DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

DAI Working Paper No. 205
Date: August 1987

Solving Algebraic Constraints In A Parallel Network, As
Applied To Geometric Reasoning

Robert Fisher

Abstract:

This paper describes a network implementation of the SUP-INF method
for solving sets of inequalities that has advantages over previous im-
plementations. As algebraic inequalities are often a preferential
representation for expressing relationships, efficient solution of sets
of algebraic constraints is desirable. The cost of symbolic manipula-
tion is transferred to compile-time and speed up at run-time is further
enhanced by parallel evaluation. Further, allowing 1iteration in the
network improves the competence of the method when working with non-
linear expressions.

The network method is applied to implement a geometric reasoner for
a computer vision program and is shown to meet the general requirements
for such a geometric reasoner.

Analysis of typical geometric relationships demonstrates repeated
algebraic substructure. This allowed the creation of standard network
modules computing the algebraic relationships in the substructures.
These modules are connected together to solve larger algebraic problems.

Acknowledgements

Funding for this paper was under Alvey grant GR/D/1740.3. The ideas 1in
this paper benefited greatly from discussions with J. Aylett and M. Orr.

1 Introduction

Geometric reasoning is a necessary component of any competent vi-
sion system. It is needed for deriving and integrating position infor-
mation (from data elements paired with model features) to deduce object
positions. Other functions are the prediction of image locations [or
other properties) and geometrically testing of proposed model-to-data
pairings. This paper describes how these functions can be computed in a
parallel network based on an algebraic representation of the geometric
constraints between features, The theory behind the network and some
programming details about their use and construction are described, and
are illustrated in an example.

This network approach is interesting for several reasons:

- it is suitable for massive parallelism, with simple, well-defined
processing elements and orderly connections,

- it is an interval constraining algorithm that operates over non-
linear algebraic inequalities,

- it incorporates constructs to implement parallel case statements,

- it includes a signed reciprocal function allowing isolation of
terms of unknown parity in algebraic inequalities and

- the network can be modularized for .incremental construction.

Previously [Orr and Fisher 1987], we classified the tasks a
vision-oriented geometric reasoner required, and found that only five
fundamental geometric operations lay underneath these tasks, but there
were a variety of approaches to implementing the functions. The opera-
tions are:

LOCATE - deducing position constraints from model-to-data feature

pairings,

MERGE - integrating separate position constraints,

TRANSFORM - mapping a position into a new position-based reference

frame,

INVERT - reversing the position mapping and

PREDICT - deducing data from model features and positions.

The formal relationships between position representations and these
functions was precisely defined in an abstract data type definition.

our recent model-based scene understanding (e.g. [Fisher 1986]) has
concentrated on recognising and locating objects using 3D data features
paired with 3D model features (such as edges, surface patches and
volumes). (The SMS representation system [Fisher 1987a| has been used
for object modeling.) This has led us to consider ([Fisher and Orr
1987], [orr 1987]) what geometric position constraints are derivable
from pairing the 3D model features with the 3D data features. This 1is
complicated, because of (1) the variety of data and model features, (2)
the variety of constraints types obtainable from pairing such features
and (3) the existence of constraints that are only partial.

If the two main geometric entities were points and vectors, then
our analysis showed that only two primitive position constraints were
needed for representing all information obtainable from pairing a model
geometric entity to a data geometric entity. The primitive constraints
used (1) the angular distance between a transformed model vector and the
corresponding observed data vector (possibly including parameterized
vector positions) and (2) the spatial distance between a transformed
model point and the corresponding data point [again with parameteriza-
tions

More complex constraints could be deduced by combining typical

groupings of these primitive constraints. The work also catalogued the
set of geometric constraints resulting from the pairing of the 1likely
model and data features, given the SMS models and 2 1/2D sketch data.

Another conclusion from this work was that algebraic inequalities
over model, data and positional variables were a good representation for
expressing the geometric constraints (following ACRONYM [Brooks 1981]).
The key justifications for this were:

- The representation is incremental in two senses. First, new con-
straints can be added when each new piece of evidence is
discovered. Second, new classes of constraints can be added
when new visual relationships are understood.

- The representation is uniform, because it can represent a large
range of visual relationships using the same mechanism.

- A priori knowledge of scene relationships (e.g. "the object must
lie on the conveyor belt") is also expressible in algebraic
form, allowing direct integration with observed and model re-
lations.

On the other hand, methods are then needed for integrating the con-
straints, to provide estimates of the constrained variables (such as for
object position).

This work has led us to now investigate mechanisms for implementing
the geometric reasoning functions needed for vision, recognizing some of
the difficulties as:

how to express and integrate partial constraints,

represent and compute with data errors,

perform the geometric computations quickly.

The body of this paper describes a parallel network geometric rea-
soning engine used for performing the computations. The algebraic con-
straints representing geometric relationships are compiled into a set of
bounds on the position variables as a function of other position vari-
ables.

These bounds define a network of nodes representing expressions
linked by their algebraic relationships that solves geometric problems
as it relaxes to a state consistent with the input data, model proper-
ties and geometric relationships. The network can be pre-compiled be-
fore any observations, with sections activated only when appropriate
evidence is obtained.

One advantage of the network formulation 1is it suggests direct
parallel MIMD implementations of the computation, potentially leading to
many orders of magnitude improvement in performance. A "competence" ad-
vantage of wusing the network formulation is that it allows iterative
solution of non-linear geometric problems, which can lead to better
solutions than current algebraic methods.

The structure of the network is constructed from the geometric con-
straints defining the problem. ACRONYM's [Brooks 1981? sup/ inf con-
straint manipulation method (with some extensions [Fisher 1987b]) pro-
duces bounds on individual variables and reduces them to simpler form.
Then, a network module is compiled from the simplified algebraic struc-
ture represented in the constraints. These modules are used as black
pboxes, representing a particular form of constraint, whose interfaces
are connectable to the appropriate data during use. In particular, if

model and data feature positions are input, then the output might be the
transformation between the two. Alternatively, given the model and
transformation, predicted data feature positions would be the output.

A key property of the network module is that a new instance can be
allocated and 1linked with existing modules as needed. For example, when
a new model-data feature pairing is discovered, then the appropriate
network module can be created and linked to integrate the model position
constraints of the new relationship with the existing positions. It
might also signal that the proposed pairing was inconsistent with the
previous position estimates.

This network module approach means that the slow symbolic manipula-
tion is performed at network definition time, and allows fast and flexi-
ble execution during recognition.

This paper describes the individual components of the network, how
they are structured into modules, how the network is evaluated in paral-
lel or serial, how the network modules are created and connected, and
how the network implements the five primary geometric reasoning func-
tions described above. An example network is also demonstrated.

In the discussion below, the term symbolic CMS means our adaptation
and improvement of ACRONYM. The term network CMS means the compiled
network, which implements the same function as the symbolic CMS in a
different manner.

2 Related Work

The use of the algebraic inequalities to represent geometric con-
straints derives from Brooks' ACRONYM [Brooks 1981] work, as does the
symbolic constraint manipulation methods. The network computation is
similar to the many relaxation (e.g. [Rosenfeld 1978]) or constraint sa-
tisfaction (e.g. [Freuder and Quinn 1985]) algorithms that are suitable
for parallel processing. However, it differs from the relaxation algo-
rithms in that is not a probabilistic labeling computation and from con-
straint satisfaction in that an infinite continuous range of values is
being reduced rather than selection from a finite set of discrete
values. While the networks described below rely on connections between
units, the computation is not in the distributed connectionist form,
where the results are expressed as states of the network. Instead, the
results are the values current at selected processors.

Davis [Davis 1987] has classified the types of constraint propaga-

tion systems. The engine described below is an interval label con-
straint machine applied over full algebraic constraints [with some tran-
scendental operations). It is wused for geometric reasoning without

dependence on handling sin and cos [though it does this somewhat) by us-
ing a quaternion rotation representation. His complexity analysis indi-
cates execution times may be doubly exponential and termination may not
even occur (unless forced by truncating small changes, as is done here).

Here, the complexity does not appear to be a problem, and computa-
tion appears to be O(network size) with a small constant (e.g. 5). This
may result from the truncated convergence of values. Davis also raises
the problem of disjoint parameter intervals. We believe the geometry
understanding embedded in the scene analysis program will detect most

cases of this in advance (e.g. will know about n-fold symmetry) and
create separate hypotheses with only single intervals.

The work presented here differs significantly from two other net-
work based geometric reasoning systems. Hinton and Lang [Hinton and
Lang 1985] learned and deduced positions of translated 2D patterns (al-
phabetic letters) using a distributed connectionist network. Its inter-
mediate nodes represented object position and gated connections Dbetween
iconic image and model representations. This model required specific
computing units for each translation. Strengths of connections were
learned through training. The network could recognize the patterns in
the presence of disrupting noise, but was limited to a few translated
iconic 2D patterns. It was probably also necessary to train the recog-
nizer with the models in all positions.

Ballard and Tanaka [Ballard and Tanaka 1985] demonstrated a 3D rea-
soning network whose nodes represent instances of parameter values and
whose connections represent consistency according to model-determined
algebraic relationships. Thus, if the relationship a¥b=c is given, then
there would be a connection between nodes for specific values of a;, b
and ¢, if they have the relationship. The algebraic relationships wer
based on stereo pairing of straight image edges to give a 3D wire frame
and then pairing these to model edges to estimate a reference frame.
The network deduced the object's reference frame through integration of
evidence, much like their previous Hough transform work.

In both cases, patterns of network activity result, with the dom-
inant pattern accepted as the answer (unlike here, where the result is
explicit). Both systems also simultaneously select a model, which 1is
treated separately in our analysis. Since the networks are omnidirec-
tional, such an approach is also suitable for consistency analysis and
feature prediction.

Of the two, I feel that the algebraic approach is more profitable,
as well as providing 3D analysis capability. The approach presented
below follows this somewhat, differing in using bounded variable units
instead of one unit for each numerical value. Further, the algebraic
structures used are generic, and are usable to express many geometric
relationships.

3 Network Elements

The evaluable portion of the network consists of connected modules
containing two types of nodes (value and operation) and the module in-
terfaces. Each network module implements the algebraic reasoning impli-
cit in the module's associated constraints.

The value nodes are associated with the variables in the network.
They acquire inf and sup vounds on their associated algebraic quantity.
The bounds are computed from the relationships with other value nodes,
as defined by the operation nodes.

Operation nodes implement a simple unary or binary function and
take their inputs from value nodes and other operation nodes. The

operators implemented are: {“+“, nxn on/u o wgyp of max", "sup_of_min",
"inf of max", "inf_of_min", "extract_sup", "extract_inf", "constant",
1" COST'-, ;'-Sinll , 'Isqr;t" . II<I| , "g" , ||>" ’ "zll s 1" and" , 1" or‘" s 1" not" , " select"

and "enable"}.

A parallel network based case construction is needed, because some
operations produce different outputs according to conditions on their
inputs. For example, if bounding "1/X", then we want different bounds
depending on whether 0 is in the allowed range for X or not.

Two special types of operation nodes were added to implement the
selection function. The first is an 'enable' operation, a function of a
test argument and a result argument, whose output is the result argument
only if its test argument 1is true. The second type is the 'select'
operation, that returns the first of its arguments to become defined.
Using these, the 'enable' operation turns on and off results, according
to their applicability (as determined by the test arguments], and the
'select' operation passes through the 'true' value. (There should not
be more than one 'enable'd in a properly designed module.) The 1logical
value of the test argument is generated by using a numerical comparison
operator (e.g. "<") or a logical operator (e.g. "and").

Modules are used to package together a set of related algebraic
constraints. Each module consists of a local network computing its con-
straints. The module may be connected to other modules to form a larger
network, by linking variables. Suppose the module is thought of as an
electrical black box over a set of variables, which are identified with
the connectors into and out of the black box. Then, integrating several
constraints on several external variables [i.e. the computation's inputs
and outputs) is equivalent to joining the appropriate connectors of one
or more black boxes to the external variables as well as to each other.

The interface nodes are used for linking together the value nodes
internal to separate modules with external variables (such as for ob-
served data values and predicted object positions). This allows the
sharing of constraints between multiple modules in one network.

The network is executed by computing the values of the operation
nodes that bound the value nodes, which in turn may give new values to
the operation nodes. This cycle of operation continues until no more
nodes need updating, which must occur because the bounds on the value
nodes converge monotonically and asymptotically and minor updates are
truncated.

After convergence, bounds on the desired values are extracted from
the associated value nodes.

4 Network Creation

This section summarizes how individual network modules are created
from a set of constraints and how they are used in practice.

E.L Algebraic Position Constraints and ACRONYM

The key geometric concept is the (relative] position, which is
represented using (a) a variable for each degree of freedom and (b) a
set of algebraic relationships (over the variables) between this and
other positions. These constraints on positions may be formed by relat-
ing expressions in the variables to quantities measured from the image.
Alternatively, they may represent model relationships (such as reference

frame transformations).

Since the geometric constraints defining object position are de-
fined algebraically, following ACRONYM [Brooks 1981], one might use
ACRONYM's symbolic constraint manipulation system [CMS). This symbolic
CMS could bound expressions over non-linear inequalities and achieved
respectable performance through a combination of case analysis and con-
siderable symbolic algebra.

The advantage of using symbolic algebra instead of merely bounding
each term is seen in the following example. Suppose we wish to bound
the expression "A¥B", where A and B are functions of X, which must 1lle
in the range [1,2]. Suppose A =X and B =2/ X. Bounding A¥B by
bounding and multiplying the bounds on the individual terms gives the
range 1,&]. However, using symbolic algebra to reduce A¥B first gives
the tighter bound [2,2].

4.2 Preprocessing the Constraints

Constraints on variables are represented as algebraic inequalities
bounding isolated variables, such as:

XSy +z2

Achieving this form is not always trivial, and requires several tech-
niques that are applied by hand before processing. This is not a cru-
cial point for the geometric reasoning described here as the constraint
modules [section 7) are defined once-for-all.

If an equality is encountered, then it is split into two inequali-
ties:

X Expr
becomes

x £ Expr and x 2 Expr

If a product term is encountered during pre-processing, it is split

into several cases using the signed reciprocal function:

A*¥B £ C
becomes
C * srecip(B)
C * srecip(A)

-C * srecip(-B
-C * srecip(-A

w x> W
[AVAR \VAR VAN 7,

This function has the definition:

if x > 0 then srecip(x) = 1/x
else srecip(x) is undefined

This function then has the effect of turning on and off constraints ac-
cording to the sign of the terms being divided. Then, we need not worry

about whether the inequality should be reversed.
Some constraints reduce to the form:
X s f(x)
such as when
x¥ 2 1 - y¥y
is reduced to

(1 - y*y)¥*srecip(x)
~(1 - y*y)*srecip(-x)

X
X

A WV

The bound simplification (section 4.3) has difficulties with these con-
straints and usually ends up reducing them to the weak form:

—= § X § tw

To prevent this, recursive constraints (i.e. those bounded by a function
of themselves) are distinguished from the non-recursive bounds.

Ceometric reasoning typically requires reasoning about angular
quantities, but the original CMS contained 1little to support this.
Though we are considering how to remedy this, the current rotation
representation uses a quaternion formulation, which reduces all computa-
tions to vector form.

4.3 simplification of Bounds

Assume we have a set of algebraic constraints over a set of vari-
ables. We could use these to directly create a network, as described
below. However, it is desirable to make some optimizations, such as re-
moving bounds that are uniformly weaker than others. Further, some ex-
pressions might be reduced to simpler expressions, such as by multiply-
ing out constants or eliminating dependent variables. Merely applying
the expression simplifier provides some reductions.

In general, this is a hard problem, but ACRONYM's [Brooks 1981]
constraint manipulation system at least provides some simplifications
particularly over linear terms). We have also made some extensions
Fisher 1987b], notably for: square roots, powers of variables, products
over expressions containing only free variables, the unsigned reciprocal
function and undefined values.

The symbolic CMS is then used to derive symbolic bounds on non-
observable values (e.g. object orientation) as a function of observable
values (e.g. direction of a surface normal), which would initially be
expressed as variables. Because the network modules are used to express
the full relationship between quantities, the reverse mappings are also
represented.

The CMS bounding is applied to all non-recursive and non-guarded
constraints for each variable, over all other variables referenced in
the constraint module. The constraints are a function of other vari-
ables, including those with unconstrained values {e.g. image observ-

ables). As we will want to add bounds to these variables later, (when a
data observation {is made], they should be left in the resulting con-
straint and hence not much bounding is possible. [If they were left
out, the resulting constraint would be both weak and independent of any
input data.) Some bounding is possible if uniformly stronger constraints
are found, but this is quite difficult to do with non-linear inequali-
ties.

The recursive and guarded constraints are then added to those that
result from the application of the CMS to provide the inputs for network
compilation (below).

The symbolic CMS could be used directly by the geometric reasoning
program, instead of using the parallel network. This is inappropriate
for two reasons:

(1) It is computationally expensive and is not suited for wide

scale parallelism.

[2] Using the network provides better bounds than the CMS. This is
because the CMS works best with linear constraints, whereas
geometric reasoning also includes non-linear constraints.
Here, the network can iterate to a better bound than that
achieved by one pass through the CMS. An example of where the
network performs better is finding sup(x) over:

x <1 +1/y
yz1+1/x
0.1 £ x£10
0.1 £y 10

The CMS (simplified somewhat) finds:
sup(x) = 1 + 1/inf(y) = 1 + 1/(1 + 1/sup(x))

When it gets to the embedded sup(x), it uses the numerical
upper bound 10 to produce:

sup(x) = 1 + 1/(1 + 1/10) = 1.91

However, the network computation iterates to converge to the
best bound:

sup(x) = (1 + saqrt(5)) 7 2 =1.62

4.4 Network Compilation

Value nodes are created for every individual variable occurring in
the original constraints (which are given in the form "yvariable £ ex-
pression"). These nodes are then connected by various operator nodes,
which extract values from Value nodes or from each other. The real de-
tails of network structure concern the connections used for the operator
nodes. These connections are structured according to the types of ex-
pressions found in the constraints, and will be shown in that form
below.

The network fragments for the following expressions are described:

Constant - an operation node is created that supplied the given
constant

Variable - an operation node is created that extracts the sup or
inf from the associated Value node.

Variable” N, where N 1is odd - a sequence of "times" operation nodes
are created and linked to the sup (or 1nf) of the variable.
The output of each "times" operation becomes an input to the
next.

Variable” N where N is even - If sup is the desired bound, then the
network fragment T calculates the Nth power of both
sup(Variable) and inf(Variable) (using the same sequential
technique as for the odd case above). Then, a final "max"
function selects between the two possibilities.

If inf is the desired bound, then the construction is:

Condition Compiled result
sup(Variable) < 0 sup Variableﬂ“N
inf{Variable] > 0 inf(variable)"N
sup| Variable) 2 0

and inf(Variable) < 0 0

plus - an operation node is created that adds the results from the
recursively compiled subexpression nodes.

recip (i.e. 1/x) - if sup is the desired bound, then the construc-

tion is:

Condition Compiled result
inf(Expression) > 0 1/ inf(Expression
sup(Expression) < 0 1 / inf(Expression

else p_infinity

where "bound(Expression)" links to the recursively compiled
subexpression,

If inf is the desired bound, then the construction is:

Condition Compiled result
inf Expression} > 0 1/ sup%Expression%
supl Expression) < 0 1 / suplExpression
else n_infinity

srecip (i.e. signed reciprocal defined by: if x>0 then srecip(x) =
1/x, else srecip(x) is undefined.) - if sup is the desired
bound, then the construction is:

Condition Compiled result
inf(Expression) > 0 1 / inf(Expression)
else undefined

where "bound(Expression)" links to the recursively compiled
subexpression.

10

If inf is the desired bound, then the construction is:

Condition Compiled result
inflExpression) >0 1/ sup[Expression)
else undef ined

times - if sup(A*B) is desired, a network fragment for:

max(inf(A)*inf

(B), inf(A)¥*sup(B), sup(A)*inf(B),
sup(% % ’ o

),
A)*sup(B))

is created, where "times" nodes calculate the products of the
values calculated in the recursively defined subfragments and
a max node selects the largest of the products. Special cases
are used when A or B is a constant.

If inf(A*B) is desired, a network fragment for:

min(inf(A)*inf(B), infEA%*sup[B), sup(A)*inf(B),
sup(A)*sup(B

is instead created. Again, special cases are used when A or B
is a constant.

square root - here the positive square root is assumed. If sup 1is

max

the desired bound, then the construction is:

Condition Compiled result
suplExpression) 2 0 sqrt[sup(Expression)]
else p_infinity

where "bound(Expression)" links to the recursively compiled
subexpression.

If inf is the desired bound, then the construction is:

Condition Compiled result
inf(Expression) 2 0 sqrt{inf (Expression))
else 0

(or min) - sup(max(List)) is compiled to be max{sup(List)).
This creates subfragments for each expression in the 1ist and
then links these to a chain of connected binary 'max' opera-
tion nodes. The compilation removes any duplicated entries
from the lists. Different types of min and max operation
nodes are used depending on whether sup or inf is selected.
The difference is reflected in the default evaluation actions,

as described in section 5.

guard - compiles an 'enable' node implementing:

Condition Result
Expressioni suplExpressionZ)
or

Expressiont inf(Expression2)

1

and (or 'or') - compiles a logical 'and' (or 'or') of the subex--
pressions, without regard for sup or inf.

greater (or greatereq) - compiles a node ~checking if
inf(subexpressioni) > (or 2) sup(subexpression2)

less (or lesseq) - compiles a node checking if sup(subexpressioni)
<or £J inf(subexpression2)

not - compiles a node evaluating not(subexpression)

zero - compiles a node checking if inf(subexpression) < 0 and
sup({subexpression) 2 0

notzero - compiles a node checking if inf(subexpression) > 0 or
sup(subexpression) < 0

Since subexpressions often reappear in constraints on different
variables in the same constraint module, it is sensible to not duplicate
the network fragments for the common subexpressions. Hence, the recur-
sive compilation of expressions always returns a previous compilation
for an expression if it exists. Attention is paid to whether the sup or
inf of the expression is desired, as (e.g.) the network fragments would
not be the same for the sup and inf bounds of "A+B".

To reduce the duplication involved in multiple bounds on a vari-
able, the network structure compiled as described above is simplified
somewhat afterwards. The simplification reduces sets of upper bounds on
V of the form: {V<a, V<b, V<c, ...} to "V < min(a, b, c, RS LI
similar simplification applies to the lower bounds using the max func-
tion.

Propagation delays are reduced by using balanced 'min' and 'max'
operation subtrees (which does not increase the module size).

Ordinarily, the network does not contain any value nodes for the
many intermediate expressions occurring in the constraints. However,
they can be included for debugging. This creates more value and opera-
tion nodes, and also increases run-time, but provides a better impres-
sion of what's being calculated.

4.5 Network Module Formation

The function of a module is to group together all constraints of a
particular type into a prototypical network fragment. Then, when a
problem is being analyzed, modules of the appropriate types can be
copied and linked to implement the deduced constraints. These modules
are compiled individually, in advance, and then loaded when processing
is started. The module interfaces supply all the information needed for
connecting up modules to each other and external variables.

We illustrate the network creation process by showing the structure
for a single module for the constraint "A § B - C" over the given vari-
ables (whether the variables represent model, position or observable
values 1is not important]. Two other equivalent relations are "C s B -

12

A" and "B 2 A + C" (e.g. we bound all variables by expressions in other

variables). The extended symbolic CMS [Fisher 1987b] is then used to

calculate supremum and infimum expressions over these variables, giving:
sup supEB - C;

A sup{BJ - inf(C
sup|C sup{B - A

sup|B) - inflA
inf(B) 2 inf(A + C) 2 inf(A) + inf(cC)

A
[72}

A
A

[\

This creates value nodes for: {A, B, C} and also for {B-C, B-A, A+C} if
debugging information is desired.

Moreover, the bounding expression for "sup(B - A)" is a function of
two other bounds, which introduces the operation nodes into the network.
This compilation results in the network in figures 1.

A

ils
C B
) ils

Figure 1: Network Module for "A s B - C"

= | IN] [<] X
”3\
@

Figure 2: Connected Network Modules for Combining Constraints

Now, suppose we had two instances of this form of constraint

X
y

| TAN 72
N

t
x

13

over the observed variables x = x_, y =y, andw = w,. We could express
these two -constraints in the network ?orm using gwo instances of the
module M defined in figure 1, connected as in figure 2. For the first
constraint, the pairings x->4, y->B and z->C are made as shown. The
second module represents a second constraint between the variables, and
is connected as shown.

The network modules will usually implement much more complicated
constraints (section 6).

2 Network Evaluation

The values at each node are computed using the values of the con-
necting nodes. For example, the computation for the supremum (e.g.
sup(A)) picks the minimum of each bounding expression on the supremum,
including the current supremum, because the bounds can never get worse
(assuming a bound is always valid). Hence, if:

A

sup(A) s X

sup(4)

WA

Y

then:

sup[At+1) <- min(sup(At). Xis Yt)

is the updating function for the supremum of A. This computation is im-
plemented by a operation node taking the "min" of X and Y, which then
may update sup(A), if appropriate. A similar computation updates the
inf of values.

The value at an operation node is recomputed whenever one or more
of its inputs changes. As a result, changes to value and operator nodes
propagate throughout the network until asymptotic convergence occurs.

Ordinarily, an operator will not be evaluated until all arguments
have values. This causes problems when using the functions that may not
evaluate, such as the 'srecip' function. A problem also occurs at 1ni-
tial startup, because not all operators have all arguments ready, which
may block the evaluation of other nodes, which may in turn block the
evaluation of the operator, etc, resulting in deadlock. The problem oc-
curs often, because the bounds on value nodes are max and min operators
of many arguments.

To solve this problem, the max and min operators are evaluated dif-
ferently according to whether the sup or inf is desired. The sup_of_max
[inf_of_min) operator does not evaluate until all arguments are ready,
because a higher (lower) bound may be necessary as other arguments be-
come ready, and the sup function is only allowed to decrease (increase].
However, the inf_of_ max (sup_pf_min) operator can evaluate when one ar-
gument is ready, because later arguments either have no effect or im-
prove the bound. This allows the results to propagate through sections
of the network not yet evaluated or never able to be evaluated.

Complete networks are formed by connecting together sets of network

14

modules designed to be evaluated in parallel. Ideally, each value,
operation, interface and variable node could be stored 1in a separate
processor. The whole network could be evaluated synchronously or asyn-
chronously in a MIMD processor with non-local connectivity, because ex-
pression relationships are not regular. Each processor would continu-
ously poll its inputs and update its value when appropriate. Since the
size of the expression relating two values is typically less than 50
terms, and since it appears to only take a few iterations for the net-
works to converge, a complete computation (thresholding the allowable
changes) is expected to occur rapidly.

So far, we have only evaluated the networks serially. This does
not affect the final outcome, as the final bounds always represent the
best achievable by the network and the bounds can only get tighter, ir-
respective of the order of bounding.

To improve serial efficiency, rather than continuously re-compute
all nodes, dependency linkages record which nodes need re-computing
whenever a value changes. Moreover, value nodes are updated only when
their bounds improve, thus 1limiting the propagation of changes. The
serial evaluation of a network is started by declaring all constants and
external variables to have changed.

It is easy to show that the networks must converge asymptotically,
that 1is, not oscillate. At any time the current bounds on a value V
must be true. Then, if an upper bounding expression increases in value,
the original bounds on V must still hold, as it then makes no sense to
increase the range of potential values for V. Hence, the bounds can
only get tighter, though perhaps asymptotically. As the bounds can only
be equal (inconsistency is declared if they cross), each bound has a
limit, so must converge. In practice, when the change in a value is
below a threshold, no change is recorded. Also, when a value Dbecomes
too large or small, it 1is treated as plus or minus infinity. These
force convergence (by limit theorems).

6 Prototype Constraint Modules

The intention behind the use of constraint modules is to precompile
their algebraic relationships into network modules in advance (an slow
process) and then allocate, link and evaluate these dynamically during
execution (a much faster process). The use of modules also makes net-
work construction much cleaner.

For visual geometric reasoning, the number of necessary primitive
constraint modules is surprisingly small - six. Analysis of the types
of primitive relationships showed that the following mappings are enough
(though more complicated constraints could be derived in situations sup-
plying several quantities - such as when a vector is measured at a known
point). The constraints are:

(1) parameter limit - bounds the allowable range of a scaler model
parameter M

M. - M

obs nominal | s 6M

(2) vector constraint - stating that two vectors are within an an-

15

gular tolerance:

LI PR

equivalent to

4 - Y | 5 e

(3) point location constraint - stating that two points are within
a spatial tolerance: :

I?_1-22|$E

(5] position transform - links two reference frame positions by the
transformation {another relative position) between them

T(1) = 1

(5) vector transform - links four vectors by a reference frame
transformation (relative position)

T(V,) =V, T(Vy) = ¥y

Both pairs of vectors need not be used, but are necessary for
completely deducing the transform.

[g) point transform - 1links two points by a reference frame
transformation (relative position)

For each of these six algebraic relations, a set of algebraic con-

straints has been specified (appendix A). The sets can then be compiled
into a prototype network modules. Thus, during scene analysis, whenever

a

new constraint is added (such as when a new model vector is paired

with a data vector), then the appropriate modules are copied and linked
together.

The size of the modules is summarized in table 1.

Table 1: Primitive Geometric Module Sizes

Relation Value Nodes Operation Nodes
parameter limit 3 19
vector constraint 8 793
point constraint 7 264
position transform 21 2239
vector transform 22 1535
point transform 13 1167

+ - lists number of value and operation nodes

ble

If a relationship is more complicated, then it is usually expressi-
using several of these modules. For example, to express the rela-

tionship between a transformed (T) model vector [!m) and an observed
data vector (V,) we use the following modules:

16

(v.) =y, (Module 5)
| v - v, | <u (Module 2)

If parameters are included in a model (such as positional degrees
of freedom or size variations), then constraint (1) applies in addition
to any other deriving from observed geometric relationships. Further, a
priori position information can usually be expressed using these con-
straints.

Additional constraint modules for other geometric constraints can
be created as necessary.

Initially, vector and point transform modules were designed to re-
late only a single pair of features. This was sufficient for deducing
[e.g.) a second vector given the first vector and the transformation.
However, a single pair of vectors can only partially bound the transfor-
mation. Using a pair of these modules with connected transformation
ports allows some bounding information to propagate between modules,
but, unfortunately, not enough. Each individual module communicates
only the bounds on the components of the rotation quaternion, but not
the relationships between components and thus loses information, even
though the bounds were intersected. More information could be communi-
cated [such as the plane that the vector part of the quaternion must lie
in), but’the simplest solution is to provide a module for the simultane-
ous rotation of two vectors.

7 Implementation of the Geometric Reasoning Functions in the Network

In the introduction, we introduced the five important geometric
reasoning functions. Here, we describe how they are implemented when
using the network:

LOCATE - the model-to-data feature pairings provide the data for
constraint modules expressing the relationships between posi-
tions and model and data features. The positions are implicit
in the constraints and numerically bounded in the network.

MERGE - separate position constraints are integrated by connecting
their respective constraint modules appropriately. Incon-
sistent constraints cause the network to reach an inconsistent
state, which signals incorrect model selections or model-to-
data pairings.

TRANSFORM - constraint module (4) expresses this function.

INVERT - all connectors on the constraint modules are simultaneous-
1y both inputs and outputs, so constraint modules (4), (5) and
(6] express both the forward and inverse position mapping.

PREDICT - connected constraint modules express the relationships
between positions and model and data vectors and points and
thus produce the data parameters consistent with a set of po-
sition bounds and model parameters.

17

The implementation of these ideas used connected instances of the
modules described previously. It is easy to create subroutines allocat-
ing modules given the connecting interface variables. Standard confi-
gurations of modules are also easily allocated. When the model-based
image understanding program made feature-model pairings, instances of
the modules were allocated and connected according to the model and
reference frame relationships. Interface variables represent the input
and output values, and the reference frame. Evaluation tests consisten-
cy and resolves the reference frame, as well as predicts image feature
positions.

§ Example

This section illustrates the possibilities for doing geometry in a
network with an example of estimating an object's 3D orientation. As-
sume the following model direction vectors

I

o>

-0.51,0.83,0.22
0.68,-0.23,0.69

are rotated rigidly by position T to give the vectors T(g1) and T(mz).
Then, assume we observe two data vectors

4 E—o.uo,o.91,o.ou]

d; = -0.52,-0.67,0.51)

that are paired with m. and m, respectively. (This pairing would be
hypothesized by the model-based scene analysis. An example pairing
might arise from using a 3D orientation discontinuity and the normal of
a planar surface patch.)

The pairings are represented using an instance of module (5) from
above, linked to the m. and d. vectors. Evaluating this simple network,
the following bounds are achieved on the rotation (represented as a
quaternion):

Low (o.729,o.2u9,—0.622,—o.1u1)
High (0.731,0.252,—0.618,—0.139)

where the true value is
(0.73,0.25,-0.62,-0.11)

The result required 46 network update cycles with 3919 operation node
svaluations, where all evaluations in each cycle could be executed in
parallel. (As most network units are simple, something like 1 mi-
crosecond would be a nominal value for a network cycle time.] This gives
the time necessary for values to completely propagate through the layers
of simple function units several times before convergence.

Now, suppose instead we anticipate that the vectors d. are dis-
placed from their true position by some observational error of maximum
magnitude e. We then Know

lT(Ei)°gi|§€

so we can now use two instances of module (2).

18

Evaluating this network with r = 0.05 produces the new bounds on
the estimated rotation:

Low .0.615,0.149,-0.810,-0.220
High (0.804,0.370,-0.438,-0.076

which contains the correct rotation given above (63 network update cy-
cles involving 7591 node evaluations).

An alternative to using module (2) entails setting the bounds on
the d. directly, which allows for non-isotropic errors. More exact er-
ror reiationships could be represented algebraically and linked by other
modules.

To make a third model-to-data vector pairing, we connect new in-
stances of modules (2) and (5). This final network is shown in figure
3. Suppose this new vector is observed with € = 0.02. Then, the new
estimated rotation is:

Low 0.652,0.173,-0.805,-0.19&%
High 0.799,0.341,-0.464,-0.097

which has reduced variance [52 network update cycles involving 15411
node evaluations). The average estimated parameter value is:

(o.725,0.257,—o.63u,—o.1u5]

which compares favourably with the true value. These bounds give the
full range of allowable variation, instead of a statistical estimate.

This example demonstrates combining solutions to several constraint
problems to fully constrain a larger problem. One design criterion
behind the network solution was extendibility, which this modular ap-
proach allows. Hence, as more evidence is obtained, more network
modules can be connected to further refine parameter estimates, espe-
cially as the pre-defined modules are usable for a variety of geometric
relationships.

my No.5 P{mi) No.2 | dy
E4

m; P P(ma2) No.2 d,
Ez:

ms | No.5 P(ms) | No.2 ds3

Figure 3: object orientation from three pairs
of direction vectors

19

9 Discussion and Conclusions

The goal of this work was to produce a geometric reasoning engine
suitable for massive parallelism - for which this network structure is
ideally suited. The processing elements are simple and the connections
orderly and well defined. The module structure allows easy packaging of
standard reasoning functions, with a simple connection mechanism.

The methodology we are investigating is summarised in figure]
below. At the top are the sets of algebraic constraints associated with
particular geometric relationships. Image observables are represented
by variables at this stage. These constraints are then algebraically
manipulated to produce a set of inequalities bounding each variable. An
extended symbolic CMS Dbased on ACRONYM's CMS is then used to form
tighter bounds on each variable. The simplified inequalities are then
used to define a network fragment, that are associated with object hy-
potheses to form complete networks (with inter-linkages through shared
variables). When observable variables get bound to measured values the
other variables (e.g. model or position variables) are forced into con-
sistency.

CATALO OfF ¢
CoORSTAMIST SCHEBILAYS

‘L BY RAND

ALGERRALC CONSTRAINTS /A
ORSEQUABLE VARIABLES

BY HAND
|SOLATED VARIARLE $
\l ACRonM CMASH
[Booosen VARIARLES)
] veTwoRk COMPILER

OWMCE FOR
i CoMPiLED NETWORL MOARE S
Com PLLATRN
1
RUL-T (ME MOBULE ALLOCATION ¥
————CRseRuRE
pEnae VALVES
"PARALLEL"
EVALOATION
VARLIARLE Boouds
Postrieny, .. .

d- FUNCTIon ©F MODEL BDIRELTE®D MATLHIN-

Figure 4: Network Definition from Geometric Constraints

Both defining the full constraint set and applying the symbolic CMS

20

to produce bounding expressions can be done at model-compilation time.
This may be slow, because there may be many variables in the expressions
at this stage. However, this is unimportant, because this stage is done
off-line. The only occasions for repeating the analysis are:

new constraints types become understood and generated, and

new CMS techniques are implemented.

ACRONYM's CMS was optimal when producing numerically bounded vari-
ables (i.e. not resulting in expressions in other variables) over sets
of linear constraints, based on work by Bledsoe [Bledsoe 1974 | and Shos-
tak [Shostak 1977]. Since we reproduce the symbolic reasoning in the
network, but substitute values for the data variables later, it is like-
ly to have the same performance on linear constraint sets, but we have
not proved this result. Unfortunately, as the geometric constraints are
generally non-linear, we cannot expect optimality. However, the exten-
sions to the symbolic CMS should improve performance.

It also turned out that using the network provided improved
behaviour over simply using the extended symbolic CMS. This was because
the iterative evaluation in the network allowed recursive calculations
to converge.

While the network structure is capable of implementing many compu-
tations, its use here was for geometric reasoning. Six modules were
needed for the standard geometric reasoning functions. The sizes of
several of the modules was larger than hoped for - implying substantial
copying costs if dynamically created.

The various aspects of the use of the network to support the
geometric reasoning functions were demonstrated with an example of es-
timating an object's 3D reference frame.

10 References

[Ballard and Tanaka 1985] Ballard, D. and Tanaka, H., "Transformational
Form Perception in 3D: Constraints, Algorithms and Implementation",
Proc. 9th Int. Joint Conf. on Artif. Intel., pp 964-968, 1985.

[Bledsoe 197“] Bledsoe, W. W., "The sup-inf method in Presburger arith-
metic", Memo ATP 18, Dept. of Math. and Comp. Seci., Univ. of Texas
at Austin, 1974.

[Brooks 1981] Brooks, R. A., "Symbolic Reasoning among 3D Models and 2D
Images", Stanford AIM-343, STAN-CS-81-861, 1981.

[Davis 1987] Davis, E., "Constraint Propagation with Interval Labels",
Artificial Intelligence, Vol 32, No 3, July 1987, pp281-331.

[Fisher 1985], Fisher, R., "SMS: A Suggestive Modeling System for Object
Recognition", University of Edinburgh, Department of Artificial In-
telligence Working Paper 185, 1985.

[Fisher 1986] Fisher, R. B., "From Surfaces to Objects: Recognizing Ob-

jects Using Surface Information and Object Models", PhD Thesis,
University of Edinburgh, 1986.

21

[Fisher 1987a] Fisher, R. B., "SMS: A Suggestive Modeling System for Ob-
ject Recognition", Image and Vision Computing, Vol 5, No 2, May
1987, pp97-104.

also available as: Dept. of Artificial Intelligence Research Report
298, University of Edinburgh, 1987.

[Fisher 1987b] Fisher, R. B., "A PROLOG Version of ACRONYM's CMS (ver-
sion 1.1)", Dept. of Artificial Intelligence Software Paper ¥¥¥,
University of Edinburgh, 1987.

[Fisher and Orr 1987] Fisher, R. B., Orr, M., J., L., "Geometric Con-
straints from 2 1/2D Sketch Data and Object Models", Dept. of Ar-
tificial Intelligence Research report 318, University of Edinburgh,
1987.

also presented at 1986 IBM Conference on Geometric Reasoning.
[Freuder and Quinn 1985] Freuder, E. C., Quinn, M. J., "Taking Advantage
of Stable Sets of Variables in Constraint Satisfaction Problems",

Proc. 9th IJCAI, pp 1076-1078, 1985.

[Hinton and Lang 1985] Hinton, G. and Lang, K., "Shape Recognition and
Illusory Conjunctions", Proc. 9th Int. Joint Conf. on Artif. In-
tel., pp 252-259, 1985.

[Marr 1982] Marr, D., Vision, W. H. Freeman, San Francisco, 1982.

[Orr 1987] orr, M.J.L., "Geometric constraints in 3D computer vision",
Dept. of Artif. Intel., working paper ¥¥% Edinburgh University,
1987b.

[Orr and Fisher 1987] Orr, M. J. L., Fisher, R. B., "Geometric Reasoning
for Computer Vision", Image and Vision Computing, Vol 5, No 2,
pp233-238, 1987.

[Rosenfeld 1978] Rosenfeld, A., "Iterative Methods in Image Analysis",
Pattern Recognition, Vol 10, pp181, 1978.

[Shostak 1977] Shostak, R. E., "On the sup-inf method for proving Pres-
burger formulas", J. Assoc. Comput. Mach., 24, pp529-543, 1977.

Appendix A. Algebraic Expressions for the Six Constraint Modules

The following gives the algebraic relationships expressed 1in the
six constraint modules. Some modules express the relationships in dif-
ferent ways, according to convenience, because sometimes the network
solves the problem more easily with one form instead of another. There
may also be inequality bounds on an variable, even though the exact re-
lationship is also present, to help convergence.

(1) parameter limit

- Mpominal | = Su

0§

+o

<
M =

(2) vector constraint

Yy oV 2 e

2
'!1-}’_2|<€*
2¥(1 - e,) = (e,)72

| e | stand]e,-1]s1

| v, - Vo, | Sepand [V -V, | S e, and | v, = Vo | Sy
Vo -V =tandV, -V, =1
| Vip | s1and |V, [s1and]V, | <1
| Voo | s 1and | Vy, | 81 and | Uy |51
(3) point location constraint
| B, - B, P56
| P, - Py | Seand | P ~P, | Seand]| P, - P, | S¢

0 $g & +o

(4) position transform

T(my) = Tp

where:

T, = (ri)t'Jr

r. are quaternions with unit norm (rotations)

t. are quaternions representing pure vectors (translations)
@ denotes quaternion multiplication

' denotes quaternion complement

then:

23

ry=ry' €
rp =ry €y
re =rp@ry!
t,=r' @ (t, - ty) €ry
ty=r. @t @r. '+t
t bty - ry e ty e re!
r @€ry'=r, e ro' = ry e re' o= 1

t1 @t1'=[t2—tt)@[t2'-tt')

(5) vector transform

T[V1) -V, and T(y3) = Vy

where:

T = (r,t)

r is a quaternion with unit norm (rotations) = (r_,r)

t is a quaternion representing a pure vector (translations]
@ denotes quaternion multiplication

]

denotes quaternion complement
x = cross product

rolVy - ¥y) = £ x (¥ + ¥y

gty - 0) = n e (g +)
rer' =1

ro 20 (implies only one solution)
!1 =r'éVv,er

12 =r €YV, e r'

!3 =r' eV er

U =rev er

(6) point transform

T[E1) =B
where:
T = (r,t)

r is a quaternion with unit norm (rotations)

t is a quaternion representing a pure vector (translations)
@ denotes quaternion multiplication

' denotes quaternion complement

24

t
=r‘@?_1@r"+

25

