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Abstract:

This paper presents a theory and some evaluations on how configuration
evidence contributes towards model invocation. Invocation occurs when the
plausibility of an image structure having a particular identity becomes suffi-
ciently high. Plausibility is acquired from data properties that satisfy con-
straints and component relationships defined by the model. The data and model
relationships define a large network within which plausibilities can be com-
puted in parallel. This network can be conveniently mapped into registration
with an 1image array, so that a processor can be designed that has all model
base relationships defined permanently while still allowing dynamic network
reconfiguration for each new image. Particular new results in this paper are:

(1) New data constraints are defined specifying evidence based on spatial
configurations between features rather than feature property.

(2) Direct data evidence and subcomponent evidence are now integrated un-
iformly, under the assumption that both can be viewed as object
features.

[3) The evaluation and network linkages for binary constraints are de-
fined.

(4) The computation is defined for both orientation independent and

viewer centered invocation.
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1. Introduction

Interpreting image data as an instance of a named entity requires 1invok-
ing the identity, whether to use as an index to other information or by itself
as input into other visual processes. Invoking the model is a difficult prob-
lem because a competent visual system may know 104 - 102 nameable objects, yet
all must be accessible quickly. Moreover, neither the object representations
nor the model base will be complete, so the invocation process will have to
invoke "close" models, such as when we see a familiar car with a new dent, or

a new person.

Invocation is not a model matching process, rather, it 1is a suggestive
process producing a small set of potential identities to explain the data.
Hence, it may make errors, and need not depend on fully discriminating proper-

ties.

In [FIS85], a network formulation of the model invocation process was in-
troduced. This process calculated the plausibility that a particular model
was a potential explanation for a set of data, based on direct evidence from
observed properties and indirect evidence from generic and component relation-
ships. Invocation occurred when the plausibility of an image structure having
a given identity reached a threshold level. The invoked identity is then us-
able for direct model matching, or for suggestive support in processing other

visual data.

A computational account of this process has been developed ([FIS85])



specifying the invocation network structure, the functions calculated in the
network and the mapping of the network to image data. One notable absence
from the process was the representation and use of invocation cues available

from the spatial configuration of features, as compared to feature types.

This paper extends the previous work to incorporate spatial configura-
tions into the model invocation process. Starting with some intuitions on the
role of configurations, it proposes a computational theory and presents some

experimental results.

In the exposition below, surface and volumetric primitives will also be
included as visual entities, because the invocation process may also be ap-
plied to image data already processed to the point of surfaces ([FIS85]) or
volumes. Many of the examples will be taken from two dimensional configura-
tions, for simplicity, but several examples at the end will demonstrate invo-
cation of other structures. Alphabetic letters will be used as the primary
source of spatial configurations. Some letters have similar configurations
[e.g. H and I, d, b and p, 3 and S, L and J, etc.), and will therefore be a

good test of our methods.

The work in this paper follows directly from the previous invocation
research of Fisher ([FIS85]) summarized in section 3. Hinton
([HIN81a],[HIN81b]) proposed a network method integrating identity and orien-
tation resolution - particularly for letter recognition - using tuned orienta-
tion units integrating at the component level. This paper takes a slightly
different direction and suggests spatial relationships can be expressed im-
plicitly between features (at less networking cost) and provide direct evi-
dence for the configurations. The configurations invoked (for three dimen-
sional objects) should be merely representative views (Minsky [MIN75]J and

thus have a rough orientation implicit in them. This paper also explicitly



defines the types of linkages and functions in the network, based on proper-

ties of desired computations.

Feldman and Ballard ([FEL83]) proposed a discrete model of recognition
based on spatially coincident properties. This was more properly a grouping
of typed features (e.g. letters grouping to form words), but some configura-
tion effects must be present because of the significance of letter order in
word meaning. (Though it is hard to say whether the configuration is spatial

or temporal.)

One key problem not fully resolved in any of these investigations is to

OF wwoecalivy
what extent are the resultsnsuggestive, as compared to conclusive. The work
here follows the view that it 1is suggestive (possibly strongly] and 1its

results are then usable for model directed analysis.

The choice of object features and relationships strongly follow Marr
([MAR82]) and Sloman's POPEYE research group ([SLO78],[0WE80],[0WE82]). Marr
and Nishihara ([MAR78]) proposed an axis oriented representation for solid ob-
jects with subcomponents linked by axis relationships. Owen ([owE82]) used
relative positions of side strokes about a main axis to describe configura-
tions of strokes in hand printed letters. While many objects have axes, not
all do and it is felt that integrating the evidence from local relations
between features can make up for not having a global organizing axis. This
approach can also be generalized for other than 3 dimensional elongated solids
or letters. Owen ([OWEB0]) argued that intermediate representations of
letters (and words) should depend on two aspects: token identification and re-
lative token placement. The relative placement aspect is the key to the con-

figuration effect in invocation.

The indirect use of constraints on spatial relationships to recognize ob-

jects has been investigated several times. Barrow and Popplestone ([BART1])



used the relations in arcs before graph matching, with weighting for the
number of successful arc matches. Brooks ([BR081]J implemented a more sophis-
ticated version in ACRONYM, where an object had to meet the constraints to be
considered for the identity. Barrow and Tenenbaum ([BAR76]), in MSYS, used
spatial orderings to constrain region labelings. Adler ([ADL75]) and Hinton

[[HIN76]) recognized 2D sketches of humans using parts configurations.

Here, the goal is not explicit representation or recognition, but instead

to use the relationships as constraints contributing to model invocation.

Rock ([ROCT4]) summarized various experiments on human perception of

disoriented figures and the key results were:

(1) There is both an environmental and a retinal component of figure per-
ception.

(2) Humans use environmental cues (e.g. gravity, scene verticals) to
correct retinal orientations back to "vertical”.

[3) The correction seems to dominate except when a strong axis 1is
present, the figure 1is complex [e.g. a whole word) or the rotated
version has a strong class resemblance to the unrelated form (e.g.
cursive script).

(4) The key place descriptors seem to be roughly: "top", "bottom" and

"side", but not "left" or "right".

Because of the evidence for the importance of environmental 1labeling,

this factor is also included in the theory presented in chapter 4.
2. Intuitions and Motivations Behind Configurations In Invocation

The key motivations to include configurations into invocation come from:
[1) a group of features have a spatial distribution as well as feature

types, and



[2) humans use cues from configurations.
This section will contain several examples motivated from human perception,
but the goal is to illustrate what processes might be needed for a machine vi-
sion system, rather than understanding the human visual system. Configura-
tions are a necessary aspect of invocation. It is clear from figure 1[aJ that
the line segments have no intrinsic relation to the triangle concept, so it
must be their configuration (as in figure 1(b)) that invokes the triangle

model.
(Figure 1)

The distinction between the use of feature types and feature locations in
invocation 1is shown in figure 2. In [aJ, there are all the right components
in the wrong places, and a face is invoked; this must be from type informa-
tion. Cubist paintings (e.g. Picasso) exploit this process. In (b), the re-
verse occurs, with wrong feature types in typical places, and again the face

model is invoked. Magritte's images often exploit this process.
(Figure 2)

The two processes complement each other. The first has already been in-
corporated into the invocation process ([FIS85]) and this paper develops the

theory for the second.

If invocation evidence comes from token placement, what are suitable
types of tokens? Figure 1 suggests line segments are one type, and figure 2
suggests point locations (e.g. the nose relative to the eyes) are another.
Implicit segments through open space between points are also important, as
seen in figure 3[a). Here, the dots suggest connecting straight 1line seg-
ments, again invoking the triangle. It may also be that the dots themselves

map to the corners of the triangle and invoke through that path, but this



seems less 1likely in 3(b). We will assume that token points do no more than
implicitly define line segments between them. Figure 4 shows this with two
triangles invoked from segment endpoints. [Subjective contour phenomena prob-

ably also play a part here, but are ignored in this paper.)

(Figure 3)

(Figure 4)

Sequences of tokens also define 1line tokens, with the line passing

through to the extrema, as seen in figure 3(b).

The axis of elongation 2D regions seem to be significant features, as
figure 5 shows. Here, all three sketches are roughly equivalent, with the

axes defining their character.

(Figure 5)

Arcs define tokens, as seen in figure 6. The arc implies two axes - one
connecting the endpoints and the other giving the arc direction, the latter
being necessary to distinguish a} from c). This may be a weaker constraint,
as dyslexia appears to be common. Correctly fixing the orientation could be

done at higher levels.

(Figure 6)

Considering alphabetic letters as invokable configurations, the features
defined so far are not sufficient to handle letters like O or Q. It may be
the case that circular features define a point token at the center of the cir-
cle or, instead, the circle, being a nameable symbolic entity, should be used
in the type based feature invocation process (e.g. figure 2[a)) rather than in
the configuration process. This problem is not addressed further here, and

the letters O and Q are omitted from the experiments discussed in section 5.



Configurations also occur in three dimensions. A tree can be treated as
a blob at the end of a stick, a shoe as a collection of surfaces (figure 7).
The two examples have the token types in a particular relationship to each
other suggesting the desired object. The grouping of cylindrical solids to
form a human body seems to be a distinctive configuration as well. The two
key classes of tokens here seem to be surface patches and volumetric sticks,

plates and blobs ([SHA80]).
(Figure 7)

Hence, the key token types include points, lines, arcs, surface patches
and volumes. Since identities are not needed for the configuration based in-
vocation process, this completes most of the primitive structural elements
needed. What relationships between these features, then, define a configura-

tion?

Previous research ([MAR82],[OWEB0]) has suggested using a main axis with
other components oriented about it. Marr's interest was in stable and canoni-
cal descriptions, so the axis provided a convenient organizational focus. The
interest here 1is not in object representation, instead in using the spatial
cues to suggest possible models. Further, not all figures have such an axis
(e.g. the letter O and figures 1(b) and 7(b)). Symmetry also suggests an or-
ganizing axis, but this is not always the case, as in figure 8, where the sym-
metry axis seems minor compared to the elongation axis. Hence, this work will
explore not using such an global organizer, but using only local feature pair
relationships. This will define the global relations implicitly, much as a

trinary predicate can be expressed as two binary predicates.
(Figure 8)

For sketch scenes, the key relationships between tokens are axis rela-



tionships, whether the axis is explicit in the token, or implicit between two
point tokens. The three relationships used here are:

(a) relative axis orientation

(b) relative axis placement

(c) relative axis size
Marr, in defining model affixments ([MAR82]) links (a) and (b), but here they
are separated because they provide different constraints on the token rela-
tionship. For the human stick figure, the relative orientation of the sticks
is unimportant, compared to the attachment points and relative sizes, soO each

of these properties is expressed independently.

Parallelism is a possible feature, but it can be expressed by a relative
orientation of =zero between the axes. Feature containment is important for
sketch scenes, where one feature is "inside" another, but this is ignored

here.

For surfaces, relative surface orientation, size and placement are the
key relationships, though adjacency might also be considered. As a surface
token probably would not include a description of its extent, adjacency would

not be inferrable from placement.

For solids, Shapiro et al ([SHA80]) give a good catalogue of relation-
ships between stick like solids (end), plate-like solids [edge, interior) and
blob-like solids (center):

"The type of connection can be end-end, end-interior, end-center,
end-edge, interior-center, or center-center ...".

Presumably edge-center was also intended.

The discussion so far has presumed an unoriented object, but this is
often not the case, particularly with sketch entities such as letters. These

are typically seen only in an "upright" position, so incorporation of viewer-



centered descriptors 1like "top" or "left", etc. would refine configuration
descriptions, particularly if an object's identity was dependent on configura-
tion, as in a square versus a diamond (figure 9). On the other hand, when
most letters are upside down (e.g. an "R"J it is still recognizably the same
letter, so its orientation should not be an absolute requirement. Yet, an up-
side down "d" is usually seen as a "p", with the "d" never even considered.

Rock ([ROCTL4]) suggested orientation is a strong factor in human perception.
(Figure 9)

Viewer centered relationships also occur with three dimensional objects -
one seldom sees a human upside down, and a upside-down face is often not im-

mediately identifiable.

Finally, there is the problem of which features should be grouped to form
a configuration - what are the grouping principles. For sketches, two factors
seem important - proximity and isolating structure. In figure 10, each indi-
vidual set of features seems more tightly associated than features paired
across groups, except when considering each group as a whole. In figure 11,
the boundary seems to isolate the stars interior, even when then boundary is

not convex.
(Figure 10)
(Figure 11)

Other factors include token type grouping (figure 12) and segmentation by

recognition, so there are several isolating processes.
(Figure 12)

For surface and solid configurations, space occupancy constraints simpli-

fy the problem. Following [FISSS], the primitive connected surface groups

10



(isolated by connected obscuring and concave boundaries) create a context for
inter-surface relations, and for volumes, the depth aggregated connected sur-
face groups form complete solid objects. In both cases, being solids creates

a natural context within which features lie.

Figure 13(a] shows a mug with a handle. The concave surface boundary
segments the handle from the body and each of these forms a primitive connect-
ed surface group (figure 13(b)). Though the concave boundary is ambiguous re-
garding depth ordering, either alternative 1is equivalent and produces the

whole cup for the depth aggregated connected surface group.
(Figure 13)
3. Review of the Invocation Formulation

Chapter 7 of [FI885] presented a solution to the model invocation problem
based on parallel computation of plausibility in a network. The key features
of the formulation were:

The nodes in the network represented every potential identity an 1image

structure could acquire.

Plausibility is an evaluation of how well the given model explains the

corresponding image structure.

The plausibility computation was based on functions implementing gener-

ic, component and direct evidence relationships.

The arcs in the network link nodes related by the generic and component

relationships within the appropriate image contexts.

There is a natural mapping between the image contexts and the network,

leading to a parallel computational structure.

These points are explained in greater detail below.

Each node in the network represents an identity that a corresponding im-
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age structure might have. Suppose a simple domain contains five objects: a
cylinder, a waste bucket and its three component surfaces - the inside
cylindrical surface, the outside cylindrical surface and the bottom surface
(the inside bottom has the same shape as the outside bottom). Suppose the
scene is as in figure 14 below. Considering only surfaces and solid struc-
tures for the moment, this scene has four image structures of significance:
the three surface regions [A,B and CJ and the connected surface group consist-
ing of surfaces A and B. The network for this scene has 11 nodes in it - 9
for the three surface identities each image surface could have, and 2 for each

identity the connected surface group could have.
(Figure 14)

Each node in the network is associated with a plausibility value. This
plausibility measure attempts to encode the potential of node's model as a
correct explanation of its image structure. While plausibility is not a pro-
babilistic measure, it does have the interpretation that higher plausibilities
[for a given modelJ imply better agreement, and model invocation occurs for

any node whose plausibility exceeds a given level.

Plausibilities are measured on a [-1,1] scale, with negative values
representing contradicting data and positive meaning supporting data. Values
near zero are neutral, but invocation currently occurs for nodes with any po-

sitive plausibility.

A node acquires its plausibility from two types of evidence - direct and
indirect. Direct evidence comes from properties of the data that meet con-
straints associated with the model identity, and the degree that these con-
straints are satisfied evaluates to a plausibility value. For example, the
surface area of the waste bucket bottom is expected to be in the range from

160 to 240 cm2, with a nominal value of 200. Then, for this property alone, a

12



data value of 220 cm® would contribute a plausibility value of 0.5, according
to the function shown in figure 15. (All property evaluation functions have

this shape.)
(Figure 15)

Each constrained property contributes a plausibility measure for the
identity, and the overall direct evidence plausibility value is calculated
from these. This calculation is a weighted average, where the weights scale
the individual plausibilities according to the importance of the feature to
the identity of the object, and the likelihood of obtaining reliable data.
The averaging process treats negative plausibilities with twice the weighting
of the positive plausibilities, because only a few properties may discriminate
between the true and similar identities, and so any contradicting evidence is
given greater significance. A typical portion of the network integrating the

direct evidence evaluations for a node is shown in figure 16.

(Figure 16)

Constraint Evaluations

Indirect evidence comes from other nodes that have a given generic or
component relationship with the current node. In our example, the waste buck-
et is treated as a specialization of the cylinder. A reasonable plausibility
relationship between the two identities is that the plausibility of the spe-
cialization should be at most as large as that of the generalization. So,
when computing the plausibility for an identity based on supertype evidence,
one possible function would use the minimum of the plausibility values of 1its
generalizations. In our example, only the connected surface groups have po-

tential identities related by a generalization.

There are four indirect evidence relationships, mediated by different



computations. The four are: generalization, specialization, subcomponent and
supercomponent. Each of these relationships has restrictions on the identi-
ties and the image structures [i.e. which nodes) which can contribute to the
calculation of the final plausibility. Generic relationship plausibilities
come from the same image structure, subcomponent plausibilities come from im-
age structures contained within the current image structure and supercomponent
plausibilities come from containing image structures. These restrictions de-

fine the links over which plausibility flows between nodes in the network.

Inhibitory inputs also add other links to the network. The main inhibi-
tion comes from other potential identities for the image structure. It is as-
sumed that most structures are likely to have only one potential identity
(disregarding generic relationships here), so an identity with a high plausi-

bility should inhibit other identities for the same structure.

These different plausibility sources need to be integrated for each node.

This also uses the positive minus twice negative averaging function.
(Figure 17)

Figure 17 shows a portion of the invocation network for computing the
plausibility that the connected surface group is the waste bucket. The top
left node represents the cylinder identity for the same image context, and
(here) 1is a generalization of the waste bucket. The three small function un-
its underneath it compute the generalization inputs for the integrated waste
bucket plausibility, and [here) do not do much because only one generalization
was defined. At the bottom of the diagram are six nodes for each of the three
identities for the two surfaces contained in the waste bucket's image context.
The square boxes above these compute the best plausibility for each of the
different identities, which flow into the open circles, which compute plausi-

bilities for three different groupings of the surfaces. Subcomponents are
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seen in visibility groups depending on viewpoint, and each of the circles com-
putes the plausibility for a given group. Above these, a square box selects
the best grouping. In the test image, data surface A is an inner surface and
B is an outer surface, so the rightmost subcomponent grouping should contri-
bute the highest plausibility. At the left of the figure, inhibition inputs
arrive from other competing identities, but for the example, no other identi-
ties are possible. Finally, at the center of the diagram, three units in-
tegrate all the different plausibility inputs to give a single value for the

waste bucket, which may then be used as input into other computations.

This summarizes the processes in the network structure for computing
plausibility. This formulation is ideal for parallel (and analog) execution,
as each of the computations in the formulation can be executed in parallel,
with values changing as new evidence is made available. What remains is to

show how this structure can be mapped naturally onto the image data.

Figure 18 shows a series of planes spatially registered with the 1image.
Assume:

(1) each of the upper planes represents a given model identity,

[2) each plane is a two dimensional set of processors linked with their
adjacent neighbors, such that all such linked processors compute the
same value (i.e. plausibility), and

(3) the surface and connected surface group boundaries from the two bot-
tom planes [i.e. the image) define a set of vertical cutting sur-
faces that sever interprocessor connections.

Then, the processors isolated within each section of each plane correspond to
the nodes defined previously, and internode connections go directly vertically
within the enclosing contexts. Hence, the invocation network can be statical-
ly defined for all known objects, but also dynamically reconfigured for each

new image. (This design is not intended to imply that each processor necces-
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sarily represents a literal physical component, but only that each is a unit

of computation.)
(Figure 18)

We have now introduced most of the structure of the current invocation
model, except that there are also nodes for line-type identities, which are
needed for interpreting line oriented scenes, such as drawings or written
text. Our formulation integrates both direct evidence and associations, is
capable of fast operation through parallel implementation, is incremental, is
tolerant to data errors, and selects models based on similarity, so can handle

previously unknown, but similar data.

4, Theory of Configurations in Invocation

Following the intuitions given in section 2 and the review of previous
results in section 3, some constraints can be given to guide the theory pro-
posed in this section. They are:

On evidence:

Evidence is incremental (i.e. more evidence should increase certainity

of identity].

Evidence is not perfect.

Each piece of evidence should contribute to the final plausibility.

The contribution of a piece of evidence should be a function of the de-

gree to which it meets its constraints.

Negative evidence should have a greater effect than positive evidence.

Evidence comes from both direct data and indirect (i.e generic or com-

ponent ) relationships.

Evidence comes from token spatial relationships as well as types.
On model constraints:

- All modeled constraints require evidence (occlusion is not considered

16



here).

- All*constraints for all generalizations of the identity also apply.

- The better a data constraint is satisfied, the higher its contribution
to an object's plausibility.

On data descriptions:

- Every description must meet a constraint, if any of the appropriate
type exist.

- Not all description types are constrained (i.e. some properties are ir-

relevant].

Several other constraints on the computation have been used previously,
but here, while we are concentrating on configuration evidence, are omitted

for simplicity:

Constraints have relative importance.

The contribution of a piece of evidence should be a function of its im-

portance in uniquely determining the object.

Each piece of evidence should be considered only for the best fitting
constraint.

Not all constraints need evidence (e.g. because of occlusion, alternate

viewpoints).

Having presented our guiding intuitions, the following configuration in-

vocation theory is proposed.

Configuration Features

As discussed in section 2, several visual features create tokens for the

configuration process. They are defined:

point - a distinguished spatial location, such as: the end of a line, the

center of a circle, the center of mass of a surface or a volume, or
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the nominal location of a previously recognized object. Its proper-

ty is location.

segment - connects the endpoints of a sequence of points through the se-

quence (type 1), connects two points through open space (type 2) or
is the elongation axis of a narrow region (type 3]. A segment may
be curved or straight; curves cannot be type 2. A connected curve
should be segmented at significant orientation or curvature discon-
tinuities or when curvature reverses direction. The properties of
the segments are:

(1) direction

(2) size

(3) location
If curved, then:

(4) direction of curvature.
The details of how these are represented is ignored for the moment.

The magnitude of the curve does not seem to be important.

surface - a segmented portion of the complete object surface. Segmenta-
tion criteria might be based on depth, surface orientation and sur-

face curvature discontinuities [[FISSS]J. Its properties are:
1

nominal surface normal

location

(1)
(2) size
(3)
(4)

4) curvature directions

volume - a segmented portion of a whole object. Segmentation criteria
might be at connected concave boundaries [[FISBS]), radical changes
in the orientation of elongation axes or volume joins ([NEV77]).

Its properties are:

18



(1) orientation (if essentially 1D or 2D)
(2) size

(3) location
Configuration Relationships

The essence of configurations lies not in the 1individual tokens, but
rather in their interrelationships. These are the properties evaluated in the
configuration invocation process. The properties are defined similarly for
the model base and the data, allowing direct comparison. For 2D sketches,

segments are the key tokens, and their properties are:
(1) LINE <segment>
or
CURVE <segment>
which describe the character of the segment,
[2) RELSIZE <segment 1> <segment_ 2> <size_ratio>

giving the ratio of segment sizes of segment 2 as a proportion of segment 1,

and
(3) AXORT <segment 1> <segment_2> <orientation>

giving the interior angle between the two segments. Figure 19 1illustrates
these cases. The point of using the interior angle is to distinguish between
the relationships in figure 19(a) and 19(b), which have the same angles in the
intersection of their extensions. Crossing or touching segments have both an-
gles represented (figure 19(0)). If a segment is curved, the axis lies across

the curve instead of through the endpoints (figure 19(d)).
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(Figure 19)
(4) PLACE <segment 1> <segment_2> <distance_1>

defines the placement relationship between the two segments. The distance is
normalized by the lengths of the segments and represents the length along the
first axis where the extension of the second crosses. Figure 20 illustrates

€
this constraints. (Values v and 1 - v are equiva%ent.)

(Figure 20)
(5) VIEWORIENT <segment> <orient>

defines any viewer-centered orientation requirements, with angles measured
from the vertical (only in the range [—w/2,ﬂ/2]). Other viewer centered con-

figuration descriptions and their meanings are:

[6) TOP <feature> feature appears in top half of configuration
or
SIDE <feature> feature appears on either side of configuration
or
MIDDLE <feature> feature appears in middle of configuration
or
BOTTOM <feature> feature appears in bottom half of configuration

which describe where in the oriented configuration a segment occurs. The
directions are defined with respect to standard vertical appearance. These
constraints require the corresponding data to have the same location con-

straints as the model. For example, given "TOP f2", to evaluate a relation
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involving f2 (e.g. R(f2,f1) ) with some data x paired with f2 requires also

having "TOP x".

To specify what features belong together in a configuration, the follow-

ing declaration is needed:

(7) CONFIG <config name> <component_1> ... <component_n> ENDCON

(Figure 21)

Putting these together, a description of the configuration for the letter
"R" (figure 21) is:
COMMENT R

CONFIG R r1 r2 r3 ENDCON

COMMENT r1

LINE r1

RELSIZE r1 r2 2.0
RELSIZE ri1 r3 1.40
AXORT r1 r2 1.57
AXORT r1 r3 0.79
AXORT r1 r3 2.35
PLACE r1 r2 0.25
PLACE r1 r3 0.5
VIEWORIENT ri1 0.0

SIDE ri
COMMENT r2

CURVE r2

RELSIZE r2 r1 0.5
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RELSIZE r2 r3 0.7
AXORT r2 ri1 1.57
AXORT r2 r3 0.79
PLACE r2 ri1 0.0
PLACE r2 r3 -0.5
VIEWORIENT r2 1.57

TOP re

COMMENT r3

LINE r3

RELSIZE r3 r1 0.7
RELSIZE r3 r2 1.4
AXORT r3 r1 0.79
AXORT r3 r1 2.35
AXORT r3 r2 0.79
PLACE r3 r1 0.0
PLACE r3 r2 -0.5
BOTTOM r3

VIEWORIENT r3 -0.79

For surfaces and volumes, the axis orientation and relative size rela-
tionships are analogous, so the same predicates will be used. Though 3D
placement relationships are more complicated, physical constraints will allow
simpler descriptions. In part, the constraints are that objects are solid and

must be fully connected. The new descriptor for surfaces is:
(8) SOLIDANGLE <surface_ 1> <surface 2> <angle>

if the two surfaces are adjacent. A pair of non-adjacent surfaces 8o

described are not fully specified by this, but by object solidity, they have
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connecting intermediate surfaces that constrain them. Surface normals relate
to axes and surface areas give relative sizes, so previous predicates are

still usable.
For solids, the new descriptors are:
(9) TYPE <solid> <type>
where <type> is STICK, PLATE or BLOB, and
(10) CONNECT <solid 1> <solid 2> <connect>

where <connect> is: END_END, END_INTERIOR, END _CENTER, END EDGE, EDGE CENTER,
INTERIOR_CENTER, or CENTER_CENTER. Most previous descriptors are still usable

here, too.

These constraints are designed to express significant relations in confi-
gurations, not all relations, so there are some relations that will not be
constrained explicitly, or perhaps even implicitly. The point is not to pro-

vide discriminative power, but suggestive invocation.
Evaluating Individual Constraints

Civen the data values and constraints, the problem is to calculate an in-
itial plausibility. For unary constraints, like "VIEWORIENT ri1 0.0", the data

evaluation function of figure 15 is used (following [FIS85]), where:

For property i evaluated with data from feature j, let:

d; 5 = /| gaxay S meun; | - | (dofo - mneomi) / meon s \
Then:

unary_plaus,, = if (d; > 7y} then -1
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- *
else 1 2 dij/Ti

The tolerances T, allow for data errors and variation within a class. As im-

plemented, the tolerances were:

1 Ti

RELSIZE 0.2
AXORT 0.2
PLACE 0.2
VIEWORIENT 0.2
SOLIDANGLE 0.2

Thus we can evaluate the plausibility of a single data feature satisfying a
single model constraint. Our interest, however, is in how well the model con-
straint can be satisfied, i.e. what is the best satisfaction of the con-
straint. This means all possibilities should be considered, and the best
evaluation chosen. For each model constraint, all data for that constraint
type 1is considered. This seems like weak discrimination, but recall that at
this point no model has been selected, and so model-data correspondences that

would expose contradictions have not yet been made.

The computation computing the plausibility for constr'ainti over all dataj

measurements is:

constr_plaus; = maxy ( unary_plaus; ; )
For binary constraints, like "RELSIZE r1 r2 1.0", the plausibility of the
second feature must be considered. Here, we want the plausibility to be a
function of both how well the property is satisfied and the 1likelihood that

the second feature is the desired item. The intuitive guidelines for this
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computation are somewhat uncertain, but obviously: (1) if either the value
constraint or the identity is weak, then the final result should weak too, and
(2] if both are strong, then the result should be strong. The heuristic
chosen for this process is the function comb given below. The computation for

the binary COHStPainti(fi,ka is then:

constr_plaus; = max; ( comb ( unary_plaus;; , iq_plaus[dj =) ))

where:

dj are the potential second data features,

id_plaus(d = f) is the plausibility that data feature d has the

model feature identity f, and

comb(x,y) =1 - (1 - x) * (1 - y)

The non-numerical constraints (e.g. CONNECT) contribute 1.0 if there is

any data satisfying the constraint, and -1.0 if not.

This version of data constraint evaluation does not take viewer orienta-
tion into account, hence a data "R" at any orientation should achieve the same
evaluation. Viewer centered computations were also implemented, and how this

modifies the above formulation is now discussed.

In evaluating each of the above constraints, any data feature could
currently be paired with a model feature. In the viewer centered implementa-
tion, only data features having the same configuration location property (i.e.
TOP, BOTTOM, SIDE, MIDDLE) are allowed to be paired. Further, the VIEWORIENT
constraint is evaluated only in the viewer centered formulation. The wuse of
viewer centered data has the effect of sharpening the distinctions between

configurations (such as "I" and "H").
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Low Level Configuration Network Formation

The constraint evaluation described above provides the first layer in the
invocation network, with each model constraint selecting its maximum evalua-
tion for all data within its context. In network terms, this creates a link-
age from all evaluations of the constraint on the data to a function picking
the maximum. Figure 22 shows a typical fragment from this portion of the

network.

(Figure 22)

Modeled relationships also contribute to plausibility. The above con-
straints express only local pairing relationships between features. For the
configuration as a whole, its plausibility also depends on the the plausibili-
ty of its subcomponents at achieving their identities, as well as any other
constraints that might be specified (e.g from participation in larger confi-
gurations). Hence, subcomponent existence is treated as a new property, and
the plausibility contribution for each subcomponent 1is the maximum of the
plausibilities of each data feature being that subcomponent. (An extra con-
straint that could have been used was that a data feature could contribute
plausibility to only one model feature, but this was felt to be unnecessary.)
The subcomponent relationship provides a network 1linkage from individual

features to the configuration.

Individual features also acquire plausibility by participation in confi-
gurations, from the plausibility of the supercomponent. This becomes a new
constraint, whose evaluation is the plausibility of the data configuration
having the desired model configuration type. This also defines a new network

linkage.

There is also an inhibition constraint. The rationale for this is that
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an object should not receive high plausibilities when there are several com-
peting identities. The computation for this picks the highest plausibility
among all specified competitors for the given type. 1If this is positive, then
its negative is used as a negative constraint [weighted with double strength).
If is negative, then it is ignored, as negative evidence for one type is no
support for another type. The effect of this is to sharpen plausibility
differences and force weak plausibilities into implausibility in the face of
stronger identities. If no direct evidence is obtained, no inhibition is ap-

plied.

To get the final plausibility value for the potential of the identity to
explain the data, the individual constraint plausibilities are integrated by

the following procedure:
weight = 0, sum = 0

FOR (<each constraint plausibility p>) {
IF p >= 0
ADD p TO sum
ADD 1 TO weight
ELSE
ADD 2%*p TO sum

ADD 2 TO weight

final plausibility = sum / weight
The doubled negative weights place greater emphasis on contradicting evidence.

The network fragment that summarizes these points for the invocation of
the "R" configuration defined above is shown in figure 23. At the top is a

rectangular node recording the plausibility of the data configuration D
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achieving the model identity R. It receives this plausibility from the
circle/plus integration unit directly below it. This unit integrates the sub-
component evidence with the inhibition inputs. The inhibition comes from all
other potential identities for the configuration D. The squares below compute
the evidence for the defined subcomponents by picking the maximum plausibility

of each of the three data elements having the desired identity.

Node d, = r, is partially expanded below. Again there is the circle/plus
integration unit with the inhibition unit to its left. Here one inhibition
input is shown explicitly, with the other inputs coming from the other compet-
ing identities for data d,, The integration is shown for three properties
among those defined above. At the right is a maximum unit picking the best
supercomponent evidence, here from only the D = R node. (A feature may be
used in several supercomponents.) Next to the left is an evaluation of the

unary "VIEWORIENT" constraint with inputs from the data for feature d At

e
the bottom left is a unit computing the binary plausibil&ty for the "RELSIZE"
constraint. It takes the maximum of a function of the RELSIZE evaluation for
all features having this relation to feature d2, The other input to the
function is the plausibility that the second feature has the correct identity

(here r,), which comes through the links from the nodes defined near the mid-

dle of the network.
(Figure 23)
Network Computation

The above sections defined the network structure relating plausibility
values to model definitions, evidence relationships and property evaluations.
To compute the plausibility of any node, the network is evaluated 1iteratively
until steady state, where all values are consistent, as defined by the data,

network structure and the computations proposed for each functional unit.
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In practice, networks were occasionally found having one or two isolated
nodes which oscillated in plausibility between successive iterations. An up-
dating function incorporating averaging removed most occurrences of this, at

the expense of slower convergence.

Invocation occurs for data/model pair nodes acquiring a positive plausi-

bility evaluation.

Evidence Contexts

As discussed in sections 2 and 4, evidence comes from within contexts:

2D image boundaries: the clustering and isolation boundary processes
determine which data associate. Relations only hold between nearby

features. Implicit segments crossing explicit segments are ignored.

3D boundaries: the segmentation boundaries isolating a surface are the

data. Relations only hold between adjacent features.

3D surfaces: the connected surface groups 1isolate these. Relations

only hold between adjacent features.

3D volumes: the depth aggregated connected surface groups isolate

these. Relations only hold between adjacent features.

This plausibility evaluation process can again be implemented in a paral-
lel network similar to figure 18. The surface and volume contexts above carry
over directly under the original theory. For the 2D boundary configurations,
isolating boundaries are postulated and arise from either literal boundaries
or decay effects over open space. Both processes effectively sever horizontal
interprocessor connections. For 3D boundary connections, the information

flows only through processors lying on the boundaries.

Constraint evaluation units tuned for typical values make up the lower,

identity independent levels of the network - thus allowing for low-level sym-
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bolic vocabulary sharing among more complex structures.
5. Experiments with Configurations

Several experiments were done to evaluate the theories proposed in the
previous section. The simplest is more of a demonstration and calculates the
plausibilities for a face model using a good and bad face configuration, as
suggested by figure 1. Appendix A shows the models and the faces are in fig-
ure 24. The features defined were the line defined by the eye tokens, the
nose and the mouth. The plausibilities for the good and bad data as instances

of the good model when no viewer centered frame is required are:

good head data bad head data

0.51 -0.63
The results when the viewer frame is required are stronger:

good head data bad head data

O. 99 —0. 86

This shows the configuration evidence is significant, the network discrim-
inates and that the viewer reference frame enables stronger discrimination.
One criticism of the test is the theory allows other implicit lines between
feature points [e.g. end of mouth and eye), which were not incorporated in ei-
ther data set. The net effect of this would probably not be significant -
though the presence of coincidental property matches is more likely, there are

also more that require satisfaction.
(Figure 24)

A larger example demonstrates the process more carefully. Configurations
were defined wusing alphabetic characters (except G, 0 and Q). A network

evaluation using a subset of these was performed, with the summary of results
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shown in appendix B. The subset was selected because of similarities between
characters, and discriminations involving the other characters not in this set
were always perfect. The network formed using these 11 configurations against

themselves contained 1600 nodes.

In the non-viewer centered case, the correct model was always invoked
when applied to the correct data. Most of the wrong pairings had negative
plausibility and so were not invoked. Those wrong pairings which were invoked
were actually quite reasonable, e.g. the F model on the E data. Some points
to notice about the results are:

(1) The E data applied to the F model invokes, as is expected, but the E

model has higher plausibility, because it has more satisfied proper-

auvidemce
ties than the F model. Inhibition, emphasizes the differences.

Al
(2) The H and I data on the opposite models have neutral plausibilities,
as their shape is similar, ignoring orientation. The same is true
for L and T.

(3) The same holds for configurations with curves: B, P and R against

each other also acquire neutral plausibilities (but still negative).

The same experiment was run requiring viewer centered invocation. Then,
stronger invocations were achieved [more positive main diagnal of the results
matrix) and larger suppression of the other pairings. Some points to notice
about the results are:

(1) H and I are now strongly distinguished.

(2) The E model on the F data invocation is now suppressed (because the

lowest horizontal line on the E has to be "BOTTOM" not "TOP").

(3) A side effect here is that the additional satisfied viewer centered

properties now give small positive plausibilities to formerly nega-
tive plausibilities near zero. This means an L is now invoked with

E data and a P is invoked with B data, but both of these cases seem
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reasonable since the features overlap.

A final simple example shows good performance using three dimensional
configurations. Here, a robot is invoked against a human model. Figure 25
shows these objects. No occlusion is assumed here, but aspects of this prob-

lem were considered in [FIS85].

The result for the non-viewer centered frame was:

data

robot person
model robot 0.70 -0.43

person -0.37 0.39

For the viewer centered case, the result is:

data

robot person
model robot 0.99 -0.48

person -0.57 0.68

These results seem to support the conclusions drawn from the alphabet experi-
ment, namely that configurations are a useful source of evidence, and that

viewer centered information adds to the discriminatory power
(Figure 25)
6. Discussion

The theory presented above is not purely based on configurations, in that
subcomponent evidence is used to invoke the configuration itself. The spatial

constraints constrained the possible interpretations of features locally, and
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the object context provided context support and integrated the subcomponent
evidence. The specific properties were not important, but adding more of
various types [1) gives stronger general discriminatory power and (2) intro-

duces new competences, such as distinguishing between figures 2(a) and 2(b).

One minor flaw in the implementation is the inability to distinguish
curve orientation, as between a "3" and an "S". The solution is to add a new
configuration property, though another possibility is that the distinction
will be made during model directed inspection rather than in invocation.

Dyslexia suggests that some orientation factors are weaker.

The letter recognition example relates to word recognition, but then oth-
er factors need be considered. Here, the primitive types contributing to a
configuration were only weakly typed (only CURVE or LINE, instead of "F'" or
"A"J. For words, the features are letters, which are strongly typed, so a
theory based more on type and component relationships ([FIS85]J should be
used. Further, the ordered scanning of the word during reading creates a tem-
poral token configuration for which no theory is proposed here. [Feldman and
Ballard discuss this in [FEL84].) There is likely to be substantial topdown
support for letter identity during word recognition, given the distinctness of
most words. Finally, we suggest that word recognition might be achievable
through only invocation and not also model directed inspection, hence permit-

ting "gestalt" like comprehension and fast reading competence.

This research leaves many open questions. Among these are the questions
of how scale affects the grouping that makes a configuration a significant
identifiable entity, instead of merely a feature in a larger configuration.
When the possibility of different spatial frequency channels is allowed,
feature blurring may reduce an identifiable feature to a point definition in a

larger configuration.
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Marr ([MAR82]) suggested numerical quantities should be scale quantified
and symbolic rather than analog. This allows symbolic comparison of property
values and we feel that this is probably a better direction to follow than the
numerical evaluation wused here, The question is how to quantify these and
evaluate matches. For relative size, it may be something like: "much larger",
"larger", "similar", "smaller" and "much smaller", with evaluation depending

on the category closeness.

Another question is on the number of features in a configuration before
binary relationship combinatorics cause all configurations to appear similar
Eygmqqpicipate_épqut_Z, (or obv}qqs reasong). Finally, it seems 1likely that
there is a large low level vocabulary of features shared among descriptions.
The richer the vocabulary, the fewer relationships needing expression to for-
mulate a new configuration, hence the more complex configurations expressible.
The question is over what are the general types of primitives and how are they

represented. (This seems like a general cognitive problem, as does invoca-

tion.)

This paper presented a theory and some evaluations on how configuration
evidence contributes towards model invocation. Invocation occurs when the
plausibility of an image structure having a particular identity becomes suffi-
ciently high. Plausibility is acquired from data properties that satisfy con-
straints and component relationships defined by the model. Here, only confi-
guration and component constraints were considered, but in a complete invoca-
tion process, other direct and indirect evidence constraints would also be in-
tegrated. The data and model relationships define a large network within
which plausibilities can be computed in parallel. It was shown that this net-
work can be conveniently mapped into registration with an image array, so that
a processor can be designed that has all model base relationships defined per-

manently while still allowing dynamic network reconfiguration for each new im-
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age. [Though many other implementations are also possible).

Some of these results have been presented elsewhere. New results this

paper presents are:

[1) New data constraints were defined specifying evidence based on spa-
tial configurations between features rather than feature property.
These properties were mainly binary and local, and so defined more
complicated configurations implicitly.

(2) Direct data evidence and subcomponent evidence were integrated uni-
formly, under the assumption that ©both can be viewed as object
features. This simplified the network formulation.

[3) The evaluation and network linkages for binary constraints were de-
fined. Previously, only unary constraints were used.

[4) The computation was defined for both orientation independent and
viewer centered invocation, and was found to have stronger invoca-

tion behaviour in the viewer centered case.
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Appendix A - Face models

GOOD FACE MODEL
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COMMENT face

CONFIG face eyeeye nose mouth ENDCON

COMMENT eyeeye - line between eyes
LINE eyeeye

RELSIZE eyeeye nose 1.5

RELSIZE eyeeye mouth 1.0

AXORT eyeeye nose 1.57

AXORT eyeeye mouth 1.57

PLACE eyeeye nose 0.5

PLACE eyeeye mouth 0.5

VIEWORIENT eyeeye 1.57

TOP eyeeye

COMMENT nose

LINE nose

RELSIZE nose eyeeye 0.66
RELSIZE nose mouth 0.66
AXORT nose eyeeye 1.57
AXORT nose mouth 0.0
PLACE nose eyeeye 0.1
VIEWORIENT nose 0.0

MIDDLE nose

COMMENT mouth

CURVE mouth

RELSIZE mouth eyeeye 1.0
RELSIZE mouth nose 1.5
AXORT mouth eyeeye 1.57

AXORT mouth nose 0.0
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PLACE mouth eyeeye 4.0
VIEWORIENT mouth 0.0

BOTTOM mouth

BAD FACE MODEL

COMMENT face

CONFIG face eyeeye nose mouth ENDCON

COMMENT eyeeye - line between eyes
LINE eyeeye

RELSIZE eyeeye nose 2.0

RELSIZE eyeeye mouth 1.33

AXORT eyeeye nose 0.70

AXORT eyeeye mouth 0.65

PLACE eyeeye nose 0.1

PLACE eyeeye mouth 1.7

VIEWORIENT eyeeye 0.4

COMMENT nose

LINE nose

RELSIZE nose eyeeye 0.5
RELSIZE nose mouth 0.66
AXORT nose eyeeye 0.70
AXORT nose mouth 0.65
PLACE nose eyeeye 5.0
VIEWORIENT nose -0.3

SIDE nose

COMMENT mouth

CURVE mouth
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RELSIZE mouth eyeeye 0.75
RELSIZE mouth nose 1.5
AXORT mouth eyeeye 0.65
AXORT mouth nose 0.65
PLACE mouth eyeeye 7.0
VIEWORIENT mouth -0.1

TOP mouth

Appendix B - Alphabet Configuration Evaluations

A: 0.49 -0.62 -0.44
B: -0.60 0.37 -0.15
E: -0.56 -0.22 0.27
M F: -0.53 -0.32 0.08
0 H: -0.51 -0.33 -0.05
D I: -0.51 -0.34 -0.01
E L: -0.49 -0.31 -0.09
L P: -0.59 -0.13 -0.29
R: -0.64 -0.48 -0.41
S: -0.59 -0.18 -0.32

T: -0.51 -0.40 -0.17

NOT VIEWER CENTERED

DATA

-0.41 -0.55 -0.55 -0.53 ~0.61 -0.63
-0.25 -0.38 -0.31 -0.36 -0.13 -0.23
0.18 -0.20 -0.12 ~0.28 -0.50 -0.42
0.12 -0.26 -0.26 -0.19 -0.41 -0.35
-0.14 0.37 -0.05 -0.18 -0.29 -0.30
-0.09 -0.10 0.38 -0.21 -0.41 -0.40
-0.03 -0.19 -0.20 0.16 -0.25 -0.35
-0.24 -0.31 -0.40 -0.23 0.24 -0.20
-0.38 -0.47 -0.53 -0.45 -0.44 0.49
-0.46 -0.34 -0.35 -0.60 -0.47 -0.59

-0.12 -0.25 -0.15 -0.10 -0.34 -0.35

VIEWER CENTERED

DATA

39

-0.65 -0.55

~0.

-0.

"O'

-0'

45
55
62

54

.54
.59
.52
.67
.11

.59

-0.45
-0.34
-0.27
~-0.30
-0.17
-0.13
-0.34
-0.52
-0.63

0.24



(o]

0.83

: -0.89
: =0.77
: -0.67
: -0.56
: -0.84
: -0.76
: -0.82
: -0.87
: -0.90

: -0.79

-0.72 -0.50

0.38 -0.07
-0.38 0.40
-0.50 0.19
-0.63 -0.28
-0.54 -0.4
-0.16 0.02

0.04 -0.17
-0.42 -0.49

0.00 -0.19

-0.62 -0.56

-0.65 -0.64
-0.68 -0.84
-0.42 -0.71
0.85 -0.58
-0.39 0.76
-0.81 -0.81
-0.75 -0.68
-0.33 -0.74
-0.70 -0.83
-0.84 -0.86

-0.73 -0.75

40

-0.85 -0.91
-0.67 -0.75
-0.68 -0.73
-0.79 -0.87
-0.82 -0.83

0.81 -0.87
~-0.72 1.00
-0.78 -0.88
-0.84 -0.86
-0.37 -0.93

-0.23 -0.89

-0.91
-0.57
-0.81
-0.71
-0.83
-0.91
-0.82
1.00
-0.63
-0.78
-0.89

-0.85
-0.49
-0.7
-0.63
-0.76
-0.84
-0.56
-0.24

0.83
-0.67

-0.79

-1.00
-0.73
-0.89
-0.97
-1.00
-0.82
-1.00
-0.88
-0.94

1.00

-0.94

-0.93

-0.94

-0.90

-0.87

-0.91

-0.58

-0.89

-0.89

-0.92

-0.93

1

.00



