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1 Introduction

The main objective of this feasibility study was to examine the use of range data in grasp syn-
thesis for previously unmodelled objects. In order to do this, a framework previously outlined by
Pollard [6] has been modified and extended in simple ways. This report demonstrates that force
closed grasps can be synthesised for a number of previously unmodelled objects using range data.

2 Theoretical context

We now provide an outline of the theoretical context in which this work was carried out. This is
not intended as a literature review of the large field of robot grasping but a brief statement about
our approach and its relevance to other work.

Salisbury [3] built a hand with three fingers, each finger consisting of three independent joints.
The hand is capable of force, position or stiffness control. In any given configuration, the hand is
capable of exerting a variety of forces through the fingertips. He outlined different contact types,
such as frictionless contacts, point contacts with friction and soft fingers, in terms of the degrees
of freedom allowed by each contact. He discussed the selection of internal forces in an equilibrium
grasp. Internal forces are the grasp forces that lie in the null space of the desired wrench; i.e.
they can be selected according to task requirements and the grasp will still be in equilibrium. A
dextrous hand, such as the Salisbury hand, has enough degrees of freedom to be able to select the
desired internal forces.

Using Salisbury’s contact types, Nguyen [5] synthesized force closure grasps for polyhedral
objects. A force closure grasp is one that is capable of resisting arbitrary external wrenches
(assuming that the grasp forces can be of an arbitrary magnitude). Nguyen synthesizes grasps
that maximise the leeway in individual fingertip placement; this means that the grasps are robust
with respect to errors in positioning and object modelling error. He observes that for force closure
in 3D, the grasp requires either two soft finger contacts or three point contacts with friction or seven
frictionless contacts. The grasp synthesis algorithms are presented as geometric constructions. A
problem with this work is that it is restricted to polyhedral objects, with no clear extension to
arbitrarily shaped objects. Nguyen [4] shows that any force closure grasp can be made stable, by
suitable stiffness control of the hand.

Blake introduced perhaps the most elegant theory for grasping of arbitrary shaped objects
in 2D {2] and 3D [9]. Blake’s criterion for grasp synthesis is to minimise friction. Blake’s work
makes two main contributions to grasping theory. Firstly, he characterises the profound link that
there exists between grasping and visual symmetry. Secondly, in providing a qualitative analysis
in terms of extrema of a friction function, he does away with the need for a known coefficient
of friction; providing instead pessimal and optimal grasps with respect the amount of friction
required. Blake’s analysis is for two fingers and his test of force closure is descended from the
simple geometric constructions of Nguyen. The main problem of the approach is there does not
appear to be an obvious extension to grasp synthesis involving three, four and more fingers.

Pollard [6] used a wrench space approach to grasp synthesis. She defines a task wrench space
which, in its most general form, is the set of all wrenches that can be applied to the object boundary.
She then finds a grasp which will span this task wrench space as “efficiently” as possible and which
has force closure. The grasp quality criterion used is the radius of the largest sphere, centered at
the wrench space origin, which lies inside the convex hull of a chosen grasp’s wrench space. See
below for more details.

Pollard assumes frictionless contacts and therefore, in the 3D case, at least seven contacts are
required. It is therefore aimed at power grasps, which use the palm and whole length of each
finger to grasp the object, and excludes precision grasps, which use only the finger tips. This
is a drawback because precision grasps are used much more than power grasps when picking up
objects (because power grasps have to “wrap” around the object, which is often prevented by the
ground plane), and precision grasps also allow for dextrous manipulation of objects between the
fingers. However, as we show, Pollard’s approach can easily be extended to include friction, which



means that the number of contacts can be reduced and precision grasps can be planned. This is a
good approach to follow for two reasons: unlike Blake’s work, it is readily extendable to arbitrary
numbers of fingers and unlike Nguyen’s work, it is readily extensible to arbitrarily-shaped objects.
We have therefore concentrated on this approach in our work.

Little work has examined what type of image data and object models should be used to plan
grasps. Blake’s work used a contour tracker to describe the object, but both Pollard and Nguyen
assumed that geometric models of the object were given. Stansfield [7] used dense range data to
build a simple model for grasp planning, composed of surfaces and contours. Grasps were then
planned using a rule-based preshaping system [8]. Bard et al [1] use dense range data to build
models composed of elliptical cylinders. These models are more suited to the planning of power
grasps, rather than precision grasps, because for many objects, they only provide approximate
surface models. Dense range data, such as that provided by a laser striper, is a natural choice for
planning grasps, because it allows accurate calculation of surface position and normal, and it is
these that determine the wrench space characteristics of the grasp.

With multiple contacts, planning grasps is very complex. With three fingers constrained to
lie on a surface, we have a 6 dimensional space of possible digit positions. Pollard [6] uses grasp
prototypes to constrain the search to a particular portion of the space, and a parallel search
method to conduct a brute force search within this portion. A grasp prototype is a stable grasp
on some generic object; for an unknown object, a stable grasp can be derived from the nearest
grasp prototype. A grasp prototype for a cylinder was used to plan a variety of power grasps,
but the big question of selecting which prototype to apply for a given object was not addressed.
This approach is similar to preshaping, which is commonly used to cut down the search space for
a particular hand configuration (e.g. Stansfield 8], Bard [1]).

In order to avoid performing a large search of the range of possible finger positions, we elect to
characterise each potential grasp with respect to a specific task requirement — that the internal
forces pass through the centre of mass. This decouples the choice of internal force direction for
each finger and enables us to produce a qualitative map of the contact quality over the object
surface (see below). Other criteria, such as choosing the internal forces so as to minimise the
friction, depend on all of contact forces together, so that it is not possible to produce such a map.



3 Pollard’s framework

We now give a more detailed description of Pollard’s framework. Pollard used the concept of
wrench space to define a grasp quality measure of how well a grasp spans the wrenches that are
to applied to an object in a given task.

A wrench w; can be defined as the set of forces f; and torques 7; at contact ¢ combined into a

single vector:
-4
)

For a planar problem wrench space is three dimensional. Forces can be applied in the z and
y directions and a torque can be applied about the z axis which is perpendicular to the plane.
Torques are measured with respect to the center of gravity.

Pollard defines three types of wrench space entity:

e The limit wrench space is that portion of wrench space bounded by the convex hull of the
wrenches (due to unit force) that meet the general force and torque constraints of the problem:
|fil = 1and |;] < 1. This can be visualised as a unit cylinder centered at the origin of wrench
space.

o The object wrench space is that portion of wrench space bounded by the convex hull of the
wrenches, due to unit force, that meet the general force and torque constraints of the problem
and which can be applied to the target object. The size and shape of the object wrench space
is limited by the object geometry, e.g. a torque cannot be applied through point frictionless
contacts to a circular disc. This can be visualised, for the case of a smooth object boundary,
as a continuous line drawn on the surface of the unit cylinder described above. No friction
is modelled.

o The grasp wrench space is that portion of wrench space bounded by the convex hull of the
wrenches that meet the general force and torque constraints of the problem and form a given
grasp on the target object. The size and shape of the grasp wrench space is limited by the
placement of contacts on the target object boundary. This can be visualised as a set of
points chosen from the object wrench space line.

The most fundamental test that Pollard applied is whether the grasp is force closed. This is
determined by a simple geometric condition, ¢.e. that the convex hull of the grasp wrench space
encloses the origin of wrench space. An attractive aspect of Pollard’s work is that not just force
closure is tested but also how “well” wrench space is spanned. It is possible that a grasp is force
closed but that to offset certain task wrenches a huge force will have to be applied at a finger
contact. A good grasp is one where only modest forces need to be applied at the fingers to offset
any wrench. The grasp quality measure that Pollard used was the radius of the largest sphere with
a center at the wrench space origin that fitted within the grasp wrench space (we give examples
in the next section).

4 Limitations of Pollard’s approach

Although Pollard’s approach has much to commend it, there are some limitations which mean it
is, as it stands, unsuitable for synthesizing precision grasps for typical multi-fingered hands.

Pollard suggests that the extrema of the object wrench space curve are good candidates for
contact placements. She argues that such placements will maximise the grasp quality measure, i.e
the radius of the wrench space ball. Although this is true for the examples used by Pollard the
following points must be considered:

Force closure requires that the grasp wrench space must span wrench space i.e. by definition
they should be able to offset any wrench applied to the object; a geometric interpretation of this



fact is that the convex hull of the grasp wrench space encloses the wrench space origin. Only if
the wrench space origin is enclosed can the wrench space ball have a positive radius. This means
that an n dimensional wrench space requires that there must be at least n+1 linearly independent
frictionless point contacts. For the planar case wrench space is three dimensional and therefore
four frictionless point contacts are required for force closure. Clearly if there were only 3 contacts
then the grasp wrench space could at best only form a plane which could never enclose the wrench
space origin.

If there are four or more linearly independant contacts in 2D then the grasp wrench space will
enclose a volume in wrench space. However, this does not guarantee that the origin of wrench
space will be enclosed. The object wrench space extrema chosen must be well spaced out around
the limit wrench space cylinder and be of mixed types (maxima and minima).

The examples illustrated by Pollard for the planar case, where wrench space is three dimen-
sional, typically had five contacts which is one in excess of the minimum required for force closure.
Under these conditions enclosure of the origin and thus force closure is a likely although not a
guaranteed occurrence.

However, if we consider the general three dimensional case then wrench space is six dimensional
(three force directions and three torques about these axes). In this case we require at least 7
frictionless point contacts for force closure. Pollard’s examples use at least 7 contacts, so there is
a high chance that force closure is achieved and that many, if not a majority, of torque extrema
are occupied and therefore good force closure assured.

The requirement of 7 contacts means that only power grasps can be planned. If we wish to
plan precision grasps and these fingertips are modelled as frictionless contacts then they can never
define a hyper-volume in the six dimensional wrench space. In the three dimensional case force
closure can only be achieved by a hand with less than seven contacts if friction is considered. Any
grasp with low friction can be considered as always “near” singular z.e. a thin volume in wrench
space.

5 Modifications to Pollard’s approach

To overcome the limitations just outlined we suggest two modifications to the basic scheme:
1. Add friction to the analysis thus allowing force closure for smaller numbers of contacts.

2. Choose torque zero crossings (w.r.t the center of gravity) rather than torque extrema as
contact points.

Choosing torque zero crossings is a good heuristic for 3 reasons:

o In this project, our task is to pick the object up and perhaps tilt the object in order to fulfil
some simple task specification. In this case the task wrench on the object will be due to the
gravity vector alone. Because we take the moments with respect to the center of mass, the
gravity vector will always lie in the zero torque hyperplane of wrench space. This can be
visualised for the planar case as the horizontal plane passing through the origin of wrench
space, i.e. lying in the force plane. To span the wrenches in this hyperplane a reasonable,
though not necessarily optimal, strategy is to choose contact points which lie in this plane
in wrench space; these points are the torque zero crossings of the object wrench space and
are where the surface normals of the object pass through the center of mass.

e We are interested in using precision grasps with perhaps 2-4 fingers and certainly less than
the theoretical minimum of 7 for frictionless contacts. Only friction ensures that the grasp
wrench space convex hull encloses a hypervolume in wrench space. When friction is small
we can envisage this hull as a thin small finite volume. A reasonable strategy to enclose the
wrench space origin with such a lamina is to choose torque zero crossings thus placing the
lamina in the zero torque hyperplane.



e Finally, such a heuristic provides us with a mechanism for adding further fingers, should they
be available. We can add them at other free torque zero crossings thus providing additional
coverage of the force plane. Alternatively, we can split a virtual finger already at a torque
zero crossing into two new fingers. These fingers can then proceed in opposite directions until
they meet torque extrema adjacent to the initial zero crossing. We have not implemented
this mechanism on our data set of objects but have carried out initial experiments with an
artificial ellipsoid. The results of this experimentation give intuitively sensible results and
will appear in a future report.

Some notes should be made about the above framework. Obviously there is an arbitrary choice
to be made as to whether we try to span as much of the force dimensions or the torque dimension.
This choice will be dependent on the task we wish to accomplish. If the task is merely to pick up
the object then the force dimensions are the most important as the torque reference point is the
center of gravity, and the gravity vector will have no torque with respect to this point, or very
little torque due to small errors in the estimation of the center of mass. If large errors are present
then torque becomes more important.

An analysis of 3D wrench space for the planar case (details of which we omit here), has
shown that torque extrema either side of a torque zero crossing occur when the distance along the
surface normal, measured from the surface to a perpendicular dropped from the center of mass to
the normal, is equal to the radius of curvature at that point. Indeed the perpendicular is also a
perpendicular to the evolute. In the 3D case the role of the evolute is played by the focal surface
and a similar effect occurs.

When splitting a virtual finger into two real fingers in the 2D case, there is only one choice of
direction to abduct (spread) the fingers. In the 3D case the choice of direction is unconstrained.
We suggest that a sensible choice of direction would be along the direction of minimum principal
curvature. Again, initial experiments with an simple shapes suggest that this works well.

A general problem with any wrench space approach is that wrench space consists of dimensions
of force and torque which have different units. An arbitrary scaling is therefore introduced to
equate force and torque when computing a grasp quality measure. In our work we normalise the
torques with respect to the largest torque magnitude which is then given the value one.



Y direction
k-
T

ou 1 1 ! 1 1 s I Il 1 )

X direction

Figure 1: An object boundary modelled using cubic B-splines

6 Owur wrench space analysis

In this section we clarify the wrench space analysis by means of a simple example. We illustrate
the grasp quality measure used by Pollard and also show how friction is added to the analysis. We
do this using a planar object and 3D wrench space although the main work is carried out for 3D
objects and a full 6D wrench space. This is because of the impossibility of showing a 6D wrench
space.

In Figure 1 we see a simple smooth planar curve. Our goal is to achieve a good grasp of this
object. Figure 2 shows the unit object wrench space, which is obtained by applying a unit force
to the shape boundary along the inward boundary normal. This curve lies on the surface of a
unit cylinder which defines the limit wrench space. To aid visualisation, in Figure 3, we show the
curve on the cylindrical surface “unwrapped”.

We now apply friction to this picture. Figure 4 shows the object wrench space including friction
which is obtained by applying a unit force to the shape boundary along the inward boundary
normal and additionally within a specified friction cone at each boundary point. The ribbon so
formed lies on the surface of a cylinder which defines the limit wrench space. It is a ribbon because
a portion of a sine wave is generated side ways from each point on the original single line as the
vector swings from one side of the friction cone to the other. In Figure 5 we again show the surface
unwrapped to aid visualisation. We can see that the ribbon occupies a large range of the cylinder
allowing the possibility of grasps of better quality.

We now choose an initial grasp and evaluate its quality. Figure 6 shows three contact points
of an initial grasp. The grasp wrench space of this grasp is shown in Figure 7. This consists of
three lines on the wall of the limit wrench space cylinder. Each line is a slice of the “ribbon” of
the entire object wrench space including friction. We then compute the convex hull of these lines
which is shown in figure 8. The grasp quality measure is the size of the biggest sphere, centered
at the wrench space origin, which fits inside this hull. This is shown in Figure 9 and it can be
seen that this is small for this grasp, so the grasp is poor.

In an attempt to improve the grasp we add a fourth finger to the object boundary as shown in
Figure 10. The grasp wrench space is shown in Figure 11 and an extra line is seen on the right of
the cylinder. The convex hull is computed, and this is shown in Figure 12; this can be interpreted
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The object wrench space is obtained by applying a unit force to the shape boundary along the inward
boundary normal. The curve lies on the surface of a cylinder which defines the limit wrench space.

Figure 2: The object wrench space
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The unwrapped surface of the cylinder on which the the object wrench space curve lies.

Figure 3: The object wrench space unwrapped
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The object wrench space including friction is obtained by applying a unit forces within a specified
friction cone at each boundary point. The ribbon so formed lies on the surface of a cylinder which

defines the limit wrench space.

Figure 4: The object wrench space including friction
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The unwrapped surface of the cylinder on which the ribbon of the object wrench space including friction
lies.

Figure 5: The object wrench space including friction unwrapped
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Figure 6: A 2D object with 3 contacts.
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The grasp wrench space including friction for the three point grasp consists of three lines on the wall
of a cylinder. Each line is a slice of the “ribbon" of the entire object wrench space including friction.

Figure 7: The grasp wrench space including friction for 3 contacts

as a superset of the original hull,(compare Figure 8). The grasp quality is again computed, the
wrench space sphere is shown in Figure 13. It can be seen that the sphere is much bigger (compare
Figure 9), confirming that a better grasp has been achieved.

11



Torque Z

Force Y -1 Force X

Figure 8: The convex hull of the grasp wrench space including friction for 3 contacts
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The grasp quality measure is the radius of the largest sphere centered at the origin which can fit inside
the convex hull of the grasp wrench space. For the case of these three contact positions the radius is

small. The shaded facet is the one nearest that the sphere touches and is therefore nearest to.

Figure 9: The wrench space sphere for the 3 contact grasp
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A fourth finger position has been added in an attempt to improve the grasp quality.

Figure 10: An object with 4 contact points
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Figure 11: The grasp wrench space including friction with the extra fourth contact.
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The convex hull of the grasp wrench space including friction is larger than that for three fingers.

Figure 12: The convex hull of the grasp wrench space with friction for 4 contacts
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The radius of the wrench space sphere is larger than for the 3 contact grasp. The grasp quality has
been improved by applying the fourth contact.

Figure 13: The wrench space sphere for the 4 contact grasp
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7 The grasp synthesis

In this section we outline the stages in the synthesis of grasps. The input to the grasp synthesis
is meshed surface patch descriptions from the range data segmentation module. The output is a
ranking of possible grasps using zero torque contacts, i.e. contacts where the surface normal goes
through the centre of mass. This has been done for two and three finger combinations. The stages
involved in obtaining the grasp rankings are as follows.

1. Torque with respect to the centre of mass is computed for all surface normals to find the
biggest torque present for normalisation of the torque in wrench space.

2. Zero crossings of torque are found for each surface patch. This is done by computing the
torque for each node on the patch mesh and then simply checking to see if each pixel is a
local minimum, ¢.e. that it is lower than its neighbours. If it is then this is put forward as
a candidate contact point.

3. All the candidate contact points are collated together. Combinatorical combinations of two
and three fingers are computed for this set of candidates. Each combination consists of two
or three of the candidate contacts.

4. A typical coefficient of friction is assumed. From this a “canonical” friction cone is generated.
The friction cone is approximated by a number of unit vectors around its circumference. In
these experiments the cone half angle was m/4 and the number of approximating vectors was
six. An extra unit vector is added at the centre of the cone.

5. The canonical friction cone is transformed so that its central vector points along each of the
candidate contact normals in turn. The force and torque components w.r.t the z,y, = axes
are computed. This process generates a grasp wrench space including friction for the grasp
contact combination.

6. To test for force closure and deduce the grasp quality we need to to generate the convex
hull of this grasp wrench space. Once this is done the radius of the wrench space sphere is
calculated which is used as the grasp quality measure.

7. Once the above processes have been repeated for all candidate combinations they are sorted
in order of their wrench sphere radii with the best grasps having a largest value. This radius
is bounded by unity due to the unit force vectors forming a hyper-cylinder.

Some notable points about the grasp synthesis are as follows:

Before the set of grasp wrench points are fed to the convex hull algorithm we add to this set
the origin of the wrench space as an extra point. If there is no force closure then the origin will
appear on the convex hull and the radius of the wrench space sphere will be zero. If there is force
closure, the origin will be inside the convex hull and will not effect the final result.

During our analysis of wrench space we produced a new approximate convex hull algorithm
based on the R,# mapping of the Hough transform. If we map the image curve into R, space
then the upper envelope of the R,8 curve corresponds to the convex hull in image space. An
accompanying report gives further details of this algorithm along with further interesting insights
into the properties of the R,# mapping. A drawback of the algorithm is an exponential increase
in memory requirements with increased dimensions, so for the 6D wrench space of the 3D objects
we used a proprietary convex hull algorithm called Quick Hull.



8 Experiments

In this section we present the results of running our grasp synthesis algorithm on a data set
consisting of range data from several real objects which were previously unmodelled. Results for
each object consist of:

e A gray level image of the object.

e A torque encoded mesh plot of the object. This consists of the meshed surface patches of
the object which are encoded to show the torque w.r.t to the centre of mass for each point
on the surface. Torque zero crossings are denoted by a dark circular patch or dark band on
the object surface.

o The candidate contacts (complete with friction cones). These are numbered so that a com-
parison can be made between different grasps and their grasp qualities to verify that then
make intuitive sense.

e Most of the objects have two tables which contain the combination of contacts evaluated for
two and three finger grasps and their corresponding grasp qualities. These are sorted with
the largest radii and therefore best grasps at the top. If a radius is zero then this means
that the grasp was not force closed.
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9 Discussion of results

In this section we discuss the results of the last section and make comments about the effectiveness
of the approach. j

The approach certainly works well for the polyhedral objects. Figure g is a picture of a cube.
There is a torque zero crossing in the middle of each face of the cube, as can be seen in Figure ¥. 15
Figure Ql?nows the candidate contacts with their friction cones. The contacts 1 and 4 are the
same patch which has been duplicated in the range image registration process. The normals do
not meet perfectly at the centre of mass because of subsampling in the algorithm. Little if anything
is gained in grasp quality by the extra finger in the three finger case. Parallel facing sides are the
best “antipodal” grasps as one would intuitively expect. The prism shows a similar pattern with
torque zero crossings one each face in Figurel9. Figure § shows that the slanting faces produce a
force closure grasp but of poor quality. The best grasps are again “antipodal”. No gain is made
by the third finger.

The faceted stone of Figure § is approximately polygonal. Many grasp combinations are
produced and we can see examples where the third finger does give an advantage. This is probably
because the faces are no longer perpendicular to one another. so

For the smooth stone of Figure §and particularly the cone of Figure # the dark circle of near
zero torque is replaced by a dark band. This is because these objects are approximately cylindrical
and surface normals pass through the central axis producing near constant torque. This highlights
a limitation of the heuristic. For cylinders the torque zeroscrossings are not isolated points on the
surface but a line. For spheres such as the one in Figure § the whole surface is a torque zero if the
centre of mass is at the centre of the sphere. For the cone, the range segmentation has fitted two
cylindrical surfaces which are not perfectly registered with the centre of mass and therefore give
isolated zero torque crossings. The position of these zero crossings are arbitrary and unstable. We
require a method of detecting spheres and cylinders and to deal with them as an exception.

We have not yet performed detail timings of the grasp synthesis algorithms. The 6D convex hull
computation takes on the order of a 10th of a second on a sparc 10 workstation for each candidate
grasp. The greatest time at present is spent preprocessing the range data object descriptions
which take on the order of one minute on a sparc 10 workstation.
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Figure 14: Grey level image of a cube
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Figure 15: Torque encoded mesh surface of a cube
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Figure 16: Finger contacts and friction cones at torque minima for a cube

Finger!l | Finger? | Radius Fingerl | Finger?2 | Finger3 | Radius
2 5 0.5929 2 5 6 0.5970
3 6 0.5898 3 5 6 0.5947
5 6 0.0000 2 4 5 0.5929
4 6 0.0000 2 3 5 0.5929
4 5 0.0000 1 2 5 0.5929
3 5 0.0000 2 3 6 0.5909
3 4 0.0000 3 4 6 0.5898
2 6 0.0000 1 3 6 0.5898
2 4 0.0000 1 2 3 0.1536
2 3 0.0000 4 5 6 0.1441
1 6 0.0000 2 4 6 0.1419
1 5 0.0000 3 4 5 0.1364
1 4 0.0000 1 3 5 0.1358
1 3 0.0000 1 2 6 0.1319
1 2 0.0000 1 5 6 0.1224

2 3 4 0.1178

1 4 6 0.0000

1 4 5 0.0000

1 3 4 0.0000

1 2 4 0.0000

Figure 17: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
cube
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Figure 18: Grey level image of a prism
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Figure 19: Torque encoded mesh surface of a prism
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Figure 20: Finger contacts and friction cones at torque minima for a prism

Fingerl | Finger2 | Radius Fingerl | Finger2 | Finger3 | Radius
3 5 0.6106 3 4 5 0.6106
2 5 0.6106 2 4 5 0.6106
1 4 0.1820 2 3 5 0.6106
4 5 0.0000 1 3 5 0.6106
3 4 0.0000 1 2 5 0.6106
2 4 0.0000 1 3 4 0.3020
2 3 0.0000 1 2 4 0.3020
1 5 0.0000 1 4 5 0.3012
1 3 0.0000 2 3 4 0.0000
1 2 0.0000 1 2 3 0.0000

Figure 21: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
prism
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Figure 24: Finger contacts and friction cones at torque minima for a faceted stone
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Figure 22: Grey level image of a faceted stone
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Figure 23: Torque encoded mesh surface of a faceted stone
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Fingerl | Finger2 | Radius Fingerl | Finger2 | Finger3 | Radius
5 6 0.4996 3 ) 6 0.6156
4 6 0.4592 2 5 6 0.6156
3 6 0.2148 5 6 7 0.6057
2 6 0.1519 1 5 6 0.6006
1 5 0.0773 4 5 6 0.5600
6 7 0.0323 3 4 6 0.5174
5 7 0.0105 2 4 6 0.5174
4 7 0.0000 4 6 7 0.4592
4 5 0.0000 1 4 6 0.4592
3 7 0.0000 3 6 7 0.2722
3 5 0.0000 1 3 6 0.2364
3 4 0.0000 2 3 6 0.2148
2 7 0.0000 2 6 7 0.1740
2 5 0.0000 1 2 6 0.1519
2 4 0.0000 1 5 7 0.0773
2 3 0.0000 1 4 5 0.0773
1 7 0.0000 1 3 5 0.0773
1 6 0.0000 1 2 5 0.0773
1 4 0.0000 2 5 7 0.0544
1 3 0.0000 3 5 7 0.0513
1 2 0.0000 1 6 7 0.0323
4 5 7 0.0105
3 4 7 0.0000
3 4 5 0.0000
2 4 7 0.0000
2 4 5 0.0000
2 3 7 0.0000
2 3 5 0.0000
2 3 4 0.0000
1 4 7 0.0000
1 3 7 0.0000
1 3 4 0.0000
1 2 7 0.0000
1 2 4 0.0000
1 2 3 0.0000

Figure 25: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
faceted stone

24



2 e
4
el vm B anr
o o foaa faryen s
+ufl o a]

Y I

1
Eerrr
I g

23|

10204

1000

9804

Z-axis (mm)

-40

Y-axis (mm) X-axis (mm)

Figure 27: Torque encoded mesh surface of a smooth stone
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Figure 28: Finger contacts and friction cones at torque minima for a smooth stone

Finger! | Finger2 | Radius Fingerl | Finger2 | Finger8 | Radius
1 2 0.1268 1 2 3 0.1268
2 3 0.0053
1 3 0.0000

Figure 29: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
smooth stone
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Figure 31: Torque encoded mesh surface of an indented stone
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Figure 32: Finger contacts and friction cones at torque minima for a indented stone
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Finger! | Finger? | Radius Fingerl | Finger2 | Finger3 | Radius
1 6 05433 | |1 3 6 0.6367
4 7 0.4196 1 4 6 0.6239
3 7 0.3812 1 4 7 0.6188
1 7 0.3132 1 5 6 0.5584
3 6 0.2224 1 2 6 0.5584
4 6 0.1714 1 6 7 0.5433
5 6 0.0593 1 3 7 0.5313
6 7 0.0000 4 ) 7 0.4234
5 7 0.0000 3 4 7 0.4234
4 5 0.0000 2 4 7 0.4234
3 3 0.0000 4 6 7 0.4196
3 4 0.0000 3 6 7 0.3812
2 7 0.0000 3 5 7 0.3812
2 6 0.0000 2 3 7 0.3812
2 5 0.0000 1 5 7 0.3205
2 4 0.0000 1 2 7 0.3177
2 3 0.0000 4 5 6 0.2720
1 5 0.0000 2 4 6 0.2641
1 4 0.0000 3 5 6 0.2539
1 3 0.0000 2 3 6 0.2508
1 2 0.0000 3 4 6 0.2239
1 2 4 0.0999
5 6 7 0.0593
2 5 6 0.0593
1 4 5 0.0463
1 2 3 0.0257
2 6 7 0.0013
3 4 5 0.0000
2 5 7 0.0000
2 4 5 0.0000
2 3 5 0.0000
2 3 4 0.0000
1 3 ) 0.0000
1 3 4 0.0000
1 2 5 0.0000

Figure 33: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
indented stone
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Figure 34: Grey level image of a rough stone
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Figure 35: Torque encoded mesh surface of a rough stone
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Figure 36: Finger contacts and friction cones at torque minima for a rough stone

Fingerl | Finger?2 | Radius Fingerl | Finger2 | Finger3 | Radius
1 4 0.5380 1 3 4 0.5380
1 3 0.2185 1 2 4 0.5380
2 4 0.2024 1 2 3 0.2203
2 3 0.0047 2 3 4 0.2024
3 4 0.0000

1 2 0.0000

Figure 37: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
rough stone
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Figure 38: Grey level image of a broken pipe
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39: Torque encoded mesh surface of a broken pipe

32



Z-axis (mm)

930
60

X-axis (mm)

-60 40

Y-axis (mm)

Figure 40: Finger contacts and friction cones at torque minima for a broken pipe

Fingerl | Finger2 | Radius
1 2 0.5879

Figure 41: Grasp quality in terms of hypersphere radii for two finger grasp combinations on a broken
pipe
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Figure 42: Grey level image of a forked stick
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Figure 43: Torque encoded mesh surface of a forked stick
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Figure 44: Finger contacts and friction cones at torque minima for a forked stick

Fingerl | Finger2 | Radius Fingerl | Finger2 | Finger3 | Radius
1 3 0.3118 1 2 3 0.3118
2 3 0.0000
1 2 0.0000

Figure 45: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
forked stick
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Figure 46: Grey level image of an egg
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Figure 47: Torque encoded mesh surface of an egg
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Figure 48: Finger contacts and friction cones at torque minima for an egg

Fingerl | Finger?2 | Radius Fingerl | Finger2 | Fingerd | Radius
1 2 0.6047 1 2 3 0.6050
1 3 0.0136
2 3 0.0000

Figure 49: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on
an egg
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Figure 50: Grey level image of a cone
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Figure 51: Torque encoded mesh surface of a cone
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Figure 52: Finger contacts and friction cones at torque minima for a cone

Finger! | Finger?2 | Radius Fingerl | Finger2 | Finger3 | Radius
2 5 0.3770 2 5 6 0.5909
1 5 0.3107 2 3 5 0.5889
5 6 0.1360 1 5 6 0.5322
1 3 0.1282 1 3 5 0.5220
3 5 0.1103 2 4 5 0.3770
1 6 0.1099 1 2 5 0.3770
4 6 0.1097 1 4 5 0.3107
2 3 0.1064 2 3 4 0.2688
3 4 0.0878 2 4 6 0.2683
2 6 0.0869 1 4 6 0.2363
4 5 0.0000 4 5 6 0.2335
3 6 0.0000 1 3 4 0.2310
2 4 0.0000 3 4 5 0.2119
1 4 0.0000 3 5 6 0.1360
1 2 0.0000 1 2 3 0.1282

1 3 6 0.1282

1 2 6 0.1099

3 4 6 0.1097

2 3 6 0.1064

1 2 4 0.0000

Figure 53: Grasp quality in terms of hypersphere radii for two and three finger grasp combinations on a
cone
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Figure 54: Grey level image of a sphere
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Figure 55: Torque encoded mesh surface of a sphere
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10 General comments

If we consider a smooth planar boundary then we can informally define a discriminant surface
as formed by the normals to the boundary lifted up to 45deg from the plane. The number of
sheets of the discriminant.over any point of the plane tell us how many normals pass through that
point. If we consider the relative position of the centre of mass with respect to the discriminant
we can determine the number of torque zero crossings that there will be. (The relationship of the
discriminant to the centre of mass also specifies the number and nature of extrema on the object
wrench space curve as mentioned in an earlier section). Each type of quadric used in our surface
fitting modules will have a qualitatively distinct shape of discriminant and therefore a distinctive
signature in terms of how many torque zero crossings it has and their geometric relationship. In
the 3D case the discriminant is a 3D surface embedded in a 4D space.

We can consider static and dynamic stability within this framework. If we define a threshold
close to zero we can mark patches on the surface which are near to torque zero crossings. The size
of the patch is a measure of the zero crossings robustness to modelling error. We can consider the
length of the normal measured from the surface to the centre of mass. We suggest that a good
heuristic would be to choose contacts where this length is less than the radius of curvature at
that point. It is better to hold a rugby ball by diametrically opposite contacts around its central
section than contacts placed at its two pointed ends as strong forces applied during manipulation
could lead to instability in the latter case.

Despite the offline nature of our grasp synthesis in this feasibility study, we propose that the
actual grasp execution should take place within a realtime adaptive force servoing framework.
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11 Conclusions

We conclude that grasp synthesis can be successfully driven by range data of unmodelled objects.
We have demonstrated this using an extension of Pollard’s wrench space analysis. We have added
friction to this analysis and made it suitable for precision grasps using multi-fingered hands. We
proposed a simple heuristic for finger placement; using contacts where the contact normals go
through the centre of mass greatly simplifies the grasp search problem and leads to intuitively
consistent results in many cases. A limitation of the heuristic is the case of cylindrical and
spherical objects that need to be identified and dealt with separately. It should be noted that
much of our work would be valid if another heuristic or theoretical framework were adopted.

12 Further Work

Within the current framework we would implement the finger abduction process proposed in this
report. We would also like to feed other grasping frameworks with our data to see how they would
cope. For example, it would be a simple matter to search for the anti-podal grasps within Blake’s
framework. It would be interesting to explore the use of other models such as B-splines. We would
like to verify the work using a cheap mobile scanner with less high quality output, and to try to
achieve real grasps using a real multi-fingered hand.

Finally, a general multi-fingered theory of grasp remains a future goal for the academic com-
munity. From our own work, and reading the work of others, we believe that the path to that goal
lies in an understanding of the qualitative structure that shape, symmetry and geometry place on
the grasp synthesis problem. Using tools such as differential geometry will allow us to uncover
these patterns and use them to synthesise robust grasps efficiently.
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