simp in:[max,[[value,1]]]
Simp out:|value,!

Simp in:[times,[value,u],[recip,[value,1]]]
Simp out:[value,!]

No indenting is done here.

6.0 Invoking the CMS

-— - —————, cm— ——

o

The CMS is loaded by consulting the following files:

sup,supp,suppp,inf,inff,infff,
utils,support,simp,interface,
arithmetic,setops,debugging,
checkconst

The file 'loadcms' contains a 'load' clause that 1loads all necessary
files. '

The CMS is invoked by the 'ems' function, as described in section

3.0. Before this, all constraints that might act on the expression must
be included as part of the database. Two functions have been construct-
ed to assist with this:

loadconstraints(<name>)
and

unloadconstraints({<name>)
These are useful for bounding expressions over different sets of con-
straints. The former asserts all constraints in the designated file and
the second retracts all the constraints in the given file. Clauses 1in

the file that are not constraints are neither asserted nor retracted.

7.0 Extensions to Brooks' CMS

Several changes and new rules have been added to Brooks' original
CMS. These are described below:

(1) Simplification has been applied to the output of constant
result calls to 'sup' and 'inf' in rules 9, 12 and 13 to sim-
plify expressions involving constants.

(2) Whenever a single variable is bounded over a set of variables,
that bound is recorded into the database and used again in the
future. This does not change the functionality of the CMS but
makes dramatic savings on re-constraining the same variable
over again, which can occur if the variable occurs several
times in parallel in the expression (such as in a 'max' ex-
pression). This is implemented as a new rule 2c Dbetween 2b
and 2d (formerly 2.2 and 2.4).

(3) The CMS goes into an infinite loop at rule 4 over expressions
of the form '2%x + x*x' = 'r¥y + A' The problem is the rule
does not reduce the second term (A) before recalling the sim-
plifier. The solution adopted here requires that the vari-
able v does not occur in A. Otherwise rule 6 applies.

(4) Simple extensions were added to: (a) apply 'sup' to 'max' and
'inf' to 'min' and (b) allow 'min' and 'max' to have an arbi-
trary number of arguments. The first extension obtains be-
cause 'sup(max(A,B))' s 'max(sup(A),sup(B))’.

[5) A minor extension is for the sqrt function which is monotonic,

takes a positive value and returns a positive value. Here,
'sup(sqrt%A;g' < 'sgrt(sup(A))' and tinf(sgrt{a))' 2
'sqrt(inf A These boundings are 1left in symbolic form
(but possibly simplified later]. The same extensions were ad-
ded to suppp and infff.

(6) A new sup and inf case was added for expressions of the form:

'variable'n’. One reason for this was the CMS does not know
how to handle quadratic terms when the parity of the variable
is unknown. Another reason is the original rule 10 does not
(strictly) apply when A = 1 in 'v'n ¥ A'. The 1logic of the
new rule constructs the following symbolic expressions:

sup(v™n) =

if n is odd then sup(v)’n
else if parity v% positive then supEvg”n

n

else if parlty v) = negative then inf{v)"n
else max{ sup(v)"n, inf(v)"n).
inf(v™n) =

if n is odd then inf(v)"n

else if parity%v = positive then inf%vg“n
else if parity(v negative then sup(v)'n
else O.

Suppp and infff were also extended for expressions of the
form: v'n. The resulting expressions follow the logic of the
above extension only using suppp and infff in the recursive
steps.

(7) The values of frequently recalculated but lengthy functions are

sometimes saved using the database 'record' facility. An ex-
ample of where this occurs is in the sup of a single variable
occurring several places in a min expression (e.g. min[2x,1-
x)). Previous evaluation is tested for with three groups of
functions:

al sup/inf of a single variable

b) hival/loval of a variable

¢) parity of an expression
Saving other evaluations did not seem to make an appreciable
difference.

This trades off database search against recalculation,
but was found to produce a remarkable improvement in perfor-
mance (e.g. a factor of 100), especially with complex expres-
sions.

The numerical values positive and negative infinity are
represented explicitly as "p_infinity" and "n_infinity" and
all arithmetic functions and boundings take these into ac-
count.

(9) Brooks' rule 13 for inf is wrong as described in the footnote

to Brooks' sup table. The inequalities in parts 13.1 and 13.2
test for inconsistencies, so should be reversed in the ipf

version. Alternatively, the role of sup and inf in the
preparations could be reversed.

(10) Bounding a product over all the variables in the product (e.g.
x*y over {x,y}) when the parity of neither multiplicand is
known, results in a numerical bound [Brooks' rule 13). The
original product is a suitable bound, given all variables are
in the variable set. Another version of this problem occurs
when all variables of A in A¥B are in the variable set. This
suggests two new sup and inf rules (rule 11 5 and 11_6). The
rule numbering gives the appropriate rule ordering with
respect to the other rules. Following Brooks' notation, the
new rules are:

Let:

fulloccurs(Expr,Set) hold if all variables in
Expr occur in Set

lﬁ Action Return
sup rule 11 5

fulloccurs(J,H) dJ

sup rule 11_6

J = A¥B
fullocecurs(A,H)
S = sup|B,H
I = inf{B,H
if A positive A*S
if A negative A¥T
Else max(A*S, A¥I)
inf rule 11 5
fulloccurs(J,H) J
inf rule 11_6
J = A*B
fulloccurs(A,H)
S = sup|B,H
I = inf|B,H
if A positive A*I
if A negative A¥S
Else min(A*S, A¥I)

Other extensions are possible. If some of the variables 1in
the variable set occur in the expression they might [in the
future) be left as they are (which is what occurs in rules 3-
11). Further, while rule 13 is correct, it is a bit strict
since it leaves no variables in the result expression. In-

stead, they might be left and the resulting expression other-

(11)

wise simplified. This might introduce more complex expres-
sions involving 'max' and 'min' over several new expressions.
This argument also applies to rule 12.

There is a problem of how to decompose product constraints
(e.g. A*B < c) into constraints on the individual terms, when
the parity of the individual terms is unknown. The solution
adopted here is to introduce a new operator, the signed re-
ciprocal and corresponding sup, inf and simplification rules.
The result splits the cases by parity and turns of f the inap-
propriate cases when further information is obtained.

If a constraint of the form
A*¥B <€ ¢

is encountered and no information is available on the parity
of B, it is replaced during pre-processing Dy:

A S c * srecip(B)
A z -c * srecip(-B)

A similar reduction is made to isolate B and the inequalities
are reversed for A*¥B 2 c.

The definition of the srecip function is:

if x > 0 then srecip(x) = 1/x
else srecip(x) is undefined

The use of the undefined evaluation disables one of the split
inequalities. This allows the isolation of individual terms
from a product.
Now, the simplification of srecip is
simp(srecip(A)) = srecip(simp(4))
with the

The sup rule is

if inf(A) > 0 then sup%srecipEA)} = recip(inf(A))
else sup(srecip(4) undef ined

and the inf rule is

recip(sup(A))

if inf(A) > 0 then inf{srecip{A
undef ined

else inf{sreciplA

Similar rules are used for suppp, infff, hival and loval.

With the introduction of the srecip operator {above), terms in
expressions may Dbecome undefined. This is handled using an
'undefined' value in the [value, V] construction. One impli-

cation of this is that expressions involving undefined values

10

also have undefined value. Hence, the bounding, simplifica-
tion and arithmetic routines reduce any expression in unde-
fined terms to be undefined.

An exception occurs when taking the maximum (or minimum)
of a 1list of terms, whereby any undefined values are removed
and the maximum applies over the remaining terms. If no terms
remain, the result is undefined. The reason for the exception
is the splitting of products described in (11) produces addi-
tional bounds that the CMS groups into max or min expressions.

8.0 Parity Determination

Brooks [Brooks 1981] did not detail the parity determination func-
tion, a version of which is now described. Some extensions (denoted by
"*") have been made and others probably remain. This function returns
the parity if it can be determined, otherwise it fails.

Expression Rule

[value, A] if A > 0, then return%positive}
else return(negative

[sqrt, A) . return(positive)

[variable, X, Exp] if even{Exp) then return{positive)

else if odd{Exp) and Exp > 1

then return(parity([variable,X,1]))
else (Exp=1 case) if loval 2 0

then return(positive)
else if hival < 0 then return(negative]
else fail

[times, A, B] if (parity(A)=positive
and parity(B)=positive
or parity(A)=negative
and parity(B;=negative)
then return[positive
if (parity(A)=positive
and parity(B)=negative
or parity(A)-negative
and parity[B}=positive]
then return(positive

[plus, A, B] if parity(A)=positive
and parlty % =positive
then return p051t1ve
if parity(A)=negative
and parity(} =negative)
then return(negatlv
if loval(A) + loval%
then return p031t1ve)
if hival(A) + hival(B) <
then return[negatlve)

[recip, A] return(parity(A))

1

[srecip, A] if parity(A) = positive return(positive)
else fail *

[min, List] return{positive) if parity of all
members in List is positive
return(negative) if parity of any
member in List is negative

[max, List] return(negative) if parity of all
members in List is negative

return{positive) if parity of any

member in List is positive

9.0 Rough Bounds

This describes the upper/lower and nival/loval functions.

The upper/lower functions act over variables and are as Brooks
described them - upper forms the min of all the symbolic upper bounds on
the variable and returns this after simplification. Lower returns the
simplified max of all the symbolic lower bounds.

The hival/loval functions estimate a rough numerical bound for ex-

pressions. Some extensions have been added [denoted by *). Their rea-
soning is:

Expression hival

[value, A] A

[variable, A, Exp] if even(Exp)

let H = hival([variable, 4, 1])
L = loval(|variable, A, 1
hival = max(H Exp, L Exp)
if Exp = 1
let Set = set of all numerical
upper bounds on the
variable

hival = minimum({Set + p_infinity)
else A
let H = hival{[variable, A, 1])
hival = H Exp
[plus, A, B] ~ hnival(a) + nival(B)
[recip, A] .
let H = hival([variable, A, 1])
L = loval(|variable, A, 1
if H< 0 or L > 0 then hival = 1/L
else hival = p_infinity
[srecip, A]

let L = loval([variable, A, 1])
if L > O then hival = 1/L

12

[
[
[
[

min, List]
max, List]
sqrt, A]

times, A, B)

Exgression

[

[variable, A, Exp]

[
[

[

[
[
[
[

value, A]

plus, A, B]

recip, A]

srecip, A]

min, Llst
max, Llst]
sqrt, A]

times, A, B]

else hival = undefined
minimum{hival of each member of List)
maximum(hival of each member of List)

sqrt(hival(A))

let HA hival{A] and LA lovallA
HB hival(B} and LB loval(B
hival = maximum(HA*HB, HA*LB, LA¥HB, LA¥LB)

loval

A

if even(Exp) *
let H = hival([variable, 4, 1]}
L = lovall|variable, A&, 1
if H < 0 then loval = H Exp
else if L > 0 then loval = LExp
else loval = 0
if Exp =1
let Set = set of all numerical
lower bounds on the
variable

loval = maximum(Set + n_infinity)
else -

let L = loval([variable, A, 1])

loval = L"Exp

loval(A) + loval(B)

let H hival([variable, A, 1]3

L = loval(|variable, A, 1
if H< 0 or L >0 then loval = 1/H
else loval = n_infinity

let H hival% variable, A, 1];
L lovall{ | variable, A, 1

if L > 0 then loval = 1/H

else loval = undefined

minimum(loval of each member of List)

maximum(loval of each member of List)

sqrt(lovai(A))
let HA = hival(A) and LA = loval(A
HB = hivallB) and LB = loval{B

loval = minimum{HA¥*HB,HA¥LB, LA*HB, LA¥LB)

13

10.0 Unimplemented features and Areas for Extensions

At present, the only feature of the original ACRONYM CMS left unim-
plemented is the 'trig' function used for bounding the 'cos' and 'sin'
functions. This function is particularly weak anyway, since it only
. produces numerical bounds for the function based on the numerical bounds
on its argument. Some extensions of parity and simplification remain
for these functions.

No code has been implemented for the wraparound variable types.

Logic can be developed to bound terms of the form na*xZ + p*x" and
na*cos(x) + b¥sin(x)". This is straightforward, but somewhat time con-
suming.

11.0 Messages, Causes and Actions

Several messages and actions can occur as & result of operation of
the CMS, as detailed in the subsections below.

11.1 Prolog Messages

"1 Qut of global stack during execution." - cprolog has run
out of work space, 8o needs a larger "-g" option, like "-
ghooo".

See section 13.

Constraint Checking

—
—
mno

All declarations checked - means all variable declarations are
correctly formed.

Bad declaration of X as: Y - means the variable X is not prop-
erly defined

Previous declaration of: X - means variable X has been previ-
ously defined; perhaps two sets of constraints use the same
variable name

A1l constraints checked - means all defined constraints are
correctly formed.

X is not a valid atom - means that a name was expected where X
was encountered in the midst of a '[variable, X, Exp]' struc-
ture.

Relation X is not valid - means that X was neither 'lesseq' or

'greatereq', which are the two allowable relation types.

Variable X not declared - means X was not previously declared
of an appropriate type

Expression: X bad in constraint: Y - reports that subexpres-

14

PN -

e

sion X 1is improperly formed in the context of the whole ex-
pression Y

These checks do not cause any actions, but the constraints
should be fixed before the CMS is invoked.

jwo

Arithmetic Messages

These report arithmetic errors resulting from the designated
type of invalid inputs. The routines return a sensible but
usually incorrect answer. The messages are:

all exponents must be positive numbers

sqrt of negative number

cosine of plus infinity attempted

cosine of minus infinity attempted

sine of plus infinity attempted

sine of minus infinity attempted

Constraint Sets

—_
—_
[E=

¥%*¥No upper bounds given for: X
¥*¥No lower bounds given for: X

This means that variable X has not been explicitly given a
bound of the appropriate type. Either +infinity or -infinity
gets chosen.

1.5 CMS Limitations

¥¥%No simplifier for: X

This means X is an expression that cannot be simplified, yet
maybe could be, if the simplifier were extended. The original
expression is returned. Please report the expressions causing
this message.

¥%XNo parity expression for: X

The type of expression X was not understood well enough to
deduce its parity (or even if unknown parity). The parity de-
ducer should be extended. Unknown parity is returned. Please
report the expressions causing this message.

*%¥% CMS ERROR (please report)

The rule evaluator has failed for some reason. Please report
the expressions causing this message.

12.0 Program Modules

15

This section briefly describes the contents of each file needed for
the CMS:

arithmetic - arithmetic operations, predicates and relations

bounds - determines numeric and symbolic bounds for
expressions, implementing upper, lower, hival and and
loval functions

checkeconst - checks the constraints for correct form

debugging - debugging functions

inf - implements the inf rules

inff - implements the inff rules

infff - implements the infff rules

interface - loading and unloading constraints, invoking the CMS

loadems - loads all needed source files

parity - implements the parity function

setops - set operations

simp - the expression simplifier

sup - implements the sup rules

supp - implements the supp rules

suppp - implements the suppp rules

utils - minor misc. functions

li.g General Comments

The CMS is generally slow, so it is best to not apply it often or
when real-time operation is needed (or use a fast machine). For exam-
ple, the simple test case shown in section 5.0 required 0.17 sec on a
GEC 63 under cprolog. Larger problems can easily take more than a
minute per bounding.

Complex problems require more storage allocation because of the
depth to which the CMS can recurse during operation (e.g. 50 levels).
Hence, cprolog should be invoked at least as:

eprolog -g2000

Lﬂ.g Example

See the listing in section 5.0. >From the tracing it 1is easy to
identify the rules applied in the process of correctly finding the sup
of variable a over the constraints:

2

a £ 4/b
1 Y

b 4/a

A A

li.g References

[Brooks 1981] Brooks, R. A., "Symbolic Reasoning Among 3D Models and 2D
Images", Stanford University AIM-343, STAN-CS-81-861, 1981.

16

-

