DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

DAl Working Paper No. 105
Date: January 1982

Title: - Parallel Ilmage Analysis Technology
Author:  Robert B. Fisher
Abstract:

This paper presents a survey of parallel processing techniques as applied to
computer vision and image processing probiems. Conventional processing
methods are simply overwheimed by the quantity of data associated with
images. One anproach to solving this problem is to process large amounts
of the data in parallel. This paper summarizes work on optical. specialized
paraliel hardware, and specialized parallel software methods. as applied 1o
computer vision. Also included is a discussion of the basis of the problem,
the rationale for using these approaches to its solution, and an example of
a hypothetical system designed utilizing some of the techniques examined.

Acknowledgements:

The author was appreciatively supported during the course of this work
by a postgraduate studentship from the Unriversity Of Edinburgh. Special
thanks also go to A. P. Ambler, R. Beattie. J. Hallam and J. Howe for their
efforts, discussions and advice on both the content and exposition of this
paper.



Parallel Image Analysis Technology

Table Of Contents

introduction
What is the problem? Too much data!
Optical Processes
Computer Hardware
4A. Array Structured Computers
- 4B. Pipeline Configurations
4C. Functional Parallelism
4D. Other Parallei Machines
5. Structurally Based Parallel Aigorithms
5A. Image Array Algorithms
5B. Relaxation Techniques
6. Object Based Parallel Algorithms
B6A. Hierarchical Software Structures
6B. Syntactic Methods
6C. Other Software Techniques
Summary Of Techniques
Summary
References

PON—

SN



Parallel Image Analysis Technology 3

|~

introduction

4

This paper considers a major problem facing computer based vision
systems, that of processing the immense quantities of data, and examines
the use of parallel processing technology as a possible solution.

The term Image is used here to refer to television type Images.
although the discussion also applies to most other image types. These
include radar, synthetic aperture radar. holographic, satellite scanner (xray.
infrared. ..) and sonar images. Only single image (frame) analysis is
considered. although the probilem is even more severe in multiple image
analysis systems (motion. stereo. change detection, ..). The terms “image
processing”. “image analysis® and “vision* are used Iinterchangeably, and
generaily mean any process acting upon an image or the results of the
previous processing of an image. Hence, both raw image enhancements
such as smoothing and high level operations such as object matching are
considered.

The main question that one might ask is: "What is there about vision
that requires (or stimulates research in) parallel processing?”, to which we
answer: "Most images contain too much information to be quickly processed
on a standard computer.”. For example., in section 2, we examine a vision
application which requires an estimated 3*10 8 operations per image. Given
that standard computers run at about 10 6 operations per second, 300
seconds of cpu time are needed to process each image. Alternatively, we
could use about 12000 computers to process the data at video rates. Obvi-
ously. therein lies a problem. It is largely practicality which motivates our
Interest in paralielism. Realtime industrial applications require reasonable
processing times (under 30 seconds per image). Feedback to a robot mani-
pulator might require times of the order of 0.1 to 1 second per image.
However, even offline processing needs additional processing capabilities. In
the next section, we calcuiate that the present ERTS satellite program
requires about 250 fulltime computers to process the data collected each
day. Obviously, modern computer techniques are not capable of meeting
these requirements economically.

Several approaches have been used to help solve this problem. They
include simplifying the problem (e.g.. use of binary images), faster general
purpose processors (bit-slice microprocessor technology). and faster special-
ized processors (covered In sections 4B and 4C). But, as we shall see in
the next section, we need 3-4 orders of magnitude improvement in process-
ing rates to meet current needs. As a result, among conventional methods,
only the specialized processor offers much promise. :

The appiication of parallel processing to vision is not new. Though
the detailed workings of the human vision system are not understood, it is
generally accepted that most low level processing is done in paraliel. In
particutar, neurophysiological research has discovered two major instances of
parallelism, one in the retina and one in the cortex.

The retina is composed of about 10 8 receptors, which, through the
various neural interconnections, combine to form about 10 6 center-surround
receptive fields (Lin72). (Though Marr (Mar74) suggests that the center-
surround behavior is an artifact and the real purpose s to compute the
retinex function. However. this must also be computed in paraliel) The out-
puts of the ganglia which calculate the fields pass directly to the brain.
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The cortex has a structure which consists of about 10 6 columns of
cells. each organized to correspond to specific orientations of objects (ines,
edges. bars) in the visual figld (Hub63)., Each column consists of more
than 10 3 cells of various types (simple, complex. hypercomplex). The out-
put of cells is dependent upon inputs from a number of the receptive flields.

Based upon these values (which are themselves based upon values
from the cited articles), we can estimate the retina as performing roughly
10 6 operations simuitaneously, and the cortex as performing roughily 10 9
operations simultaneously. Even though biological information processing is
considerably slower than electronic (10 3 “operations” per second (neural
firings. Lin72. page 56) versus 10 6), parallelism still seems to provide an
overwhelming improvement in processing; resources.

Moreover, the nature of the problem itself is suggestive of parallelism.
Obviously, the two dimensional nature of images allows spatial paralielism.
That is. if we structure an image as a collection of pixels. we can process
all pixels in the image independently and simuitaneously. We also can
achieve parallelism in time and functionality (though these categories have
some overlap). Parallelism in time refers to the fact that processes may
have distinct stages and systerns may be built to process the stages in
parallel. Functional parallelism arises when the complete image analysis
task has several independent subtasks.

The existence of such models (spatial. temporal, .functional) of paralliel-
ism immediately suggesis techniques matched to the models. In fact, the
parallel vision techniques discussed in the body of this paper all rely upon
one or more of these models.

The body of this paper consists of summaries of work in optical. com-
puter hardware and computer software techniques as applied to computer
vision. The ontical methods generally use lens and filter systems on the
actual image prior to input into a sensor., and thus rely upon the two
dimensional structure of an image. The hardware lechniques disCussed
orient about the three models of parallelism discussed above. (We will only
cover digital and CCD methods.) The software techniques discussed are
algorithms suited for parallel execution. (They. of course, only achieve the
potential improvements when executed in some parallel manner.) In discuss-
ing these lopics, actual algorithms and implementations will be considered.
as well as the general principles involved.

it is recognized that both the hardware and software depend upon the
sarme principles (such as spatial parallelism). However, it was decided to
organize the paper so as to focus on the technologies. rather than the
principles.

The paper also contains a brief analysis of the computational require-
ments of various vision processes, and the potential benefits of each tech-
nigue discussed. Lastly, it concludes with two hypothetical system designs
which use parallel technology.

It should be obvious that | believe that paraliel processing is a neces-
sary part of practical vision systems. However, as no one yet knows what
computations a vision system should do, many of the techniques and algo-
rithms discussed here will never have general use. The intention of the
paper is to present a description of the techniques being studied and give
estimates of their potential speed improvements.
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I

What is the probiem? Too much datal

In this section, we examine the data overiload problem Iin greater
detail. First. there is a discussion of typical real data sources. Then. we
look at what computation is required for a particular example. Lastly. we
compare our analysis with other results.

First, we. look at some typical data sources:

Landsat/ERTS (Lan79.Bra78)

These satellites are designed for terrestrial resource analysis and land
survey. They transmit multispectral data describing the regions of the earth
over which they pass. An Image consists of a window of about 10 7 pixels.
Each pixel consists of 24 bits of data, whose contents are 4 bands of
spectral data (6 bits each). By 1978, there were 3 satellites in operation.
in total, all satellites transmit about 200 pictures a day. (Though, if in fuil
time operation, they could send about 8500).

Reddy and Hon (Red79) estimate typical Image processing will require
on the order of 10 3 - 10 4 operations per pixel. Here, they presumably
consider mainly the computational costs of more intelligent analyses. such
as image segmentation or change detection (Pri77). Because the types of
processing used in typical statistical survey applications are simpler, we
could use the smaller estimate. but. as the data has to be processed for
each of 4 spectral bands. the higher estimate will be used.

Based on these figures, we can estimate the number of computers
needed in full time operation to process the data:

200 pictures/day
* 10,7 pixels/picture
* 10 4 operations/pixel
/ 85 * 10 4 seconds/day
/ 10 6 operations/computer-second (typical processing rate)

= 250 computers (approx

Note that this figure is for 200 pictures a day. In 1981, a new series
of satellites is expected to be launched. covering 7 bands of 8 bit data
with roughly 7 times greater detail. This alone should present significantly
greater data processing requirements. Though | have no figures for the
many other types of satellites doing visual surveillance (military or other-
wise), enough data will be taken each day to keep thousands of computers
in full time operation.
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Optical Space Surveillance

The general idea of optical space surveillance is to do telescopic
scanning of the near earth region. for the purpose of object location. track-
ing and identification. Besides the obvious military applications, there is
interest in locating the general debris in orbit. (I have heard estimates of
1000 uncataloged objects: rocks, inoperative sateilites. rocket casings. etc)
In this case. the low level data processing is likely to be simpler than the
ERTS processing. None the less, there are estimates that. by 1990, this
application will require an additional factor of 10 in data processing capa-
bitities over current applications such as the ERTS image processing
(Nud80.

TV image analysis

In a more typical situation. we use a standard television camera as
the data source. These cameras produce picture sizes in the range of
64 2 to 1024 2 pixels, with standard television about 600 2 (Ter55). Pic-
lures are produced at intervals of 1 to 150 milliseconds. with standard
television about 33 milliseconds (40 milliseconds in the UK. As we are
likely to be doing more scphisticated analyses, the estimate of 10 4 opera-
tions per pixel will be used. So. our calculations for a standard television
picture are:

3.6 * 10 5 pixels/picture
10_4 operations/pixel
/ 10 6 operations/computer-second

= 36 * 10 3 computer—-seconds/picture

If we want to process pictures at video rates, then we obviously have
a problem, as we have to multiply this figure by 30 pictures/second. Even
it we are willing to wait until the processing of a single image is complete,
this estimate is excessive for industrial applications (1 hour per picture).

in any case, it is obvious that a lot of computer power is needed.
We now examine a simple image processing task to see where the compu-
tation is used. In the following example (see example 1), it is assumed
that the aigorithms are sufficient to perform the desired task.

The steps and estimated complexity of a hypothetical solution to this
example problem are given table. 1. We see that the total estimated com-
putation is on the order of 3*10 8 operations, which is roughly equivalent to
300 seconds of computation.

Nudd (Nud80) provides a diagram illustrating data rate and processing
requirements of typical vision systems. It is copied below. in figure 1. with
the addition of the far right column which contains corresponding values
from our example computation. Our numbers in the figure are multiplied by
another factor of 40 to account for a 40 pictures/second data rate (to make
our figures comparable to those of Nudd, which were given for video rate
analysis). The letters in parenthesis in table 1 show which operations
correspond to which numbers in the figure.

Comparing the two rightmost columns, note that | give greater pro-
cessing requirements at the higher levels of analysis. but that the general
trends hold. However, the lowest level estimates roughly agree, and It is
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these figures which dominate the computation. Of course. one would expect
that the processing requirements at the higher leveis would increase in
relation to the sophistication of the image analysis task.

The higher levels are also the areas which will provide the greatest
problem in the future. This is largely due to lack of significantly parallel
models (i.e., more than_ a factor of 10), as well as a general lack of
knowledge about the needed processing. Fortunately, at present, the
greatest processing requirements are at the lowest levels, which have the
greatest parallelism potentials.

This completes our examination of the image processing computational
problem. The remainder of the paper concentrates upon the contributions
that paraliel processing technology make to the solution of this problem.
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The vision task Is to perform an inspection of a manufactured object.
for the purpose of detecting the presence or absence of a subcom-
ponenl. Greyscale analysis will be used. because the subcomponent
will lie in the interior of the object. The basic approach will be to do
an edge and line analysis of the image and then match the detected
lines against an image model.

Example 1 - An Image Processing Task

The parameters of the computation and hypothetical values are:

n - image linear dimension (512 pixels)
m -~ convolution window size (3 pixels)

k - number of real lines in picture (50)

I - length of real lines in picture (1000 pixels)

The three fields refer to potential steps in the process, an estimate of
the complexity of the steps, and an estimate of the number of computer
operations needed to execute the steps. The letters in parenthesis
(a.b.c.d) are for identification with processing stages shown in figure 1.

(a)
(a)
(b)
(b)
(b)
(c)
(c)
(c)

Step Complexity Operations
preprocessing convolutions 10 * mhg * nhg 2 * 10:7
edge mask operations 100 * m 2 *n 2 2 * 10 8
threshold operation 10 * n E 3 * loAG
edge thinning 100 * n 2 3 *10 7
edge tracking 500 * 1 5 * 10 5
line finding 20 * 1 * log2(1l) 2 *10 5
line parameter extraction 20 * 1 " 2 * 10 4
line joining/vertex location 100 * khz 2 *10 5
model matching 100 * k 2 2 * 10 5

Table 1 - Analysis Of Sample Image Processing Task Of Example 1

(d)
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Example
Data Rate Throughput Throughput

- (samp/sec) (inst/sec) (inst/sec)

1072 1073 1077 (a)

1073 10”4 1077 (c¢)

1074 1076 1079 (b)

edges histogram

enhancéments 1077 1079 10710 (a)

—

raw image

Figure 1 - Nudd’'s Analysis Of Image Processing Requirements (Nud8()

The rightmost column was added by the author. It refers to the
estimated Iinstruction throughput for the example analyzed in table 1. The
letters in parenthesis relate stages in this figure with steps in the analysis.



Parallel Image Analysis Technology 10

3. Optical Processes

While optical methods were the earliest parallel image processing
methods, it is probable that they were not generally thought of as such.
Parallelism associates conceptually with a set of structured independent enti-
ties, whereas optics tends to consider images as wholes. None the less, if
we accept that an optical process is performed all points of an image
simultaneously, then we see that both views hold.

Principle

Consider the image as a parallel optical wavefront and then use stan-
dard optical methods to process all portions of the wavefront simul-
taneously.

Optics., of course, deals with light and the images we currently con-
sider originate as such. They may be natural. such as from the normal
world, or artificial. such as from photographs, slide projections, television or
computer monitors.

The optical methods we consider rely upon lens and filter systems
used with coherent light (laser) sources. The major feature of such systems
is that, with certain lens configurations. one can create an image that is
the two dimensional Fourier transform of the original image. This new
image allows the application of simple operations, such as masking, which
have complex effects when the original image is reconstituted. Typical
applications include smoothing., gradient edge masking and matched filtering
(Sta75a.Lee73).

There are other optical methods not classed with the above techniques.
These include various polarized light methods such as phase contrast
microscopy and defocussing (Tip68). Further, the techniques considered
here are not !imited to just optical frequencies. Electron beams have simi-
lar properties and one application of this Is mentioned below. Optical tech-
niques can also be used for the processing of reconstructed holographic
and synthetic aperture images (Koc75). The books of Soroko (Sor80),
Casasent (Cas75) and Tippett et al. (Tip68) discuss the general theory and
application of optical image processing techniques.
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A typical setup for an optical processing system is shown in figure 2
(Hus73). -

;fjcal axis

e 1 W 20 e Ot ] [Eomarer)
image transformation scanner
source filter

Figure 2 - Typical Optical Processing System

In this setup., the processing occurs as follows: A laser is defocussed
to produce a parallel beam. This beamn passes through the image source,
say a photographic negative. This image is then focussed onto the
transformation filter plane, where the desired filter is applied. In a reverse
process, the image is reconstituted and passes as input into the scanner.
The output of the scanner, the.digitized image. then passes into the com-
puter for further processing.

The major technical principle involved here is that if the input light Is
from a coherent source. then the focussed image. in the transformation
plane, is the two dimensional Fourier transform of the image (Scr80). At
this location. we can easily apply filtering operations to the image. For
example, a simple high pass fiiter, as defined in the spatial frequency
domain, is:

Hu.v) = 0 fug+vac<R2
1 otherwise

where R is the filter parameter, and u and v are the rectangular coordi-
nates of the filter plane. (Polar coordinates would be more useful in this
case.) This filter removes all low spatial frequency components from the
image. In practice, it can be implemented as a circular mask designed to
block out all light inside a radius R about the optical axis.
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if a photographic film is used. rather than just a mask. as the filter
plane, then we can implement more general linear filters (Lee73). The film
allows one to appropriately scale the intensity values at each point in the
transformed image. The general form for this processing is:

Let F be the Fourier operator, and F’ the Inverse operator.
let H be some filter as defined in spatial frequency domain.
Let | be the image as defined in image domain.

Then,

Qutput = F* ( H * FW) (multiplication in frequency domain
or equivalently:

Output = F'(H) @ | (Convolution in image domain)

Notice that the alternative formulation above is that of a convolution.
Hence. the process we perform here is the analog equivalent to the convo-
lution masking operation when applied to digitized images (Bra65).

The types of operations that one can perform using this technology are
generally limited to those linear operations based on masks and fiiters. Lee
(Lee73) gives a good discussion. with examples, of typical operations using
these components. They include:

image smoothing (low pass filtering)
image sharpening (high pass filtering)
gradient edge finding

general image arithmetic

texture (variance) analysis

image restoration

matched filtering (spatial autocorrelation)

The last item on this list. matched filtering, deserves some special
mention. Suppose we wish to search images for instances of a reasonably
simple object. such as machined part against a conveyor belt. We could
use a matched filter that is the Fourier transform of the image of that
object. Such a system will enhance image points corresponding to the
desired object in the image. and hence direct the application of simpler
processing. Examples of the use of this technique are corner detection,
fingerprint matching. and alphabetic letter detection (Lee73. Sor80). Unfior-
tunately, the method has problems which include:

1. All image points are affected according to the degree of match
between local spatial frequencies and those of the desired object. As
a result, the technique only gives indications of regions whose fre-
quency characteristics are similar to the desired object. This is con-
siderably different from actually locating instances of the object.

2. The technique’'s effectiveness varies In relation to the simplicity of
the spatial frequency of the object. That is, the simpler the object.
the more pronounced the resuits of this process (Lee73). Correspond-
ingly. the more complex the desired objeci. the less obvious is its
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detection among other partial matches.

3. The technique requires one filter for each type of object desired.
Hence. when searching for several objects., new filters would have to
be mechanically switched into the focal plane. This switching can
severely degrade performance. as it introduces a new serial element
into the processing.

4. The filters are not rotationally invariant. This means that a separate
filter would be needed for (roughly) each potential orientation of the
desired structure.

The obvious benefits of the optical technique are that with such a sys-
tem one can instantaneously perform a set of operations over a whole
image. There are also many probiems associated with the technique. The
major ones are physical, and these are discussed below. Another problem
lies in the nature of the processing. which is largely content independent
(except for the marginally better matched filter technique). This is because
the techniques depend mainly upon the physical structure of the image. than
upon the content of the image. Hence, .it is hard to take advantage of
what might be known about the objects contained in the image (which is
part of what allows human beings to so effectively process images). In the
case of optical processes, we are limited to generai image properties, such
as what an edge might look like (as compared to what a change in inten-
sity might correspond to). The matched filter technique is a bit more
sophisticated in these respects. but its performance is not as high as
desired.

The other problems relate to the physical properties of the system.
The first item to note is that the technique depends upon a coherent light
source. This leads to the requirement that the image must somehow Dbe
introduced by filtering a laser beam, as seen in figure 2. This limits us.
at present, to modifying the intensity of the beam via the use of masks or
photographic images. with the attendant mechanical problems associated with
inserting the images into the path. This also degrades the speed of the
technique. A liquid crystal device (LCD) has been invented (Jac73) which
allows an external image to dynamically create a mask. The image to be
processed enters the system as a incoherent (natural) beam and impinges
upon the device. The action of the device is such that it creates a mask
corresponding to .the regions of high intensity in the image. The coherent
beam then shines through this mask, to create a binary image. A similar
technique is used where the image (already digitized) is written onto an
electronic grid, which then filters an electron beam (Cas75). The resuiting
beam is treated in a manner analogous to the optical processes discussed,
and then redigitized at the end. This technique allows the use of greyscale
images. The techniques require on the order of 0.1 and 0.03 seconds
respectively per image to form the masks.

Another limitation Iis that the coherent beam technique can only pro-
cess binary or greyscale images but not multispectral (ie, color) images.

Lastly, there is the problem of the filter design and implementation.
Though the physical and mathematical principles involved are relatively sim-
ple (convolutions and masks), the selection of actual filter types and how to
generate them appears to be more of an art than a science. Lee (Lee73)
gives a discussion of some techniques used. Further, requirements for the
dynamic selection of masks leads to a similar problem to the image intro-
duction problem discussed above.
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This completes our discussion of optical techniques. In the next sec-
tion, we discuss how some Interesting variations in computer architecture
can be used for computer vision.
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4. Computer Based Hardware

’

In section 1, three modes of paraillelism were introduced: spatial, tem-
poral and functional paralielism. This section considers innovative hardware
structures which capitalize upon each of these three modes. In subsection
4A, we look at array structured computer systems, whose processor organi-
zation corresponds to the spatial organization of the image. Section 4B
examines what are generally known as pipeline systems, in which the parai-
lelism lies between the different stages of the image processing. Lastly,
section 4C considers systems based upon functional parallelism, whereby
independent subprocesses can be executed in paraliel. K. S. Fu (Fu78a)
also overviews many of the systems reviewed here.

A point which applies to all of the techniques Is that paralielism also
needs to be considered for the storage of the image data. (Otherwise, the
parallelism of processing is defeated by the queueing for access to the
memory.) VanVoorhis (Vor78) discusses the design of practical memory

structures for parallel processing.

4A. Array Structured Computers

One of the most noticeable features of most image representations is
the regular two dimensional structure. In most instances., this structure is a
rectangular array (figure 3a), although M. Golay and others (Gol63, Pre71
have made arguments for hexagonally structured arrays (figure 3c). The use
of square arrays predominates, perhaps due to the use of raster scans in
television camera output.

Principle

Use system architectures whose structure corresponds to the structural
paralielism inherent in digitized images representations.

The regular parallel structure of the image arrays is highly suggestive,
especially when considering the image processing algorithms which are
based upon the structure. One example algorithm |is a noise removal
smoothing process. which, at each pixel in the image. sets the value of the
pixel to the median value of intensities from the neighborhood about the
pixel.
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it would be Iideal If we could execute this algorithm at all of the pixels
simultaneously. This requires -some sort of processor for each pixel, which
is the basis for the design of the large array structured processor systems.
A typical structure is shown in figure 4, in which the computer system con-
sists of a network of simpler processors connected in a two dimensional
array. Each of the separate processing elements (PE) is an independent
microcomputer, and is connected directly to its eight neighbors. Each of
the PEs is used to store a pixel from the image. with neighboring pixels
stored in neighboring PEs. (Large images can be decomposed into
separate subimages which are then stored in parallel in the PE array) In
addition to the array. there is a standard, computer. which acts as a con-
troller for the array. The controller, at appropriate times. decides upon
instructions to be executed by the array. It then sends out the instructions
on a common command bus. The controller processor is also used to do
the more routine computations, such as index calculation and program con-
trol.

Each of the processing elements is typically a very simple microcom-
puter. A model based upon the CLIP-4 processing element (Duf78) s
shown In figure 5. It consists of three major components: a boolean pro-
cessor, a local memory and a neighborhood selection unit.

The local memory contains data values for the pixel(s) associated with
the processor. They may include raw image Intensity values (binary or
greyscale). results of processing or alternative images.

The boolean processor executes one of the sixteen binary boolean
functions upon two single bit data elements, which may have come from
either the neighborhood or the local memory. All PEs in the array execute
the same function during each processing cycle.

The neighborhood selection function aliows the PE to include the
values of selected neighbors as Input into its calculations. The selection of
which neighbors to access is by program control, and the data from those
neighbors is typically ‘or’ed together when more than one neighbor s
selected.

Notice that the boolean processor has two outputs, one to its local
memory and the other to its neighbors. This feature can be used in
dramatic ways, especially if the two outputs are calculated by different
boolean functions. If the output propagated to the neighbors is also a
function of the input from the neighbors. then computations may propagate
across the whole array in a recursive fashion. (One use of this feature
would be for region labeling, in which the label of a region is propagated
into all appropriately connected neighbors of previously labelled pixels.) Of
course. this complicates the architecture, which may now have to wait an
indeterminate amount of time for a single instruction to complete. There Iis
also the problem of non-convergent computations (Bla81h.

Reeves (Ree80a) discusses a systematic approach to the design of
such arrays and their instruction sets, along with an analysis of the 3
classes of instructions typically executed: boolean. near neighbor and recur-
sive near neighbor.

One problem with this architecture is that a PE does only single bit
boolean functions hence Is best suited for binary image calculations. For-
tunately, greyscale images can be stored in the local memory and the
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desired functions executed one bit at a time. The programming of such
greyscale funclions can be tedious. but in practice need only be done
once. with the resulting code .reusable in subroutine form. Of course, it is
the general program capabilities of the control processor which aliows this
convenience,

A second problem with such arrays is intrinsic. in that the computa-
tions of each PE are based upon local information, whereas some processes
need global information (such as threshold selection). Reeves (Ree80D)
makes some suggestions for simple architectural enhancements to help
alleviate this problem.

A practical problem is that it is not yet economically feasible to dedi-
cate one PE to each pixel. as typical images consist of 256 2 to 1024 2
pixels. (Though VLS! may change this soon.) At present, the largest array
has only 128 2 PEs (see table 2). Hence. it is necessary either to process
only a subset of the original image. to process the whole image in stages.
or to store multiple pixels at each PE. For the 1024 2 image. this can be
done by subdividing the image into 64 windows of 128 2 pixels each. Then
each PE would have stored with it the data from the corresponding pixels in
each of the 64 windows. This complicales the programming. as boundary
effects now need be carefully considered (which may suggest alternate
organizations).

A feature of such arrays is that it may be possible to select, under
program control, either 47 neighbor rectangular, 8*neighbor rectangular or 6
neighbor hexagonal connectivity, as illustrated in figure 3. Further, the con-
nectivities of the edge PEs may be selectable, as in the MPP (see below),
which allows open. cylindrical, spirai (ali PEs in 1 chain) or circular (ail
PEs in a loop) arrangements.

Algorithms suitable for implementation on these machines are discussed
in section 5A. The remainder of this section comments upon the actual
array structured machines of the type described above, and a few others of
somewhat similar character.
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in table 2, we summarize the major features of three array machines:
the ICL Distributed Array Processor (DAP) (Mar80), the University College of
London Cellular Logic Image Processor (CLIP) (Duf78), and the Goodyear
Aerospace (in conjunction with NASA Goddard Space Flight Center) Massively
Parallel Processor (MPP) (Bat80). Among the CLIP machines. only the
fourth in this series of research machines, CLIP-4, is included. Duff
(Duf77. Duf73) discusses previous machines and reference (ano81) briefly
mentions possible future machines (CLIP-5: improved performance, CLIP-6:
mare powerful PE).

date array local instruction
machine bulit size memory time cannectivity
(bits) (usec)
DAP(pilot) 1979 32%32 1024 .2 4
CLIP—-4 1978 96*96 32 10 4,6,8
MPP 1982(est) 128%128 1024 .1(est) 4

Table 2 - Array Structured Computers

Previously, we discussed storing multiple windows of an image in a
single PE. In the MPP. then., the 1024 bits of local memory would allow
16 bits per pixel when processing a 1024 2 picture. This is a reasonable
number for many image processing functions. The CLIP-4 machine is morse
restricted in that it has only 32 bits of local memory.

The primary advantage of this architecture lies in the obvious degree
of parallelism, The CLIP-4 machine has about 10.000 processors, hence
can provide an extraordinary degree of improvement in suitable applications.
Cordella et al. (Cor78) estimate the Improvement factor (the ratio of machine
cycles) gained by implementing various algorithms on such an array. The
range of ratios for typical operations (for a 1024 2 array) is:

operation ratio
thresholding 10" 2
perimeter counting 10”3
smoothing 10°s
contour extraction 1076
thinning 1077

Even if we consider the slower cycle time of the CLIP-4 machine,
about a factor of 10 over standard processors, the degree of improvement
can be substantial. However, not all algorithms are well suited for this
architecture (such as FFT algorithms). Further, these ratios are only for
the actual algorithms, and do not include the loading of the image into the
array (video rate) and the unloading of results.

Other similar machines (Lov80)

One machine which Is conceptually similar to the above is the Goo-
dyear STARAN machine (Pot78). This machine was designed about the
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concept of a collection of associative processors. which execute the same
program synchronously., but only in the processors whose memory contains
specific patterns. A full machine consists of up 10 32 processor banks,
each of which contains 256 processors. Each processor has 9216 bits of
local memory. A 512*512 image with 8 bit pixels can be processed in one
processor bank.

The advantages of this machine come from the fact that ali 256 pro-
cessors in a bank can execute simultaneously. as in the case of the two

dimensional arrays discussed above. However. as the structure of the
arrays is linear, they require cleverer image storage and processing algo-
rithms. The processors. on the other hand, are<more like normal«proces-

sors (ie. not simply 2 input 1-bit boolean units), hence can give improved
performance. Rohrbacher (Roh77) discusses the application of this machine
to several image processing tasks. These include convolutions (3*3 aver
512%512 in 0.6 second), image warping (3-7 seconds) and 2 dimensional
FFTs (2-9 seconds). These figures show an improvement of about 100 over
conveniional machines. Moreover, it is more difficult to program a FFT
algorithm on one of the array systems discussed previously, due to the local
connectivity of the PEs. (The STARAN FFT application required the addition
of a FLIP permutation network, which allowed each cell to access any
other’'s memory, in an orderly manner). Siegel (Sie81b) gives a description
of a 20 FFT algorithm which gives an O improvement over a linear
machine, when implemented on a n*n array.

The Associative Linear Array Processor (ALAP) (Fin77) Is an associative
processor similar to the STARAN rachine.

Another c¢lass of machine includes the ILLIAC-IV (Bar68) and an
unnamed Japanese research machine (Mat79). These machines consist of
arrays of processors organized into a square of size 8*8 (or 64 linecar ele-
.ments) and 4*4 respectively. All machines execute the same instructions
synchronously, in a manner similar to previously discussed machines. How-
ever. in this case. the PEs themselves are considerably more powerfui. and
execute significant arithmetic operations. Again, the architectures are rmost
useful for local computations.

The Purdue Multi-Mode Multi-Microprocessor (PM 4) (Bri79) system is a
bit more exotic in that it is designed to execute either the same instruction
over the whole array or different instructions. It can be dynamically config—
ured into organizations with groups of processors executing indepenaent
processes and accessing difierent blocks of memory. The number of pro-
cessors is of the order of 256. The PASM system (Sie8la) has similar
features.

Also in this category comes the Pepe machine (Parallel Element Pro-
cessing Ensemble) (Vic78). This machine consists of a CDC 7600. 3 con-
trol units and up 1o 288 parallel processing units. each composed of 3 pro-
cessors (data correlation, arithmetic and associative output. A 36 unit ver-
sion was delivered In 1975. While designed mainly for ballistic missile
defence systems, applications to image processing are also considered.

The last architecture considered is more speculative. The general idea
is to inciude some processing elements directly in the retina of a CCD
cammera (Nud80), in a manner analogous to the human retina. Thus, it
would be conceivable to have a camera whose output was Walsh transform
detected edges, rather than image intensities. The nature of this process-
ing would be similar to that of the arrays considered above, but the
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algorithm would be permanently selected. No working examples of such
retinas have been reported.

'
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4B. Pipeline Configurations

s

Considering the example of subcomponent detection analyzed in section
2 (example 1), we notice that the processing of the image occurs in dis-
tinct stages. In this case, there are nine stages. from preprocessing to
model matching. Each of these stages is virtually independent of the oth-
ers. in that the execution of each is dependent only upon its input data,
which arrives from the previous stage. If one could configure a processing
system which allowed each of the stages to execute in parallel, then we
could again expect speed improvements. The factor of improvement would
be limited to the degree of parallelism achieved, which. with pipeline sys-
tems, is likely to be only of the order of 10.

Principle

Use processing system architectures whose structures correspond to
the sequential structures Inherent in the processing.

In discussing this topic. we refer to figure 6, which is a hypothetical
pipeline system performing the component Inspection task analyzed in sec-
tion 2. The system consists of five processors, the first four of which do
the first four stages of the processing analyzed in table 1. The fifth stage
does the remaining steps (5-9). Each stage executes its process in parallel
with the other stages.

processor: 1 2 3 4 5

inputY3 preprocessing edge =3 threshold edge rermainder psoutput
| mask thin

Figure 6 - A Pipeline Structure

Such a structure has been given the name “pipeline”. This name refers
to the fact that data flows between the processes. rather than the program
control changing to execute new processes on the same data. Cooper
(Coo77) discusses the construction and analysis of pipeline structured sys-
tems. Patel (Pat80) criticizes Cooper’'s distributed pipeline approach and sug-
gests a breadth paraliel structure rather than sequential structure. Unfor-
tunately. this suggestion would require each processor to be capable of the
full processing task. unlike Cooper’'s pipelines. The pipeline LSI chips men-
tioned below are only suitable for high performance of particutar simple
processes, and hence are not suitable for Patel's suggestion.

There are two major varlations of this structure, relating to the nature
of the processing and the timing of the data transfer between stages. In
one variation, full images are processed at each stage, in parallel, and the
results are transferred to the next processor. In the other, the image is
processed as pixels arrive and which are then sent immediately (or with a
slight delay) to the next processor.

Both approaches have advantages and disadvantages. The block
transfer method allows more complex processing, in that it has the whole
image available, but requires substantial memory for image storage. and
lengthy image transfer times. The transfer can be overlapped with
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processing at the expense of additional storage for i/o buffering. The con—
tinuous flow method requires considerably less image siorage and can over-
lap data transfer with processing. The reduced data storage limits the
algorithms implementable to those which use only data which has arrived
relatively recently. In most configurations. this means just the most recent
rows of pixels, hence the algorithms must be just local neighborhood func-
tions. (However, the windows may still be reasonably large, as in the
26%06 case mentioned below). Another requirement is that the time to pro-
cess one data element must be, on the average. less than the time until
the arrival of the next daia element.

The pipeline shown in figure 6 is strictly linear. although there is no
requircment for this. For example, the output of the preprocessing stage
could also have been used as input into a region based analysis pipeline.

One general problem with pipelines is that, in order for the full bene-
fits of the paraliel structure to be obtained, each of the stages in the pipe-
line musl be 100% utilized. Unfortunately, most processing stages are not
equally complex. as in the case of our example. Referring to_ table 1. we
see that we need approximately 10 7. 10 8. 10 6, 10 7 and 10 6 operations
at each of the 5 stages. So. if all processors were equal the average utili-
zation of the five processors would be: 10%, 100%. 1%. 10% and 1%, which
is clearly a less than ideal situation.

One solution to this problem is to make the processors which do the
most computations be the fastest (irading cost or complexity for speed.
This might require customized processors, such as those discussed below.
Another approach is to further decompose the processes, but in the exam-
ple we would need to divide the edge mask process into about 10 sequen-—
tial substeps in order 1o balance it with the next largest process. which may
not be possible. A third approach is to make all processors so fast that
all are less than 100% utilized. (Or conversely. to use reduced data rates.)
That is, the processors will be able to process the incoming data even at
the maximum data rate. This approach is also used in the devices dis-
cussed below. A fourth approach is to place multiple instances of the siow
stages in parallel and to use multiple buffers. An example of this structure
is shown in figure 16.

Even if we were to balance the rates of all processors, then this
would still allow only a factor of 5 in parallelism. (The unbalanced pipeline
achieves 1.2). In consequence, we argue that the parallelism benefits here
are not significant.
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The remainder of this section discusses hardware structures which
were designed or built in accgrdance to principles such as these. A com-
mon feature is that all rely upon the approach of processing the data on a
pixel by pixel basis.

Nudd (Nud80) reports upon a series of experiments using CCD technol-
ogy to produce single chip processors capable of doing image processing
functions at video data rates. The advantage is that this is currently the
maximum data rale from standard television cameras (approximately 7*10 6
bits/second)., hence., this image processing can be done in real time. Thus,
using a series of such chips., one could easily and cost effectively do a
majority of the low level image processing. In the pipeline of figure 6, the
first four stages do 99% of the computation. Each of the four processes
are suitable for single chip implementations.

Table 3 summarizes the performance of the devices discussed by Nudd
(Nud80). Of note Is the programmable 5*5 convolution window chip.
Because of its size and general programmability, it would be suitable for a
variety of filtering operations. including smoothing and edge enhancement.

Device Data Rate Functions
1 5 khz edges. hp filter, Laplace
2 Mhz Sobel, means., unsharp mask,
adaptive stretch
3 7 Mhz Laplace., 5*5 programmable

convolution, median filter,
bipolar convolution

Table 3 - Pipeline Chip Prototypes
(Data from Nud80)

Of special note is a 26*26 bipolar convolution window which executes
at video rates. The function of this processor is to calculate a circularly
symmetric weighting function, which is much like a local gradient function.
In some respects, this chip mimics the center-surround receptive field cal-
culation of the retinal ganglia (Lin72). The processor was designed to pro-
vide the input for a “primal sketch®" processing system based upon the work
of D. Marr at MIT (Mar77.

it should be noted that the video rate processing components glve a
remarkable amount of performance improvement - perhaps a factor of 1000,
This performance is largely due to the specialized nature of the processors.
The parallelism itself might only provide another factor of 10. presuming
there were 10 functional units in the pipeline.

Brabston et al. (Bra78) discuss some of the design issues of a pipe-
line system for processing Landsat data. Stages include geometric warping.
radiometric correction, image enhancements and format conversion.

Roesser (Roe78) discusses the design of a speculative two dimensional
pipeline system. in which the results of the computation flow across a
square processor array in both horizontal and vertical directions. The
image points enter the array at the edges. The type of processing sug-
gested for this architecture Is based upon a "two dimensional generalization
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of the comman state-space model for linear time-invariant discrete dynami-
cal systems" as applied to images (space-invariant). Kung (Kun80) reporis
on research on the systolic array concept, whereby data flowing through a
pipeline of simpie synchronous processing units is eventlually transformed.
Reverse flows of intermediate results is utilized. This type of processing is
performed at the lowest levels of the image.

The GOP system (Gra81) uses four parallel pipelines to give fast pro-
grammable convolutions. The DIP-1 systern (Ger81) allows flexibly pro-
grammed pipelines, reconfiguring a small set of simple processing units
under micro-program control

This completes our analysis of pipeline structured systems. In the next
section. we look at structures In which the paralielism is due to the ability
to organize the subtasks of the image processing task into parallel indepen-
dent processes.
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4C. Functional Parallelism

4

Hanson & Riseman (Han78) give a description of image segmentation
based upon a combination of edge and region analysis. The initial data for
both of these processes is the same (the Iimage)., but is processed in
separate computations, with the results eventually merged. Ideally, as the
actual processes are independent, they could be executed on separate pro-
cessors.

At a lower level., a number of individual image processing operations
are lidentifiable as being common to a variety of Image processing tasks.
These include convolutions, local window logical operations, and histogram
calculations. This has prompted researchers to develop special purpose
function units capable of executing these functions at high speed. The
units would operate as auxillary processors attached to a main computer.
They can then be used to do the desired special functions in paraliel with
each other and the main computer. This leads to:

Principle

if the problem structure has independent subtasks. and they are suit-
ably definable as distinct functions, then configure the hardware to
execute these subtasks In parallel.

The two systems discussed in this section consist of a main processor
and one or more attached function units. From the descriptions of the
systems, it appears that the units can execute in parallel with each other
and the host, but this capability is not generally used. In these cases. the
performance of the special purpose unit is of much greater significance
than the minor amount of parallelism they provide, which Is comparabie with
the pipeline systems discussed previously. As a result, they are only
described briefly.
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The general system structure is:

7’

&,

pemme==="""01 image memory

\"\2 special function

processors

Figure 7 - Functionally Paraliel System Structure
(Each unit executes in paraliel with others)

TOSPICS

The Toshiba Pattern Information Cognitive System (TOSPICS) has been
described by Mori (Mor78) .and Fu (Fu78a). This system was oriented
towards the application of Image processing to medical and remotely sensed
data. The system consists of 4 frame stores, each consisting of 512 2 8
bit pixels, a local parallel pattern processor (PPP) functional unit. and a
Toshiba TOSBAC-40C host computer. The PPP consists of six or seven
functional subunits. The subunits and their associated functions are:

convolution - up to 8*8 programmable windows
logical operators - wused for thinning. shrinking. boundary
detection
coordinate transformation - as in image translations and
rotations
region labeling - according to programmable connectivity modes
data conversion - 8 bit table driven mapping. for thresholding.
histogram equalization. log compression
pixel operations - general microprogrammable capabilities
for non-linear coordinate transforms or
texture analysis. etc.
histogram generation - of image greylevels

The units are designed to give a performance improvement of roughly
100.

PPM and PICAP

The Parallel Picture Processing Machine (PPM) and PICAP systems, as
described by Kruse (Kru73.Kru78) and Fu (Fu78a), were designed and built
at Linkoping University, Sweden. The PICAP machine is a more recent and
advanced version based upon the original PPM design. The goals of this
development were to develop a system which could apply local operations to
an image at high speed. The system has been applied mainly to analysis
of fingerprint and malaria parasite images.

The system consists of 9 frame stores. each consisting of 64 2 pixels
of 4 bits each. The sysiem uses a standard minicomputer host and has
one special functional unit.

The f{unctional unit consists of @ subprocessors, which can be
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configured as either a 9-vector or as a 3*3 array. The 9-vector mode is
useful for processing multiple images. The unit executes two classes of
functions when in the 3*3 configuration. The first class is the standard 3*3
programmable convoiution window process. The second is a bit unique.
The programmer can define a sets of logical relations on the window.
When the relation holds. then the value of the center pixel is changed.
This process can be used for neighborhood counting. positional determina-
tions, and shrinking.

The IA system (Lan81) has special units to do boolean operations over
complete image planes, and a variety of mask based operations, all on a
hexagonal grid.

This processor has an improvement factor of about 20.
This completes the discussion of functional parallelism, and the other

hardware techniques. In the next section. we overview the general classes
of algorithms whose structures are suitable for parallel implementation.
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4D. Other Paraliel Machines

'

We briefly mention here several other image analysis machines. These
machines are designed with parallelism viewed at a system level rather than
a task level. The FLIP system (Gem81) is a collection of 16 microproces-
sors, which can be configured under microprogram control to cooperate as
pipelines or as cascades. all in the execution of a single function (instruc-
tion). The EMMA system (Man81) consists of groups of micro-processors
(60-70) organized as families connected by several data busses. The SYM-
PATI system (Bas81) partitions its image memory into 16 parallel blocks and
assoclates a processor with each block. This allows 16-parallel execution of
many local-neighborhood functions.
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5. Structurally Based Parallel Algarithms

Id

In section 4, we looked at hardware structures developed to execute
parallel algorithms. We now look at the algorithms themselves.

One class of algorithms are those whose parallelism Is due to their
computational structure. The pipeline based and functionally parallel
processes used as examples in the previous section have such parallelism.
They are characterized by having distinct, well defined subfunctions., which
can be structurally isclated as subcomponents of the total process. This
form of high tevel parallelism is thoroughly studied as a subject of computer
science (Bri77) and is not discussed further.

Another class of parallelism is algorithmic parallelism. When examining
an algorithm in detail, we find that many of the computational steps are
independent of other nearby (in the algorithm) steps. Data flow machines
(Wat79) have been designed to capitalize upon the potentials inherent here.
This is also a subject for computer science. and is not discussed here.

The algorithms discussed in this section are those based upon the
parallelism that occurs in the image data structure, that is, the regular
array of image points. In section 6, we look at algorithms whose parallel-
ism is based upon the contents of the images.

This section has 2 subsections. In the first, we look at the algorithms
which can be applied over the whole image array. The second subsection
considers the special class of the relaxation algorithms. (These algorithms
are also applicable to the approaches of section 6, but will be mainly dis-
cussed here.)
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5A. Image Array Algorithms

In section 4A, we discussed the features of parallel array machines.
These were designed with the intention of executing the types of algorithms
discussed in this section.

An image is generally represented as a two dimensional array with
either square or hexagonal cells. Many operations which are typically done
to an image. especially at the lower levels of processing. only use data
concentrated at a pixel and some regularly defined neighborhood about that
pixel. Because of these two features. it is both feasible and desirable to
execute an operation simultaneousiy at ail of the pixels In the image.

Principle

Apply local neighborhood processes in parallel at each suitable neigh-
borhood in an image.

An example of an array operation is a local averaging operator. as
illustrated in figure 8. The operator produces. as the output value at each
pixel. the average of all pixels in a local 3*3 neighborhood (for example.
about the circied pixel below). This is formed by muitiplying the values of
the pixel (in the neighborhood) by the values in the mask, summing the
results. and dividing by an appropriate scale factor (here 9). This is an
instance of a more general class of algorithms based upon the convolution
process.

mask
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Figure 8 - A Smoothing Operator
(The operator works by averaging the points in a region according to
the values in the mask. In particular. the center pixel is averaged
to the value 5)
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Convolution operations consist of applying a window, such as the
above, to each pixel in the image. The shape and coefficients of the win-
dow are chosen according to the task. Some uses of this algorithm are:

smoothing (Cor78) - as above

spatial frequency filtering and other mask operations
- for edge. region or texture analysis

Sobel operator (Nud80) - edge detecting

If we allow the results of computation at each pixel to propagate 1o
neighboring pixels. then we have thc basis for algorithms affecting the whole
array. in this instance, the termination of the algorithm may be either
explicitly determined or rely upon convergence of the computations at the
pixels. The propagation of results can be either omnidirectional ar selec-
tive, depending upon the desired effects. Applications of this technique
include:

region “segmentation and labeling - region labels propagate to
appropriate neighbor regions. according to connectivity constraints.

background removal (Duf76) - connectivity applied to the irrelevant por-
tions of the image.

line completion (Wal78) - line designations propagate in the line direc-
tion, hoping to connect segments with gaps.

symmetry detection (Wal78) - markers propagate in directions conducive
to symmetries, hoping to meet other such markers.

perimeter finding (Duf73) - finds the outside edge of a region

A third type of algorithm is the image transform. Here. we transform
a set of image data from one representation to another. Two transforms
which are representative of this iype of operation are:

Fourier (Tan78a,Baj73) - useful for texture analysis
and filtering
Walsh (Dgo76) - useful for edge analysis

The neighborhood structure of the Fourier transform s of note. The
neighborhoods are not local to the pixel. but rather are regularly spaced
throughout the array. Further. the composition of the neighborhoods
changes on each iteration of the algorithm. As a result, this algorithm is
not well suited for implementation on a CLIP-4 like machine. whose connec-
tivities are just local. The STARAN machine solves this problem by use of
a clever neighborhood shufiling device called the FLIP network.
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Lastly, we Include a collection of neighborhood operations which don’t
conveniently belong to the above classes. They are representative of the
variety of operations.possible Using parallel array techniques. They include:

thresholding (Cor78) - set all image intensity values according to a
local or global threshold.

edge thinning (Arc75) - reduce edge cells detected (as output of some
edge operator) to thinner edges.

silhouette smoothing (Ski76) - smooth the outlines of objects.

noise cleaning (Sta75b) - apply non-linear operators to reduce the
image intensity variance.

contour extraction (Cor78) - border following

skeleton finding (Duf77) - finds the skeleton describing a region

concavity detection (Skl76) -~ finds concavities In boundaries of
silhouettes.

The majority of algorithms discussed above use a rectangular array
structure for representing the image. Golay (Goi69, Pre71) has suggested
algorithms based upon a hexagonal grid structure which eliminate some
connectivity and distance problems.

All of these operations are very low level, in that they act directly on
the image intensity array, and make little use of the content of the image.
This other knowledge may be in the form of:

consistency relations that must hold between neighboring pixels., as a

consequence of image structure,

higher level consistencies due to structures in the Image (such as

edges).

and external knowledge of potential image contents.

The next section considers a class of algorithms which address all of these
points. '
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5B. Relaxation Techniques

”

In the previous section, we looked at algorithms which made little use
of any relationships which held between neighboring pixels. This implies
that these algorithms are not using any higher level knowledge to extract
the information in the Image. To begin with. there is the physical con-
sistency of the scene. that is, surfaces are smooth and have consistent tex-
tures, lines are continuous and intensities vary gradually. Of course, such
statements are only generally true. and the less homogeneous the scene is.
the more variations we encounter. Further, there are scale dependencies in
the notions of continuity, consistency and:graduality.

We also have knowledge available to us. as humans, that allows us to
interpret what we see. There are high level facts, such as the shapes of
expected objects. We also know a lot about how objects relate to images.
We can interpret a line as an object boundary. with object to one side and
background to the other. This might suggest interpretations of shadowed or
partially occluded objects. Further., we might know that the boundary must
be a particular boundary. or at least one of a smaller set. In all cases,
what we know In addition to the actual image is substantial and. if it were
possible to apply such knowledge. would greatly enhance image analysis.

On the other hand. when we apply an operator to a raw or previously
processed image. we generally use only focal information from the image.
This is partly due to the computational difficulties associated with the large
number of pixels in an image. and parily due to our inability to design
conceptually meaningful operators (which act on more than just simple data
patterns). Because of their locality, these operators are sensitive to both
nolse and ambiguity. (Of course. some bprocesses should only be done
locally, as the contents of most locales are independent of all others.)

The class of relaxation algorithms has been designed to add some of
the higher level image consistency Information to the processing of locally
based information. They have been used for both low level (pixel based)
and higher level (object based) processing (Kit79.Hum78,Zuc78b). The gen-
eral idea is that neighboring elements should have some consistency
between themselves, where the type of consistency depends upon what the
elements are considered to represent. If models for acceptable modes of
consistency can be formulated. then the models can be used to reduce the
ambiguities of interpretation (Zuc78a).



Paraligl image Analysis Technology 35

m/"m wwm
i 7~ //
N N e e Ve
g """"":} rd 2-'31-‘%}' P
[ ﬂ /

N\ i [

hS i

(a) raw data (hy st iteration (c) 2nd iteration

Figure 9 - Hypothetical Example Of A HRelaxation Process Acting
Upon A Set Of Edge Markers

In figure 9, there is a hypothetical example of a relaxation process
iteratively adjusting the labeling of edge markers so as to form a consistent
labeling. It also removes a few markers which have no local support. The
exampie shows uncharacteristically good behavior. and should not be taken
as an example of the actual performance, rather i Just illustrates two
effects: consistency improvement and noise reduction. The principle involved
is:

Principle

Local consistency relations help reduce classification uncertainities aris—
ing because of noise or ambiguity.

The formulation of relaxation algorithms can be expressed in precise
mathematical terms (UII79.FauB0a, FauB0b). but for our purposes, we will
give a more informal presentation. The model consists of 6 components:

1. A set of elements. These are the objects upon which the algorithm
operates. They may be pixels. regions, line segments or others.

2. A set of possible labels for each element. These are the potential
interpretations of the data elements (such as edge orientations.
region types. line identifications. vertex types, etc). Each element
may receive just one label. or it may have a probability distribu-
tion over all possible labels.

3. A neighborhood function. This selects the set of elements which
are considered neighbors to each particular element. Examples
of neighborhoods are adjacent pixels, or all edges meeting at a
veriex (in an image or graph).

4. A neighbor fabel compatibility function. This is what encodes the
higher level knowledge about what is a consistent labeling
between neighbors. It assigns some value (say between 0 and 1)
to the probability (cosely speaking) that the two (or more) neigh-
boring labels are consistent.

5. An update function. This decides what new label or probability
weighting to assign to the current element. based upon its own
and its neighbors’ labels. This function can he heuristically
defined or be given an abstract form based upon elementary pro-
bability (Pei80).

6. A contro! algorithm. Here., we choose to apply this process to all
elements in the scene (pixels) in parallel, though sequential pro-
cessing is also possible. This is an instance of an algorithm
whose benefits do not depend upon sequential or parallel
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application. The form of the algorithm, however, makes it
eminently suitable for parallel execution. The control algorithm
has also to decide when to stop the iterations, which is an
unsolved problem.

This technique has had a number of different applications, using both
low and high level constructs. Work at MIT has tended to use the term
"cooperative" to describe their algorithms. but their formulation is very simi-
lar to the relaxation formufation (Woo77.Mar76). Further, the global optimi-
zation methods (Fau80a.Fau80b) are also very similar. Some examples of
applications are:

edge orientation (Zuc77) - as in figure 9

region classification (Han78) - bind classified pixels into more homo-
geneous regions

cooperative stereo (Mar76.Bar80) - use depth consistency and object
continuity to analyze image pairs

cooperative surface orientation (Woo77) - wuse surface modeis and
image intensity to calculate surface orientations

noise cleaning(Ros78) - image smoothing via local context

line aggregation (Han78) - join edge elements to form lines. (use of
continuity and smoothness)

line thinning (Ros78) - reduce thickness of lines found via use of
edge detection operators

line labeling (Wal76) - reduce set of possible labels for lines to a
(hopefully unique) consistent labeling. (Doesn’t use probabilistic
notions.)

scene analysis (Hin76) - label image components using required struc-

tural relationships.

histogram - modification (Ros78) - peak/contrast enhancement

parallel line detection (Dan80) - enhancement of structures with paral-
lel lines (like roads)

curve segmentation (Dav77) - segments the border of a shape Iinto
piecewise linear segments

image matching (Ran80) - does pointwise matching of two images (for
registration and disparity problems)

relational structure matching (Kit79) - matches one relational structure
(pattern) to another (data)
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6. Object Based Parallel Algorithms

4

In section 5, we considered algorithms which were based upon the
structural parallelism of the image and its representation. In this section.
we base the parallelism upon the contents of the image. or rather the
current representation of the image and its contents. It is these distinctions
which shift the viewpoint from image processing to computer vision.

We look at three sets of techniques. Firstly, we look at hierarchical
techniques. some of which are purely process based and others of which
also have data dependencies. Secondly. we look briefly at syntactic tech-
niques, and their parallelism potentials. The final section is somewhat of a
catch-all for a few remaining techniques. and some general computer sci-
ence and artificial intelligence comments.

A general comment should precede the discussion. The algorithms
discussed in section 5 were well suited for execution on specialized com-
puter system architectures. This is because the two dimensional structure
of the image can be easily mapped onto the array structured machines dis-
cussed in section 4A. YThe algorithms considered here are not (given the
present state of the algorithms and machines), and the degree to which the
parallelism can actually be realized mainly depends upon the muitiprogram-
ming capabilities of the underlying computer system.
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6A. Hierarchical Software Structures

In figure 1 (page 9), example 1 (page 10) and the example in figure
6 (page 23) there is embodied a processing hierarchy (explicitly in the first,
implicitly in the latter two). Each process. such as the line finder of figure
1. depends upon the results from lower level processes (the edge finder)
and passes results up to higher level processes (lines to the vertex finder).
Each level produces results with a higher level of conceptual abstraction.

It is also possible to have information flow downward in the hierarchy.
This downward flow could be directions for examining the data for
hypothesis verification. For example. if the line finder were considering
bridging a gap between two segments, then it could direct the edge finder
to make a more careful examination of the gap region.

Because of the relatively independent nature of the different levels in
the hierarchy, one could structure them to execute in parallel. This is
especially true If one process need not wait for the completion of its
subordinate processes before it begins.

These concepts lead to:

Principle

Organize the software about parallelisms Inherent in the process., with
the hierarchical software structure mirroring the hierarchical conceptual
structure.

There are two methodologies considered here. The first is based upon
the notion of cooperating experts (specialists in some topic., such as edge
finding). organized to contribute to solving the total problem (Les79). This
has a strong artificial intelligence character. The second approach is based
upon both structuring the processing and reducing the quantity of data.

In figure 10. there Is a set of cooperating experts organized to seg-
ment images. Each of the experts is a separate process specializing in a
particular aspect (color, texture. ..) of the images being analyzed. For
example, the boundary detection expert locates what it considers to be
object boundaries, based upon color and intensity transitions. It may also
include higher level knowledge about the objects expected to be in the
scene. Each expert may be decomposable into sub-experts.

No systems based upon a wide variety of knowledge sources such as
these have yet been built. The VISIONS (Han78) system analyses the image
into boundaries and edges via two independent processes. It uses color to
support the region analysis and intensity gradients to support the boundary
analysis.

The other class of techniques Is based upon the processing cone or
pyramid metaphor. The analysis of the Iimage proceeds via the raw image
entering at the base of the cone, with reductions in image size and a
corresponding increase in data abstraction occurring at each level. The
maximally compressed data is available at the apex of the cone. Uhr
(Uhr78) gives descriptions of these hierarchical structures. and Tanimoto
(Tan78b) gives an overview of the topic as a whole.

A cone consists of a collection of layers, each of which does one
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lype of processing. A layer consists of a planar array of processing cells.
At each level, the cells contain both Image based and symbolic data.
Between layers of a cone., there Is typically a reduction of the amount of
the data being processed. say, reducing each 2*2 window to a 1*1. Usu-
ally, the only data a processor (a cell in one of the layers) can access is
that from its neighbors in the current layer and direct superordinate and
subordinate cells. The “recognition cones" of Uhr (Uhr78) have an upward
flow of data, while the "processing cones" of Hanson and Riseman (Han78)
consider upward (‘reduction”), downward ("projection”™) and horizontal (itera-
tive") data flow.

This structure has potential for implementation as a  hierarchical  pro-
cessor array (Uhr78), but no experimentation has been done.

The siructure of a recognition cone developed by Uhr (Uhr78) is given
in figure 11. The task of the cone is to segment a natural image contain-
- ing houses. trees, sky and ground into its component regions. A ten layer
cone is chosen for this task, with different processes at most of the ten
layers. The results in the tenth layer are very reduced. and suitable only
for the most general subsequent processing. (The image has been reduced
fo a 4*4 array. and about all the information it contains now is that the
image contains some identified object, in roughly the designated positions.)
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Texture Surface
Orientation

Color Intensity
Gradients

“Region onary

Analysis

Analysis

" Image
Segmentation

Figure 10 - Hypothetical System Of Cooperating Expert Processes
Doing Low Level Image Segmeniation
(Each module performs one type of analysis. with its resuits being used
in subsequent analyses.)

Layer Size Function
1 800*600 average each of the 3 colors
2 200*200 hue, saturation & intensity.
3 120*120 gradient calculation
4 60*60 short edge detection, simple texture
analysis
5 30*30 long edges, angles, curves, textures
6 30*30 compounding & identifications via

combinations of regions, borders,
angles and textures

7 30*30 more compounding via pattern matching
8 15*15 average labels over 2*2

9 8*8 average labels cover 2*2
10 4*4 average labels over 2*2

Figure 11 - A 10 Layer Recognition Cone (Uhr78)
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6B. Syntactic Methods

In section 6A, we looked at algorithms which were based upon the
parallelisms present in the data and processing structures. In this section,
we consider an approach based upon the parallelism between the symbolic
elements of the image itself. The discussion consists of a brief overview of
the syntactic methods considered, a discussion of how parallelism can be
applied to these methods, and lastly an example.

Real world objects have many obvious consistencies. At the low levels,
there is color, surface continuity, depth and texture consistency. At higher
levels, there is a structural or conceptual consistency: most letters ‘b’ look
roughly similar; most chairs have 4 legs, a seat and a back. It is this
consistency which allows successful pattern based approaches to be applied
to computer vision.

The syntactic methods discussed here are examples of a pattern based
approach, which use the structural properties (consistencies) that exist
between the primitive elements of the image (however defined). Some typi-
cal primitive elements might be short line segments, small patches oi color
or texture., or segments with a particular shape (as in the chromosome
analysis example discussed below). Assuming the primitive elements of the
image have been classified. the syntactic approach consists of iteratively
matching groups of elements according to given patterns. and then perform-
Ing whatever action is required upon a successful match. The actions can
include replacing the set of elements by a new element, relabeling the ele-
ments, or sending a message (somewhere) that a particular pattern has
been found. The descripticn “syntactic methods" applies to this technique.
because the matching operations are concerned with the symbolic classifica—
tions of the elements, rather than the elements themselves.

The more general form of the pattern matching methods considered
here is the type known as production systems (Dav75,Uhr72,0ht79). A pro-
duction system consists of a set of rules of the form "LHS -> RHS" and a
control program. The execution of a rule is such that, whenever the pat-
tern given in the left hand side (LHS) of a rule matches some structure in
the database, then the action specified in the right hand side of the rule
(RHS) is considered for execution.

More restricted approaches are the grammar based methods. Here,
the elements to be matched on the LHS of a rule not only have to be of
the correct type., but must also have a specified (in the rule) structural
relationship. The best examples of this technique come firom studies on
natural and programming languages. There are extensive theories on the
structure and properties of grammars, the languages they describe. and the
procedures for effectively parsing sentences of the languages (Aho72).

Most grammar research has concentrated upon linear strings of sym-
bols. such as one encounters in parsing sentences of natural !anguages.
Images., on the other hand. have a two dimensional structure. As a resuit
special methods have been considered to augment the one-dimensional
notation. These include:

web grammars (Ros72) - Refer to figure 12. These are sets of rules
which direct how to make parses in a graph-iike structure. The
graph structure is useful for representing the many relationships
that can exist between the elements of an image. The nodes of
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the graph can be relations like “adjacent® or elements like "piece
of white surface” or “chair leg”

tree grammars (Lu78,Moa76) - Refer to figure 13. These are sets of
rules whose terminal nodes are restricted to have a particular two
dimensional structure, such as that of figure 13a.

description languages (Mil68) - The two dimensional structure is
described by a one dimensional string, which is then parsable by
more standard methods. The chromosome analysis example given
below is an example of this technique. A good overview of early
work on such technigues is given by Miller (Mil68).

plex grammars (Fu74) - Each of the symbols (terminal & non-terminal)
is augmented with a set of attaching points. Rutes of grammar
include descriptions of where the elements are attached.  This
technique has been useful for parsing line based structures. such
as electrical circuits, flowcharts and chemical structures.

mosaic grammars (Ota75) - Grammars based upon regular tilings of
the image. Rules describe allowable refationships between the
tiles.

These methods are most evidently syntactic, in that the grammars used
for the parsing of the image are given explicitly. K.S. Fu gives a good
presentation of the subject in his book (Fu74). 4 '
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(a) portion of a web (b web grammar rule 3
(nodes represent (a rule matching terminal,
derived symbolic nonterminal and unspecified

nodes in a specific

structures)
configuration)

(c) reduced web
(produced from (a) by use
of rule in (b))

Figure 12 - A Simple Web Grammar Example
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(a). tree structure (b) grammar rules
(shape of structure (matching on pixel values and parsed nodes
to be parsed) having the given structure)
| = iﬁ—t
lmiﬁ—l
\=@-|

(c) tree parsable by grammar
(using the structure from (a) and rules from (D) )

Figure 13 - A Simple Tree Grammar Example
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Previous research has been largely concerned with the parsing of
artifactual structures. Images, however, have. their basis in natural structure,
and hence have large amounts of both randomness and essentially irrelevant
detail. Further, the process of acquiring an image introduces the problems
of noise. To cope with these aspects of images (and other natural sys-—
tems), the notion of stochastic grammars has been invented (Lee72,Swa72).
Stochastic grammars are similar to normal grammars, except that a proba-
bility is associated with each grammar rule. The probability of a particular
parse may then be the product of the probabilities of all the grammar rules
used in its derivation (or some other function). Additional grammar rules
are introduced to account for the less likely structures that occur in the
base language (in our case. the representation of the image). These addi-
tional rules are likely to lead to ambiguous parses. from which the parser
selects the parsing(s) with the highest probability.

We now consider where paralielism fits into this discussion. The
major feature of both the production rule and grammar rule approaches is
the number of rules. In realistic cases. the number can be quite large -
say on the order of 200-1000. Each of these rules is independent in
terms of its initiation and execution (though the effecs of one rule often
cause another rule to become enabled). In essence, each of the rules
represents a parallel independent procedure. So, a reasonable computa-
tional method for such a set of procedures is to allow each of them to
execute in paraliet (Uhr79).

L4

In the case of images. there is likely to be a large number of similar
structures. which can lead to another mode of parallelism. In that all of
the structures in the image are generally independent, then it is reasonable
to aliow all of the structures to be processed in parallel. This would work
well, because, although structures interact when they are parsed together.
the number of independent regions of activity in an image is likely to be
high.

Another mode of parallelism can be considered. In the work of Moayer
and Fu (Moa76) on the automatic classification of fingerprints. they divide
the print into 16 regions (4*4 grid) and then attempt to parse each region.
They use approximately 200 different grammars for parsing the regions.
among which only one is expected to successfuily parse any given region.
The identifications of the grammars which parse the print are then used to
form its classification. Thus it is possible to also execute the 190 parsers,
in parallei. over the 16 regions, in parallel.
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It would appear as if the notions of parailel rule seis. parallel rules
and parallel data complement each other well. We summarize these con-
siderations as:

Principle

Consider consistency In image data and structures as conceptual units
upon which to build processing rules (syntactic or procedural). Take
advantage of the independence of the rules and data units to execute
in parallel.

There has not been much research on parallel parsing in the image
processing context. Chang and Fu (Cha79) discuss the possible applications
to tree grammar parsings of LANDSAT data and texture discrimination,

We conclude this section with an example of chromosome analysis dis—
cussed by Fu (Fu74). Chromosome images are initially two dimensional, but
prior to parsing., an image processing routine reduces the image of the
chromosome io a one dimensional encoding of its boundary properties. In
figure 14, we list the terminal symbols and a portion of the chromosome
grammar. In figure 15, we give a hypothetical chromosome (labelled by its
terminal symbols) and the associated parse tree.

In terms of our paralielism considerations, we can achieve at least a
factor of 3 improvement here. Given the parse tree in figure 15. the sym-
bols at the greatest depth can be parsed at the first cycle. the next
greatest at the next cycle. and so on. This tree has 6 levels and 21
nodes, hence roughly 3 nodes parsed per cycle. Of course, this doesn't
include any of the parsings which didn‘t contribute to the final tree. If we
were parsing a realistic two dimenslonal structure. then the opportunities for
parallelism would undoubtedly have been considerably greater.
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Figure 14 - Chromosome Analysis Grammar
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Figure 15 - Exampie Of Chromosome Parsing
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6C. Other Scoftware Techniques

This section is intended as a place to mention a few other techniques
not appropriately categorized elsewhere. It includes both vision specific and
general computer science/artificlal intelligence techniques.

There are currently a few languages, designed for image analysis,
which actually attempt to represent the parallel structure of the problem.
The first category of these languages include L (Rad81), PascalPL (Uhr81)
and PIXAL (Lev81). These languages are normal algorithmic languages with
extensions to have declared image array types. and operations which execute
in parallel over the arrays. The operations include arithmetic, logical and
conditional functions. The second category views the problem not as a sin-
gle process over a parallel data structure, but as a parallel collection of
processes over a single data structure. executing cooperatively. The
language MAC (DouB81) exemplifies this view, and has constructs for two
dimensional arrays of processes. Here, one can associate a process with
each pixel in an array. It also inciudes the control constructs of modern
concurrent languages.

Mero (Mer78) describes a line finding and vertex connection algorithm.
It is based upon parallel searching of the image along potential edge cells.
Merlin and Farber (Mer75) describe a paraillel implementation of the Hough
transform, as applied to curve detection.

There are also some general artificial intelligence techniques suitable
for parallel vision applications. The first technique is that of search (Nil80).
¥ the analysis of the image requires consideration of alternative interpreta-
tions or actions. and a subsequent decision to pursue cne of the alterna-
tives and temporarily skip the others. then we have a framework for search
techniques. In this case, a separate processor can be assigned to pursue
each alternative in parallel. The next technique is the use of ACTOR net-
works (Hew77). This structure is a' collection of Independent processes
(actors). each dedicated to performing a specific task. While processing the
request, the actor may send messages to other actors. One advantage of
this technique Iis the ability to define a prototype actor (such as
LINE_FOLLOWER) and then create multiple instances of the actor as needed.

There is also the possibility of the use of perceptron-like processes
(Nil65). These are essentially linear discriminant functions. (also called
threshold logic units) and a large coliection of simple units may be easily
connected into a substantial structure (hlerarchical or planer). Because of
their simple computational structure. they can easily be Implemented in
hardware, especially in arrays using VLS| techniques. However, it is not
clear how they might be used for more than very low level tasks (such as
edge detection and line joining). They have also been shown to be inca-
pable of performing some processes. such as global recognition of connec-
tivity (Min69).
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7. Summary Of Techniques

In this section, we summarize the potential benefits associated with
each of the techniques discussed previously. At the end of the section
there are several examples of system architectures which perform the
Inspection task of example 1 at reasonable speeds.

This paper examined and discussed hardware based techniques. The
major ones, and their purposes are:

optical - use optical Fourier transiorm techniques to do complete
Image analysis simultaneously.

array structures - build a processor array corresponding to the image
array so as to execute local operations In parallel.

pipeiines - develop custom logic units to process the data upon
receipt and then pass it on to the next unit Process the
separate stages in paralilel.

functional units - develop custom logic units as auxiliaries to main
processors to do specialized processing at high speeds. Execute
the auxiliary units in paraliel.

general parallel processors - execute conventional programs in parallel.

The paper also examined and discussed software techniques used to
give the image processing task a parallel structure. The major techniques
and their purposes are:

parallel array algorithms - execute the algorithm at each local neigh-
borhood in an image. All executions take place simultaneously.

parallel relaxation - same as above. but also add image consistency
knowledge.

processing pipelines - decompose process into sequential subprocesses.
Execute subprocesses in parailel.

high level hierarchies — decompose process into independent contribut-
ing experts. Execute independent modules in parailel.

processing cones - structure process into levels of data compression
and abstraction. Also uses parallel array methods.

syntactic methods - execute pattern based processing in paraliel

general parallel programming - execute Independent code in parallel.

In table 4, there is a summary of the estimated processing improve-
ment factors. Note that there are factors due to both paralielism and spe-
cial architectures. _For the_low level (image data based) processing there is

potential for a 10 3 - 10 4 improvement in performance over conventional
processors. For the higher level processing (object based), there appears
to be only about a 10 1 - 10 2 improvement given current techniques.

However, as a majority of current processing lies at the low level, both fig-
ures are reasonably suited to the processing required. as shown in figure 1.

For the remainder of this section, we consider the design of an archi-
tecture which performs the inspection process given in example 1. (This
example does a greyscale inspection of a manufactured object.)

We use two sets of requirements, one to process the images in real
time (with video rate input, one frame every 25 milliseconds), and the other
to process one image every 1 second. Hypothetical system architectures for
the two case are shown in figures 16 and 17. Tables § and 6 give
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summaries of the steps needed in the processing, the techniques used for
each step. the delays estimated inherent in the processing. and the proces—
sor utilizations. -

We consider the configuration in figure 16. If we use pipeline proces-
sors for the initial image processing. sixteen way parallelism between normail
microcomputers for ling finding (with 16 image buiffers) and two future mini-
computers with built-in 10 way parallelism, then we anticipate achieving real
time  processing rates. This would allow processing each picture as
received, with a 445 millisecond delay. The estimated cost for such a sys—
tem is on the order of $90.000, with 1985 as a feasible construction date.

If there, were less of a speed requirement. and we could accept
images one second apart, then the system from figure 17 Is usable. The
pipeline stages are still used. but all of the subsequent processing stages
are now done in a microcomputer system with an attached frame store. In
this case, the estimated delay is 705 milliseconds per image. The
eslimated cost of this processing system is $7,000. with 1983 as a feasible
c;ognstruction date. This is a very reasonable price for this system.

&
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Technique
HARDWARE

optical

array structures

pipeline units

functional units

general parallel
processing

Parallelism Other factors

10:6 107-5 (image introduction)

10 4 .

10 10 2 (custgm architectures)

5 10 1 to 10 2 (custom architectures)
10

SOFTWARE (requires implementation on one of the above architectures)

parallel arrays
parallel relaxation
processing pipeline
high level hierarchy
preccessing cone
syntactic methods.
general parallel
processing

~

1074
10”4

10

5

10”3 X
1071 to 102

10

Table 4 - Summary Of Estimated Processing Improvement Factors

(assumes 1000*1000 image and optimal application of techniques)
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pipeline 16 microcomputers 2 10-parallel
processors and associated minicomputers
(1983 - $200 ea framestore (1985 - $10.000 ea)

(1982 - $4.000 ea)

Figure 16 - Hypothetical System Architecture For Inspection

Task At 1 Frame Every 25 Milliseconds
(numbers in boxes refer to step numbers in Table 8

o
L

tcamerap=={ 1 Em 6.7.8,9,10 femmmmom==mn] Output
pipeline microcomputer
processors and associated
(1983 - $200 ea) frame store
(1982 - $4.000
Figure 17 - Hypothetical System Architecture For Inspection

Task At 1 Frame Every 1 Second
(numbers in boxes refer to step numbers in Table 6)
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Processing Delay Times

Step Action Hardware Algorithm Incremental
Delay (msec)

1 preprocessing pipeline - 2
convolution

2 edge mask pipeline - 3

3 threshold pipeline - 0

4 edge thinning pipeline - 5

5 image acquisition - - 25

6 edge tracking microcomputer serial 50

7 line finding microcomputer serial 200

8 line parameter microcomputer serial 20

9 parameter transmission - . 100

10 line joining/vertex 10-parallel parallel 20
location

search
11 model matching 1o0--parallel gyntactic 20

445 (total)

Processor Utilizations (assuming 1 frame every 25 milliseconds)

Processor Processing Interval Utilization
(msec) (msec) (%)
1 25 25 100
2 25 25 100
3 25 25 100
4 25 25 100
6,7,8 + 9 370 400 93
10 20 25 80
11 20 25 80

Table 5 — Processing Time Analysis Of Example 1 Task
when Executed On Architecture Of Figure 16
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Processing Delay Times

Step Action Haxrdware Algorithm Incremental
: Delay (msec)

1 preprocessing pipeline = 2
convolution

2 edge mask pipeline - 3

3 threshold pipeline - 0]

4 edge thinning pipeline - 5

5 image acquisition - = 25

6 edge tracking microcemputer serial 50

7 line finding microconputer serial 200

8 line parameter micrccomputer serial 20

9 line joining/vertex microcomputer serial 200
location

10 model matching microcomputer syntactic 200

705 (total)

Processor Utilizations ( assuming 1 frame every 1 second)

Processor Processing Interval Utilization
(msec) (msec) (%)
1 25 1000 3
2 25 1000 3
3 25 1000 3
4 25 1000 3
6—10 670 1000 67

Table 6 — Processing Time Analysis Of Example 1 Task
when Executed On Architecture Of Figure 17
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8.Summary

Consldering all ‘of the approaches under research, as surveyed in this
paper. there are plenty of opportunities for applying parallelism to the pro-
cessing of images. These opportunities are present at both the low and
high levels of image analysis. and. considering the amount of processing
power needed for the task, the research is both relevant and timely.

In this paper. we looked at optical technigues that have been previ-
ously used (section 3) and some of the computer architecture innovations
~that form a base for paralielism (section 4). These include array structures
(4A). pipeline siructures (4B) and special asynchronous functional units (4C).
In section 5., we discussed the data structure based software techniques of
array algorithms (5A) and relaxation techniques (5B). In section 6, we dis—
cussed the more conceptually based hierarchical techniques (6A) and syn-—
tactic techniques (6B).

As a preliminary to the techniques. we motivated the discussion with
an analysis of the need for parallelism in image processing and under-
standing. As part of the concluding discussion, we included a summary
and comparison of the improvement factors potentially achievable using
current or shortly available technology. Lastly, we gave brief descriptions of
two hypothetical systems which, in the near future. might achieve almost
real time image processing for a reasonable price.

Although all of the techniques discussed in the paper offer improved
system performance., only a few are likely to be of significant value
(author’s opinion). The preferred hardware technologies are those of the
parallel arrays and specialized pipeline processors (though the major benefits
of the pipeline units come from their high processing rates, Instead of the
marginal parallelism that they support) Among tihe software techniques. the
paraliel array algorithms offers promise to the lower levels of processing
(where, at present, most processing is required). For the higher levels, the
parallel syntactic analysis seems to be a potential alternative to current
sequential processing methods (though the use of this technology is not well
developed). Lastly, the development of general purpose processors. which
execute conventional programs in paraliel, offers increased general perfor-
mance.
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