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Abstract

Some three dimensional scene analysis programs pair data surface patches (e.g.
as extracted from range data) to model surface patch features. From the correspon-
dences, a variety of rotation and translation constraints on the model instance can
be deduced, depending on the assumptions behind the correspondences. This paper
elaborates some of the constraints and their associated assumptions for planar, cylin-
drical, conical and generic surface patches. For example, if one knows that a planar
model patch must overlap a planar data patch, then this constrains the alignment of
the model surface normal and the possible translations of the model patch. The con-
straints are expressed algebraically for patches that are: nearby, touch, contained, or
registered. The constraints are used to estimate object position, given a single patch

correspondence. Examples of their use and evaluation are given.
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1 Introduction

Fisher and Orr [12] have been investigating the use of algebraic inequalities as a represen-

tation of partial position constraints, much as Brooks did in his ACRONYM system [4].



This research is being undertaken as part of the IMAGINE II scene analysis system ([10],
[11]), which is currently concerned with surface-based object recognition.

The data primitives in the matching are surface patches, which can be obtained by a
variety of techniques for segmenting range data (e.g. [3], [5], [17], [19]). These processes
result in data patches with consistent curvature signs. Objects are defined using the SMS
models [9], which allow hierarchical object representations, with surface patches being one
of the primitive features.

The model matching process is not described here, but makes correspondences between
single (and multiple) model and data surface patches. With these correspondences, it
is possible to estimate the position of the object containing the patches (assuming the
correct model has been chosen and the correspondences were made correctly) or reject the
correspondences as inconsistent.

A key element of the geometric analysis is formulating algebraic constraints between a
rotated and translated model and the observed surface patches. The constraints attempt to
define or refine the set of allowable positions for the object consistent with the observed data
patches. For example, pairing a planar data patch with a planar model patch immediately
constrains the rotations allowable, because the transformed model normal 7,, must be

aligned with the data normal 74, within an angular observation error e. Hence,
Ty, - og > cos(e)

is a constraint on the rotation component of the position T' (here expressed as a prefix
transformation on the model normal 7,,.) We assume throughout this paper that all surface
patches are oriented (i.e. they have an outside face with which the normal is associated).

There are a variety of constraints on both the rotation and translation, depending
on the assumptions made about the relationship between the model and data patches,
such as whether the patches overlap or one is contained in the other. The generation of
the constraints is the responsibility of the matching program, which then depends on the
constraint analysis program for solving them. Each model-to-data correspondence may
introduce several constraints; moreover, there may be several correspondences that each
add their own constraints. Altogether, an analysis may generate many constraints which

then have to be solved to generate a single position estimate.



As there are a variety of model and data surface patches, there are a variety of con-
straints that can be generated. This paper presents and discusses the algebraic position
constraints that we have identified and are using, under a variety of assumptions about

the correspondence. In particular, we present:

o the descriptions of the model and data surface patches,

the geometric constraints deducible from the model-to-data patch correspondences,

e a summary of one approach to solving the constraint based on a value-propagating

network acting on interval [1] values,

some experiments showing the performance of the constraints and

e a few examples of applying the theory and solving the resulting constraints in the

geometric reasoning networks.

These are described individually in sections 2 through 7.

It should be noted that the types of constraints described here differ from those de-
scribed by Grimson and Lozano-Perez [15], who identified a set of geometric constraints
that pruned the search space of model-to-data correspondences, whereas here we
give constraints that limit the spatial location and orientation of the object. Their
constraints are also useful, and we use them in the model matching process that leads to

the generation of the constraints identified below.

2 Data Surface Patch Types And Descriptions

In this paper, we assume that the features extracted from the image data are surface
patches, characterized by their curvature and extent. These patches will be suitable for
direct correspondence with the SMS model features presented in the next section. A
summary of how we extract the surface patches is given in Section 7. However, in brief,
they are found using a curvature-sign based local classification of smoothed (discontinuity

segmented) range data, with region growing to produce larger patches.
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Central point (center of mass): gy distance error (isotropic): §
Normal at pg: g angular error: €
Arbitrary axis: dq angular error: B
Oriented bounding width: wq(¢) distance error: 0w

Figure 1: Planar Patch Descriptions

There are four types of data surface features considered here: planar, cylindrical, conical
and generic patches. We now describe the features and how they are characterized.

The planar patch (see Figure 1) is flat and has bounded extent. By considering the
patch boundary, it is possible that a data patch might only be paired with a model patch in
one way, and we would like to exploit as much information as possible. However, we would
also like to use a simple scheme that can be used with all patches, irrespective of shape.
Hence, we represent planar patches by the bounding width (w4(#)) at each orientation
(¢) (see Figure 2) for our position constraints, which can lose some of the information
in irregular patches. This width is a measure of the maximum extent of the surface in
each direction. The orientation ¢ = 0 is chosen arbitrarily, and each width measure has
an error range of +6, associated with it. Additionally, we use the position (f;) of the
center-of-mass (with the isotropic error range +4), the direction 7, of the surface normal
at that point (with angular error +¢) and an arbitrary direction @, in the patch (observed
with angular error ).

The cylindrical patch (see Figure 3) is a patch on the surface of a cylinder and has
bounded extent. We simplify the patch by bending a rectangular bounding patch onto the

infinite cylinder containing the actual patch, where the sides of the bounding patch are
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Figure 2: Width Bounding of An Irregular Figure at One Orientation

either parallel to the axis of the cylinder or are parts of circular cross-sections through the
cylinder. The measurements taken from the patch are the length of the patch along the
axis (I4 with error +§;), the angular width of the patch across the axis (64 with error +o)
and the cylinder’s curvature (x4). No error is associated with the curvature, because the
constraints assume that the correct patch correspondences have been made, and hence the
model curvature (k) can be used.

Additionally, we use the position of the central point (3 with error +4), the direction
of the surface normal at that point (74 with error +¢) and the direction of the cylinder’s
axis (@ with error ). Here, the central point is defined by the mean value of the radial
coordinate expression for the surface.

If only a fragment of a cylinder patch is observed or the observed patch is part of a
noise-corrupted patch with a different shape, then it may be misclassified. Hence, we also
include the bounding dimensions of the patch when flattened onto a plane (wq(¢) with error
+6,) and arbitrary axis (@, with error £8,). The projection plane is the one tangential
to the surface at p,.

The conical patch (see Figure 4) is a patch on the surface of a cone and has bounded
extent. We simplify the patch by bending a wedge-shaped bounding patch onto the infinite
cone containing the actual patch, where the sides of the bounding patch are either rulings

down the sides of the cone or are meridians around the cone. We use the patch center
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Central point (center of mass):  py distance error (isotropic): 4

Normal at py: fig angular error: €

Curvature axis: ag angular error: Jéj

Curvature: K4

Enclosing cylinder length: ly distance error: &

Enclosing cylinder angular width: 64 angular error: o

Enclosing flat patch width: wa(4) distance error: b
Flattened patch axis: d,q  angular error: B.

Figure 3: Cylindrical Patch Descriptions

position (Py with error +4) the direction of the surface normal at point Py (74 with error
+e¢) and the direction of the cone’s axis (@; with error £8). The patch center is defined
as the point in the patch that has the mean value (over the patch) of (hpf,h), where h is
the distance from the cone tip of the projection onto the cone axis and 6 is the angular
position of the point around the axis.

The measurements taken from the patch are the length of the patch along the axis (I4
with error +§;), the maximum angular width of the patch across the axis (6; with error
+0), the cone’s curvature at the point (§4) (x4 with error +«) and the radius rate of change
(pa) (i-e. radius = py * distance_from_tip). No error is associated with the radius rate,
because the constraints assume that the correct patch correspondences have been made,
and hence the model radius rate (pn) can be used.

The cone model primitive includes the position of the tip of the cone (f'd), if visible. Also,
the minimum (Kping) and maximum (Kmgzq) curvatures of the cone are known. Similarly
to the cylindrical patch, we also take bounding dimensions of the flattened conical patch

(wa(¢) with error +46,) with axis (@,q with error £8,).
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Cone tip: tq

Central point (center of mass): fy distance error (isotropic): 4
Normal at py: g angular error: €
Cone axis: aq angular error: B
Curvature at p;: K4 distance error: a
Radius rate: P4

Enclosing cone length: lg distance error: &
Enclosing cone angular width: 64 angular error: o
Maximum Curvature: Kmazd

Minimum Curvature: Kmind

Enclosing flat patch width: wa(¢) distance error: by
Flattened patch axis: @,y  angular error: B

Figure 4: Conical Patch Descriptions



Central point (center of mass): pqg " aiStance error (isuviupiv). |
Normal at pg4: g : angular error: €
Curvature axes: @14, 24 angular errors: B, P2
Curvatures at pg: K1d, K2d

Enclosing patch widths: wyg,W2q distance errors: 61,6,
Enclosing patch angular widths: 8,4, 624 angular errors: 01,02
Enclosing flat patch width: wa(d) distance error: b,
Flattened patch axis: Gpq angular error: B.

Figure 5: Generic Curved Patch Descriptions

The generic patch (see Figure 5) is a patch on the surface of a generic surface curved in
two directions and has bounded extent. We simplify the patch by bending a ‘rectangular’
bounding patch onto the infinite surface containing the actual patch, where the sides of the
bounding patch are formed by intersecting planes perpendicular to the curvature directions
(at the nominal central point). We use a patch center (py with error +4), the direction of
the surface normal at that point (74 with error +¢) and the directions of curvature at the
central point (&;4) and (&4 with errors +4; and £p,). The measurements taken from the
patch are the linear widths (wya, wzq with errors +6; and +6,) and angular widths (614, 024
with errors o0, and +0;) of the patch about the central point, and the curvatures (x;a,
K24) at the point. Here, the generic patch has no perfect mapping to a flattened bounding
patch; however, since the flattened patch is used only when the curvatures are close to
zero, we will use the patch defined by the orthographic projection onto the plane passing
through the center of mass with normal #ig. This patch has cross-section widths wy(¢)

with error +6,, and axis @pq with error +4,.



3 Model Surface Patch Types And Descriptions

The constraints given in Section 4 are designed for use with the surface primitives of the
SMS object representation system [9] which form the basis for the IMAGINE II system
[10] currently being developed. We briefly describe SMS and then define the information
used in this paper.

SMS is a geometric modeling system, based on multiple, alternative representations
(curve, surface or first and second-order volumetric primitives). The models need not have
all features specified, and the features are usually represented in a subcomponent hierarchy.
The features may have parameterized sizes and properties (e.g. surface curvatures) and
there may be partially or fully unconstrained degrees-of-freedom in the reference frame
transformations. The models also record (1) multiple levels of scale-based representation
in a simplification hierarchy and (2) viewpoint dependent visibility information.

The goal of SMS is to represent the visual aspects of an object that characterize its
identity, rather than describe its shape. Hence, the modeling approach aims to provide
representations that closely correspond to reliably extractable image features.

Following ACRONYM |[4], all numerical values can be symbolic variables or expressions,
as well as constants. This has been used for a class of generic model representation, by
allowing size variation amongst the recognizable objects. Variables are defined as either
local or global in a model and are bound by a dynamic scoping mechanism. Each SMS
model can include a set of constraints on the variables, which are expressed in algebraic
form.

SMS provides several types of model surface primitives, of which five types are con-
sidered here: planar, cylindrical, full cylinder, cone and generic patches. One use of the
surface primitives is to provide model features that can be directly matched to data sur-
face patches, which is the use assumed in this paper. The intent is to provide model
features that closely correspond to extractable data features to reduce the representation
transformation ‘distance’.

The model surface patches are characterized similarly to the data patches (as described
in Section 2) except that they are represented with a m subscript instead of a d subscript.

Not all of the shape information is currently modeled explicitly in the SMS scheme, but
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Central point (center of mass): g,

Curvature axis: am
Curvature: Km
Enclosing cylinder length: In
Enclosing flat patch width: Wi (4)
Flattened patch axis: Qpm

Figure 6: Cylinder Descriptions

all are straightforward and trivial extensions.

In addition to the four data patch primitive shapes, a full cylinder primitive exists,
which represents cylindrical surfaces that extend completely around the object, and hence
has no orientation about its axis. The description of the cylinder (see Figure 6) is similar
to the cylindrical patch. We simplify by bounding the actual feature with a section of
cylinder cut perpendicularly to the axis. The measurements taken from the cylinder are
the length (/) of the patch and the cylinder’s curvature (k). Additionally, we use the
position of the patch center (p,), and the direction of the cylinder’s axis (@,). Here,
the patch centre is defined to be the intersection of the axis with the plane perpendicular
to the axis that divides the mass of the cylinder in half. We also include the bounding

dimensions of the hemi-cylinder when flattened onto a plane (wn(¢)) with axis (a,,).

4 Constraints From The Different Patch Pairings

For us, the key data type in geometric reasoning for high-level computer vision is the

position. It represents the relative spatial relationship between two visual features (e.g.
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world-to-camera, camera-to-model, or model-to-subcomponent). Positions are represented
using a 3-vector representing for relative translation and a unit quaternion (4-vector) for
relative orientation (of the form (cos(8/2),sin(6/2)w) for a rotation of § about the axis
D).

The key geometric relationships concern relative position and have two forms — ezact
and partially constrained. An example of an exact form is: let object A be at global position
(F4,%4), (rotation 74 and translation #,) and object B be at (F4p,%45) relative to A. Then,

the global position of B is:

(F8,tB) = (raB * TA,TaB *ta * g + taB)

where * is the quaternion multiplication operator and “ ' ” is the quaternion inverse
operator.

A partially constrained position is given by an inequality constraint, such as:
taz 2 50

This means that the z component of A’s global position is at least 50. Such a constraint
might arise from some a priori scene knowledge, or from observation of a fragment of a
surface.

Other relationships concern vectors or points linked by a common transformation, as

in TV} = ¥,, or the proximity of points or vectors:
| By — 72| <€

Complications arise because each data measurement may have some error or uncer-
tainty, and hence the estimated values may also have these. Alternately, a variable may
be only partially constrained in the model or by a priori scene information. Hence, each
numerical quantity is represented by an interval [1] of possible values.

In our current implementation of the IMAGINE II system (a design sketch is given in
[10]), we represent geometric position quantities as intervals because the interval makes
explicit the uncertainity in the value. Constraints are represented as inequalities over
the intervals, much as in the ACRONYM system [4]. The benefits of the interval and

algebraic approach include: (1) a uniform representation for point and vector quantities, (2)
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handling both data variation and unconstrained properties in one mechanism (e.g. knowing
that the object lies to the —X direction of X, entails a partial X position constraint of
[~ inf, Xp]), (3) incremental constraint addition as scene understanding proceeds, (4) a
broad range of constraints expressible through algebraic inequalities and (5) the algebraic
inequalities maintain the explicit coupling of the relationship between the variables. The
main disadvantages seem to be: (1) no representation of the best or most-likely value,
(2) difficulty solving the constraints (except when all constraints are linear whereupon
the Simplex method is usable), (3) the coupling of uncertainities between variables is not
easily exploited (i.e. it often needs more than just intersection of intervals to obtain tight
bounds) and (4) uncertainity growth through the composition of uncertainities. Statistical
techniques (e.g. [7]) are an attractive alternative representation to intervals (though also
having some of these problems), but are not considered further here.

Each type of model-to-data surface feature pairing is given in the subsections below.
There are constraints given for each type of pairing, because, for example, the model-based
scene analysis program might decide that the curvature of a particular data patch is small,
and hence the data patch might be mis-classified as planar. Alternatively, a planar patch
might have a small curvature estimated because of noise. The decision about the pairings is
the responsibility of the scene analysis program, which then determines which constraints
are generated. Hence, constraints for all possible patch matchings are elaborated below.

In each of the subsections below we examine several patch relationships. The main
consideration is the extent to which we can constrain their relative position based on a
priors knowledge. For example, if we are observing rigid man-made identical objects then
we can assume that the observed data patch will be a subset of the corresponding model
patch. This is our assumption A3, and there are both stronger and weaker assumptions

considered. The assumptions (from weak-to-strong) are:

A1l Both model and data patches are part of a larger surface of bounded size R (e.g. the

whole surface fits inside a sphere of radius R/2), but the patches need not overlap.
A2 The model and data patches must touch or overlap.

A3 The data patch is a subset of the model patch.
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A4 The centroids of both the model and data patches correspond to the same point.

Note that each assumption is stricter than its predecessor and so any constraint that
applies when A1l holds also applies when, for example, A3 holds. Other assumptions can
be developed, such as “The data patch would have exactly the same shape as the model
patch if it were completely unobscured and no noise were present.”. These seem to generate
more complicated, somewhat heuristic constraints, or require substantial image processing
to extract the information needed to set up a simpler constraint.

The choice of which assumption to apply is currently up to the model matching software.
In our matching investigations, we typically use either assumption A2 or A3, depending
on whether rigid man-made or more free-form objects are used.

The position constraints are expressed algebraically, using the prefix transformation
T applied to some model feature (e.g. surface normal), and showing the relation the
transformed model feature must have with observed data features. Where possible, both
rotation and translation constraints are specified. Also some constraints are not as tight
as they could be to simplify their formulation.

In general, the constraints are of two forms, with rotation constraints of the form:
T'l_)‘m . Ud 2 T

meaning the transformed model vector #,, lies within an angular range of a data vector

vy. Translation constraints are usually of the form:
(T-ﬁm - ﬁd) € I(F)

meaning the vector distance between the transformed model point and a given data point
lies within the interval vector [1]. Both 7 and I(¥) are constants. The vectors ¥, and
P are usually constants given in the model, and ¥; and p; are usually observables. The
transform T is usually the desired unknown (i.e. the unknown position).

I(7) is defined:

r= (rz,ry,rz)
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Then:

I(7) = {(,y,2) :[ 2 |<| 7 |y |y [S] 7y || 2 |<] s [}

In other words, I(7) is the rectangular solid of R® with principal diagonal corners ¥ and

—F. The interval vector expression I(@) + I(b) is defined to have the value:
{c¢+d:ceI(@),d e I(b)}

Note that this means that the uncertainity intervals are aligned with the coordinate axes,
which may introduce unnecessary uncertainity.

The translation constraints depend on the overlap assumptions and are all based on
displacements in three orthogonal directions determined by the surface normal (74), the
elongation axis (@;) and the cross product (¢;) of the two:

2 = ﬁd X (_id
T e x

If assumption A4 holds, then all translation constraints are of the form:
(TPm — Pa) € 1(7)

and are not listed further below. (¥ is the isotropic error on the observed point pj).

4.1 Planar Data Patch

We assume that the observed data patch curvatures are low enough that it is classified as
being planar. It might actually be part of, for example, a cylindrical model patch if the
width across the axis were small enough, or if the data segmentation process produced
tessellated surfaces.

We propose below some constraints that can be inferred assuming the planar data
patch is paired with a planar model patch. The rotation constraints are based on aligning
normals and elongation axes. The translation constraints are based on proximity and
distance between the designated points on the surface.

The first rotation constraint relates the surface normals, within the observed angular
error of €, assuming Al:

T T,  Tig > cos(e)
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If A3 holds, we can relate the surface orientations, because the bounding widths may
limit the possible rotations of the planar model patch about the data patch. This constraint
limits the rotation of the model surface in the plane of the data surface, such that it still

fits around the observed data patch:

Let:
wm($) = bounding width (see Figure 2) of model surface
at orientation ¢
wa(¢) = bounding width of the data surface at orientation ¢
0 ={0:VY¢(wn(d — 0) > wi(¢) — 6.} is the set of possible
rotations of the model that can fit around the data
@m = the nominal unit vector in the plane of the model surface

(at orientation ¢,,)

d; = average orientation of @, over ) (at orientation ¢g)

If s1ze(Q1)/2 + B < 7 then:

T@,, - @g > cos(size(N)/2 + )

If more than one interval of angles exists in {1, then each interval creates an independent
alternative constraint. (Note that a more complex constraint could be developed that
limits the range of @, to lying in the plane, rather than as formulated here.)

All translation constraints have the form:
(TPm — Pa) € I(ARy) + I(Bay) + I(Céy) + I(7)

where the constants A, B and C depend on the specific assumptions as given below.
If assumption Al or A2 holds, then the orientation of @, is arbitrary, and is chosen to

correspond with angle ¢4 = 0. Let:
M = ming(wn(9))
N = mazy(wm())

15



Then, the maximum width of the model in orientations compatible with @, is:
U = mazys(wn (@) over ¢4 — ¢ € 0
and the maximum width at right angles is:

V = mazy(wm(d + 7/2)) over ¢g — ¢ €

Asmp. A B C
Al | e/BT+C? | R — (M +wa($4)) — 6u) | R — 3(M +wa(da + 7/2) — bu)
A2 || e/B*+C? (N + wa(da) + ) F(N + wa(da + 7/2) + b.)
A3 | e/B?+C? $(U — wa(¢a) + 6) F(V — wa(da +7/2) + 6u)

We illustrate this rotation constraint with an example. Assume that we have the model
and data patches given in Figure 7. For the sake of simplicity, assume that the figures both
lie in the plane of the paper, so that their surface normals point facing the viewer. The
nominal model direction vector (&, is shown along with the patch width (wn,(0)) assuming
that the vector corresponds with orientation ¢,, = 0. The data patch width (wy(¢J)) is
shown for another orientation ¢y = 7 /4.

A sketch of the two functions wy,(#) and wy(¢) is shown next. Suppose that wn,(0) =
100, wp(7/4) = 50 and wy(r/2) = 30. Let wy(¢s) = 50 and 6, = 0. From a casual
inspection of the two functions,  is approximately [0,%]. This implies that the second

rotation constraint is approximately:

Tay, - Gy > cos(-} + B)

If assumption A4 holds, then a similar constraint can be developed, except where w(®)
refers to the cross-section width about the patch centers. Then, these values imply that the
example above produces the following constraint parameters: M = 100, N = 30, U = 100,
V =50 and hence B = (100 — 50 +0) = 25, C = 3(50 — 15 4+ 0) = 17.5 and A = 30.5¢.

We record the results for matching with non-planar model patches in Appendix A.
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Figure 7: Plane-Plane Constraint Example
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4.2 Cylindrical Data Patch

We assume that the observed data patch curvatures are such that the patch is classified as
cylindrical. It might be part of, for example, a generic model patch if the portion across the
second axis were small enough, or if the data segmentation process produced unexpected
results.

We propose below some constraints that can be inferred assuming the cylindrical data
patch is paired with either a partial or complete cylindrical model patch. The rotation
constraints are based on aligning normals and curvature axes. The translation constraints

are based on proximity and distance between designated points on the surface.

4.2.1 Cylindrical Data Patch - Cylindrical Model Patch

We first consider the constraints derivable assuming that the model patch is cylindrical,
but does not extend fully around the cylinder. The first rotation constraint relates the

curvature axes, within the observed angular error of §:
T@,, - dz > cos(B)

Two independent constraints are generated for the two possible orientations of the elon-
gation axis dy.

A second constraint relates the surface normal vectors, depending on the surface rela-
tionship assumptions (i.e. how much the patches overlap affects how closely the normal’s
can be related). This constraint limits the orientation of the model surface relative to the

cylindrical data surface. If r < 7, the following constraint can be added:
T - 7tg > cos(T)

where:
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Assumption T

Al R — 30 — 304+ €
A2 3(0m +03) + 0+
A3 Y0 —0a) +0 +€

A4 €

The translation constraints depend on the overlap assumptions, given that the data
match must lie somewhere along the cylinder of which the model patch is part. All are
based on displacements in three orthogonal directions determined by the surface normal
(74), the cylinder axis (&@;) and the cross product (¢;) of the two. Then, the position

constraints have the form:
(TPm — Pa + Ena) € I(ARy) + I(Bas) + I(Cea) + I(7)

A=E +¢eV/B?+ C?

where the constants B, C and E depend on the specific assumptions as given below.

Asmp. " B C B
Al || R=1(m+1a+ &) L oy
A2 | lm+la+8) | Esin(3(0m+0d) +0)) | 7 (1 — cos(3(0m + 6a) + )
A3 | fUm—lat8) | Lsin((0n—02) +0)) | 5m(l~ cos(3(0m = 0) +0))

4.2.2 Cylindrical Data Patch - Model Cylinder

Here we assume that the model patch is a complete cylinder. The rotation constraint

relates the curvature axes within the observed angular error of §:
T@,, - @3 > cos(B)

Two independent alternative constraints are generated for the two possible orientations of
the elongation axis ag.
The translation constraints depend on the overlap assumptions, given that the data

patch must lie somewhere along the model cylinder. All are based on displacements in
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three orthogonal directions determined by the surface normal (7), the cylinder axis (@)

and the cross product (¢;) of the two. Then, the position constraints have the form:
= o 1 - - - -
(TPm — Ba + -,;—nd) € I(Afy) + I(Bay) + I(Cé,) + I(A)

where the constants A, B and C depend on the specific assumptions as given below.

Asmp. A B C
Al ||evVB?+C? | R—i(lm+1a+ 6) —sin(e) + Rsin(f)
A2 | eVBT+C?| ilm+lat+&) Lsin(e) + 3(lm + la) sin(B)
A3 || evBT+CF| I(lm—la+&) Lsin(€) — 3(lm + la)sin(B)

=
We record the results for matching with non-cylindrical model patches in Appendix B.

4.3 Conical Data Patch

We now assume that the observed data patch curvatures are such that it is classified as
being conical.

This section gives the constraints derivable assuming the conical data patch is paired
with a conical model patch. The rotation constraints are based on aligning normals and
curvature axes. The translation constraints are based on proximity and distance between
the designated points on the surface.

The first rotation constraint relates the cone axes, within the observed angular error
of B:

TGy, - @y > cos(f)

Here, only one constraint is generated, because the orientation of the cone axis can be
deduced from the data.

A second constraint relates the surface normal vectors, depending on the surface re-
lationship assumptions. This constraint limits the rotation of the model surface around
the conical data surface, and is similar to the cylinder-cylinder constraint, except that the

normals are not diametrically opposed when on opposite sides of the cone. The constraints
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are of the form:

where:

Assumption T
P =1
A2 a{k—l(cos(%(ﬂm +64) + 0+ €) + pZ,)
A3 i—zlq_-i(cos(%(ﬂm —04) +0+€) + pL)
A4 Z;ﬂ%(cos(e) + p%)

The translation constraint is simpler, in that it does not depend on the overlap as-
sumptions, because the tip of the cone is a fixed point deducible from both the model and
data. The constraint is based on displacements in three orthogonal directions determined
by the surface normal (74), the cone axis (@;) and the cross product () of the two. Then,

the position constraint has the form:

vE E

(Tt — Pa + —1lg + d4) € I(Aftg) + I(Bag) + I(Cey) + I()
Kd Pmkd

E=p2+1

where the constants A, B and C are:

A B C
BE_ | &/E | e¢E | &/E , BE
a\/_-E— + Pmid Kd + :‘m Kd + Pmid

We record the results for matching with non-conical model patches in Appendix C.

4.4 Generic Data Patch

We assume that the observed data patch curvatures are such that it is classified as being

generic; that is, it has two non-zero curvatures. The curvatures may be either positive or

21



negative. The data patch might be part of, for example, a cylindrical model patch if the
portion along the axis were small enough that the noise gave the impression of curvature.

Here we give the constraints that can be generated assuming the generic data patch is
paired with a generic model patch. The rotation constraints are based on aligning normals
and curvature axes. The translation constraints are based on proximity and distance
between the designated points on the surface.

There are three rotation constraints that relate the curvature axes and the observed
normal. Because there are two directions of curvature, it is possible for there to be four
distinct orientations for the surface (2 pairings and 2 orientations of the curvature axes) at
approximately 7 /2 rotations about the normal. However, it may be possible to eliminate
two of the pairings by showing that the signs or magnitudes of the corresponding curvatures
are incompatible. In the constraints given below, it is assumed that the pairings have
already been made.

The first constraint relates the surface normal vectors, depending on the surface rela-

tionship assumptions. If 7; < 7, the following constraint can be added:
Ty, - iy > cos(m)

where:

Assumption 1
Al Riim + Riam — 3(01m + 010 + Oz + 024) + €
A2 3(01m + 014) + 3(02m + 024) + 01 + 02 + €
A3 %(01111_01:1)+%(02m_02d)+01+02+€
A4 €

The second constraint relates one curvature axis, depending on the surface relationship

assumptions. If 7, < 7, the following constraint can be added:
T(_ilm . Zim Z COS(Tz)

where:
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Assumption T2
Al Rigm — 3(02m + 024) + Ba
A2 3(03m + 020) + 02+ By
A3 3 (62m — 024) + 02 + By
A4 P

The third constraint relates the other curvature axis, depending on the surface rela-

tionship assumptions. If 73 < m, the following constraint can be added:
T @y, - G2q4 > cos(7s3)

where:

Assumption T3 "
Al Riim — 3(01m + 012) + B2
A2 3(01m + 012) + 01+ By
A3 3(01m — 012) + 01+ B2
A4 P2

The translation constraints depend on the overlap assumptions, given that the data
match must lie somewhere along the generic surface of which the model patch is part.
All are based on displacements in three orthogonal directions determined by the surface
normal (7;) and the two curvature axes (@4, @34). Then, the position constraints have the

form:

(TP — Pa + Diiy) € I(Afiy) + I(Baya) + I(Caaa) + I(5)

where the constants A, B, C and D depend on the specific assumptions as given below.
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Asmp. A B
Al | D+e/BE4C? e
A2 D+ e/B2+C? F in(3(02m + 024) + 02)
A3 || D+ e/B*+C? | 2-sin(3(02m — 024) + 02)
" Asmp. C
Al =
A2 || sin(3(01m + 014) + 01)
A3 || s=sin(5(01m — 014) + 01)
Asmp. " D
Al $G=+ ;}—m-)
A2 L (1 - cos(3(1m + b14) + 01)) + 5= (1 — co5(3(02m + 024) + 02))
A3 (1= c0s(3(01m — 612) + 01)) + u -(1- cos(3(02m — 024) + 02))

We record the results for matching with non-generic model patches in Appendix D.

5 Evaluating The Position Constraints

The constraints presented above hold irrespective of the method used to evaluate them.
However, it is important to show that the constraints can be solved to provide position
estimates for the vision system. This section shows one method for evaluating the con-
straints, but before we do this, we shall discuss some other approaches used for position
estimation.

There are many (mainly statistical) approaches to solving for 3D positions from 2D
and 3D data, based on minimizing an error function of the observed data and transformed
model features. A few examples from the Computer Vision literature follow, although
there are also considerable results from photogrammetry research. From two dimensional
data, Roberts [22] used a heuristic technique based on deriving values of the homoge-

neous coordinate matrix, for perspective projection and assuming point correspondences.

ACRONYM |[4] used symbolic algebra to constrain the range of values that the position
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parameters could take, where the constraints were derived from algebraic relations between
2D image and 3D scene sizes and positions. Lowe [20] used both point and line feature
correspondences, but solved for the positions using an iterative search technique. Har-
alick et al [16] described and demonstrated the performance of several robust statistical
methods for both estimating positions from both two and three dimensional feature point
correspondences.

From three dimensional data, the work of Faugeras and Hebert [8] is highly regarded.
Assuming three dimensional vector and point correspondences, they used an eigenvalue
technique to solve for the quaternion rotation and vector translation, with the desired
transformation minimizing the distance between the model and observed features (e.g.
vectors). Grimson and Lozano-Perez [15] used pairs of model-to-data vector correspon-
dences to directly solve for the rotations (and then clustered the results to reduce error).
The essence of their method is very similar to the approach used in the TV2 module
described below. Ballard and Tanaka |2] described a network-based geometric reasoning
engine. Their implementation used nodes representing values of transformation parame-
ters linking image and model features. In a sense, this is a discrete implementation of the
geometric reasoning embedded in the network processes described below.

The above methods were largely based on independent measurements of point and
vector quantities. Exploiting local geometry can sometimes allow easy determination of
position, such as when using 2D projections of trihedral vertices [18] or coplanar conics
[24]. However, we are interested in the more abstract formulation, represented only as
point and vector correspondences.

Moreover, the constraints presented in Section 4 were based on information extracted
from a single patch correspondence, whereas the other methods require more correspon-
dences. We do not claim that this is better, rather we claim that our method defines
additional constraints that can also be exploited, particularly when reduced information
is available.

There is then the problem of solving the constraints over the intervals to estimate
positions. The most famous method is that used in ACRONYM [4], based on symbolic

algebra, but other methods can also be used (e.g. [23]). We have been using a value
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passing network to solve the constraints [12],[13]. The networks produce tighter bounds
than simply using symbolic algebra and have greatly improved efficiency.

The networks are created from an underlying algebraic description of three-dimensional
geometric relations and transformations. These networks implement the five key visual
geometric reasoning functions: locate (calculate position from model-to-data pairings),
predict (predict data position from model and estimated position), transform (composition
of reference frame transformations), inverse (invert a transformation) and merge (reconcile
two or more transformations) [21]. The construction and evaluation of these networks was
described in [12], but a quick overview is given now.

The basis of the network is the propagation of updated bounds, through functional
units linked according to the algebraic problem specification. A simple example is based
on the inequality:

ALB-C

By the SUP/INF calculus (e.g. [4]), the upper bound of A is constrained by:
SUP(A) < SUP(B) — INF(C)
as are the lower bound of B and upper bound of C:
INF(B) > INF(A) + INF(C) SUP(C) < SUP(B) — INF(A)

Thus, one can use the value of SUP(B) — INF(C) as an estimated upper bound for A,
etc. These relationships are used to create the network for this single inequality, which is
shown in Figure 8. As new bounds on B are computed, perhaps from other relationships,
they propagate through the network to help compute new bounds on A and C.

There are two advantages to the network structure. First, because values propagate,
local improvements in estimates propagate to help constrain other values elsewhere. Sec-
ond, these networks have a natural wide-scale parallel structure (e.g. 1000+) that might
eventually lead to extremely fast evaluation.

For a given problem, the networks can be complicated, particularly since there may be
both exact and heuristic bounding relationships. For example, the network expressing the

composition of two 3D reference frame transformations to give a third contains about 2000
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Figure 8: Small Constraint Network Example

function nodes (of types ‘+°, ‘=%, “*¥*, ¢/, ‘sqrt’, ‘max’, ‘>’, ‘if’, etc.). Though the network
is formulated for parallel evaluation, simulated serial evaluation is also fast, because small
changes are truncated to prevent trivial propagations, unlike other constraint propagation
approaches (e.g. [6]). Convergence is guaranteed (or inconsistency detected) because
bounds can only tighten (or cross) and there must be a minimum change for propagation
to occur.

The creation of the networks is time-consuming, requiring a symbolic analysis of the
algebraic inequalities. Fortunately, there is a natural modular structure arising from the
types of problems encountered during scene analysis, where most geometric constraints are
of the type described above. Hence, it is possible to pre-compile network modules for each
relationship, and merely connect a new instance of the module into the network as scene

analysis proceeds. To date, we have identified and implemented network modules for:

SS - two scalars are close in value

PP - two points are close in location
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VV - two vectors point in nearly the same direction

DOTS3 - the dot product of two 3-vectors exceeds a scalar

DOTS3N - the absolute value of the dot product of two 3-vectors is less than a scalar

UNITS3 - enforcing a unit 3-vector constraint

UNIT4 - enforcing a unit 4-vector constraint

TP - a transformation links a pair of points

TV - a transformation links a pair of vectors

TV2 - a transformation links two pairs of vectors

TT - a transformation maps from one position to a second position
by a third relative position

P2V - a vector can be defined by two points

QW4 - a quaternion is equivalent to an axis and an angle

For example, the UNIT8 module is defined by the following constraints between the

components of a vector (pz, py, Pz):

pi=(1-p}—p})/p

| pi |< /1 —p}— 1}

| pi < 1.7821— | pj | — | s |
| pi |< 1.4143— | p; |
|pi|<1

The first two relationships are exact, and the last three give correct, but weaker bounds on
the given quantities. The weaker bounds are useful because (1) it is not always possible for
the network to use the exact bounds (e.g. when dividing by an interval containing zero)
and (2) the initial bounds are sometimes so unconstrained that the weaker relationships
provide better bounding. Other weaker bounds and formulations of the relationships are
possible, and could be included in a network module.

We now include a simple example of network use. Suppose subcomponents B and C are

rigidly connected to form object A. Given the estimated positions of the subcomponents in
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A Ty
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Figure 9: A Simple Geometric Reasoning Network

the global coordinate system, T,_p and T;_¢, and the transformations between the object
and subcomponent coordinate systems, T4_p and T4_¢, then we can estimate the global
object position, T},_4, using two instances of the “T'T” module listed above. Figure 9 shows
this network. Notice that each subcomponent gives an independent estimate of T;_4, so
that the network keeps the tightest bounds on each component of the position. Any tighter
resulting bounds then propagate back through the modules to refine the subcomponent

position estimates.

6 Performance Analysis Of The Constraints

A great many experiments can be set up to use the constraints presented above, but it is
not useful to demonstrate all of them. This section will present results from the four main

patch pairing relationships:
1. planar model patch to planar data patches,
2. cylindrical model patch to cylindrical data patches,
3. conical model patch to conical data patches and

4. generic model patch to generic data patches
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for both Assumptions A2 (overlap) and A3 (data subset of model). These are justified
because the segmentation and model-matching should correctly extract and pair most
data patches, otherwise it is unlikely that recognition can proceed. It is also useful to
know the “best case” performance. Assumption A2 often occurs with man-made parts,
where all features are regular and hence data features are often a subset of the data present.
Assumption A3 often occurs with more natural objects, where the data patch need not be
contained in the model patch, but will usually have some overlap.

The experiments will involve the estimation of the reference frame of a single data
patch, given its observation, and applying the constraints given in Section 4.

The experiments start with a known model surface normal (7, = (0,0, —1)), axis (@m
or @, = (1,0,0) for the generic patch) and central point (g, = (0,0,0)).

We then randomly pick a rotation quaternion (distributed uniformly over the 4-dimensional
unit sphere) and a translation (each component distributed uniformly over the range £100).
Using this position (Pi..), we transform the input features to derive some scene features:
n,, a, and p,.

The scene features are then corrupted with randomly generated noise to generate the

observed features: 74, @3 and 74. The corruptions were uniformly distributed subject to:

— —

1y - g > cos(€)
G+ 34 > cos(§)
(s — Pa) € I1(4)

The observed features were then paired with the modeled features, to derive the geo-
metric position constraints, based on the results of Sections 4.1, 4.2.1, 4.3 and 4.4. The
constraints depended on the assumptions made and the extent of the patches. Here, we
used assumptions A2 and A3, as discussed in the experiment details below.

The constraints were input into a geometric reasoning network [12] set up for evaluating
these constraints. Figure 10 shows the network for the plane-plane, cylinder-cylinder

and cone-cone experiments described below. (The generic-generic network is similar, but

slightly more complicated.) This network implements a SUP/INF interval bounding of all
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Figure 10: Geometric Reasoning Network For Estimating Position

components of the position, as a function of the intervals bounding the inputs. The inputs

for this network are:

e each component of the model vectors fi,,, @, and p,, extended to form intervals with

width 0.0001 (a small value, as each quantity needs to be an interval)
e the data vectors fi; and @; extended to form intervals with width 0.0001,

e the estimated position p; extended to form a larger interval according to the trans-

lation constraints given in Section 4 and
e the rotation dot product constraints dot,, and dot, given by the rotation constraints
Th, - g > dot,
Ta,, - a; > dot,

The main component of the network is the “T'V2” module near the center. This module
relates the input and output vectors according to the position P (near the bottom left)

and is defined and created from the algebraic relationships between the input and output
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vectors. Similarly, the translation component of B is estimated by the “TP” module that
relates the model and observed feature points. There are also two “DOT3” modules that
implement the rotation dot product constraints. The vectors #; and d; are intermediate
results. Finally, there are several “UNIT3” and “UNIT4” modules that enforce unit 3-
vector and 4-vector constraints on the various vectors.

This sets up the network for estimating the position P. We then evaluate the network
and extract the estimate position.

The relationship between the true position and the estimated position provides the sta-
tistical output described below. All the reported results below are based on 100 randomly
generated trials of the particular experiment. The data from the same 100 trials was used
for each value of the percentage overlap parameter, to compare the results.

The first experiment is for the model plane - data plane case. The following parameters

were used (where p is a percentage parameter described below):

Model Value Data Value Data Uncertainity
wn(9) Nwdd)  pwmld) | & 1.0
Tom (0,0,-1) | 7ig transformed | € 0.1
Gm (1,0,0) | @4 transformed | 8 0.1
D (0,0,0) | P4 transformed | « 1.0

¥ _ the test figure was a rectangle of length 100 and width 30

The experiment was run using assumptions A2 and A3 and the parameter p was allowed
to vary from 1.0 to 0.1 in steps of 0.1. This allowed the exploration of the constraint
obtainable because the patch was limited in its ability to rotate relative to the model
patch. In general, we can see below that as the size of the data patch tends to zero,
the two assumptions give nearly the same results, as is expected (because the effective
translation constraints become the same).

In all experiments, the true object position was contained within the estimated interval
position, so the constraints appear to be correct. There is then the question of how tight
the constraints are, and this is the main point of the experiments.

Five statistics were extracted from the experiments:
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1. the number of times that the rotation had at least two independent constraints and

hence was fully constrained (though subject to error).

2. the mean angle between the input and output quaternion vectors (a measure of how

well the rotation was estimated, and ideally should be zero).

3. the mean width of the interval of possible values for a component of the rotation
quaternion (a measure of how tight the estimates are). The geometric mean is used

because it is a measure of the volume of the uncertainity.

4. the mean distance between the input and estimated translation (a measure of how

well the translation was estimated, and ideally should be zero).

5. the average width of the interval of possible values for a component of the translation
(a measure of how tight the estimates are). The geometric mean is used again because

it is a measure of the volume of the uncertainity.

More precisely, the error measures are defined by:

Let:
Angle=+ 3N, cos~(doiqoi + daiqus + d2iqei + dsigs:)
Quat Width = (& SN, width(Do:) * width(Dy) * width(Ds;) * width(Ds))}
Trans = % YN (b — v26)? + (Eyi — vyi)?2 + (i — vai)?
Trans Width = (& XN, width(Ty) * width(T:) * width(Ty))3
where

gji is the jt* component of the i** true scalar rotation quaternion g
d;; is the mean value of the j** component (Dj;) of the
ith estimated rotation interval quaternion D;
zij; is the unit-quaternion normalized value of dj;
t,; is the mean value of the x-component (Ty;) of the i* estimated

translation interval vector T;
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Table 1: Plane-Plane Parameter Estimation Statistics for Assumption A3

" p (%) | Constr. | Angle | Quat. Width | Trans. | Trans. Width |

100 100} 0.23 0.69 1.01 3.82
90 100 0.27 0.74 1.01 12.74
80 100 | 0.31 0.77 1.01 22.76
70 100 | 0.41 0.89 1.01 32.80
60 100 | 0.46 0.96 1.01 44.b62
1¢) 100 | 0.83 1.04 1.01 56.83
40 100 | 0.77 1.26 1.01 72.26
30 100 1.07 1.48 1.01 92.86
20 0 1.42 1.62 1.01 100.28
10 O 1.42 1.62 1.01 107.20

Table 2;: Plane-Plane Parameter Estimation Statistics for Assumption A2

[» i) [Constr. [ Angle [ Quat. Width | Trans. [ Trans. Width ||

100 0] 1.42 1.62 1.01 182.89
90 O 1.42 1.62 1.01 176.03
80 O 1.42 1.62 1.01 169.17
70 O] 1.42 1.62 1.01 162.31
60 O 1.42 1.62 1.01 165.44
1) 0| 1.42 1.62 1.01 148.57
40 O 1.42 1.62 1.01 141.69
30 0| 1.42 1.62 1.01 134.81
20 O 1.42 1.52 1.01 127.92
10 0| 1.42 1.62 1.01 121.02

vz is the x-component of the i** true translation

width(X) is the width of scalar interval X

The results of the experiment for assumption A3 are shown in Table 1, where the angle
is expressed in radians and the translation is in arbitrary units. As the shrinkage percentage
was increased, the rotation and translation errors increased, as expected, because the model
patch was freer to move about the data patch. At 20% there was a dramatic increase in
the errors, because the patch size was small enough that it could rotate freely within the

model patch, and hence only one direction vector was effectively constrained (the surface
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normal). The mean translation error was constant and mainly resulted from the isotropic
error on the observed central point.

When assumption A2 was used, the results in Table 2 were obtained. Here, only one
rotation constraint was obtained (that of the aligned normals). This explained the con-
stant large rotation error. As before, the translation error was constant and small. The
translation error range started larger, because of the larger area over which the model sur-
face could move and still have overlap with the data surface. However, unlike the previous
case (i.e. using assumption A3), as the percentage of the observed surface decreased, the
translation error also decreased, because the model surface was required to overlap with
the smaller data surface.

When the experiments were run for the cylinder-cylinder case, the experimental setup
was similar to the plane-plane case, except here the axis is always well constrained, whereas
the normal is not so. A model cylinder patch of length 100, radius 20 and angular width
1.0 was used. The linear length and angular width were reduced by fixed percentages and

the position estimated. The error tolerances were:

Model Value Data Value Data Uncertainity
lm 100 | l4 100p | & 1.0
0., 1.0 | 04 10p|o 0.1
Kom 0.05 | not used not used | not used not used
im  (0,0,-1) | g transformed | € 0.1
am (1,0,0) | @y transformed | S 0.1
Pm  (0,0,0) | Ba transformed | ~ 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
3 and 4.

Under assumption A3, the surface normal was progressively less constrained, whereas
the axis was always estimated well. Since the normal was always partly constrained,
this meant that there was no catastrophic breakdown in rotation estimation as the patch

became small, but the mean and interval errors increased smoothly as the data patch size
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Table 3: Cylinder-Cylinder Parameter Estimation Statistics for Assumption A3

||p (%)| Constr. lAngle lQuat. Width ITrans. ITrans. Width||

100 100 | 0.36 0.79 1.02 b5.76
90 100 | 0.42 0.89 1.03 12.26
80 100 | 0.46 0.94 1.04 18.64
70 100 | 0.48 0.97 1.06 25.02
60 100 | 0.60 1.02 1.10 31.40
b0 100 | 0.b66 1.07 1.16 37.79
40 100 | o0.61 1.12 1.26 44.18
30 100 | 0.64 1.17 1.37 50.66
20 100 | 0.69 1.22 1.B63 66.95
10 100 | 0.77 1.26 1.72 63.33

Table 4: Cylinder-Cylinder Parameter Estimation Statistics for Assumption A2

[» (%) [Constr. [ Angle [ Quat. Width [ Trans. | Trans. Width ||

100 100 | 1.13 1.48 5.63 132.41
90 100 | 1.12 1.48 6.10 126.27
80 100 1.11% 1.47 4.68 120.10
70 100 | 1.09 1.47 4.27 113.89
60 100 | 1.07 1.46 3.88 107.64
1) 100 | 1.04 1.44 3.561 101.38
40 100} 1.01 1.42 3.16 95.08
30 100 | 0.99 1.41 2.82 88.77
20 100 | 0.956 1.38 2.561 82.42
10 100 0.84 1.32 2.22 76.08
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decreased.

Under assumption A2, the rotation was still always constrained, though not as well as
under assumption A3, because the axis is observable and the normal is partly constrained.
Here, the rotation errors smoothly decreased as the data patch became smaller, (as this
reduced the allowable range of the surface normal), but were worse than under assumption
A3. The translation errors decreased - as the smaller patch sizes meant a smaller range of
allowable positions, given the overlap assumptions.

When the experiments were run for the cone-cone case, the experimental setup was
similar to the cylinder-cylinder case. The linear length and angular width were reduced

by fixed percentages and the position estimated. The error tolerances were:

Model Value Data Value Data Uncertainity
I 100 | I4 100p | § 1.0
[/ 1.0 | 64 1.0p | o 0.1
Pm 0.333 | not used not used | not used not used
Ko, 0.03 | kg4 0.03 | 5.0
fim  (0,0,-1) | 7iq transformed | € 0.1
dn (1,0,0) | @4 transformed | B 0.1
Pm  (0,0,0) | By transformed | 4 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
5 and 6.

Under assumption A3, the surface normal was progressively less constrained, whereas
the axis was always estimated well and produced results comparable to the cylinder-
cylinder case shown in Table 3. Since the normal was always partly constrained, this
meant that there was no catastrophic breakdown in rotation estimation as the patch be-
came small. Because the cone tip could be inferred from the normal, axis and observed
curvature, the translation estimates were independent of patch size. The tip position error

was moderate (largely because of errors in the observed curvature).
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Table 5: Cone-Cone Parameter Estimation Statistics for Assumption A3

[» (%) ] Constr. [ Angle | Quat. Width | Trans. | Trans. Width |

100 100 | 0.31 0.76 | 11.11 53.83
90 100 | 0.41 0.88 | t1i.11 53.83
80 100 | 0.45 0.92 | 11.11 53.83
70 100 | 0.562 0.99 | 11.11 53.83
60 100 | 0.89 1.03 11.11 53.83
1¢) 100 | 0.61 1.06 | 11.11 b63.83
40 100 | 0.64 1.10} 11.11 53.83
30 100 | 0.66 1.14 ) 11.11 63.83
20 100 | 0.70 1.18 | 11.11 63.83
10 100 | 0.76 1.21 | 11.11 53.83

Table 6: Cone-Cone Parameter Estimation Statistics for Assumption A2

[» (% [cConstr. [ Angle [ Quat. Width | Trans. | Trans. Width |

100 100 | 1.07 1.44 ] 11.11 53.83
90 100 | 1.06 1.43 | 11.11 53.83
80 100 | 1.02 1.41 ] 11.11 b3.83
70 100 1.01 1.40} 11.11 63.83
60 100{ 0.99 1.39| 11.11 53.83
50 100 [ 0.97 1.37 | 11.11 53.83
40 100 | 0.94 1.36| 11.11 53.83
30 100 | 0.91 1.32] 11.11 63.83
20 100 0.87 1.30 | 11.11 53.83
10 100 | 0.82 1.26 | 11.11 53.83
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Under assumption A2, the surface normal was still always constrained, though not as
well as under assumption A3. Here, the rotation errors smoothly decreased as the data
patch decreased, but were worse than under assumption A3. Results were comparable to
the cylinder-cylinder case errors shown in Table 4. As under assumption A3, the translation
errors were constant.

When the experiments were run for the generic-generic case, the experimental setup
was similar to the plane-plane case, except in one respect: a second curvature axis was
estimated, and this allowed the introduction of two additional TV2 rotation constraint
modules into the network (altogether pairing: 7y & @4, g & @24 and @14 & Tyq).

As before, the angular widths were reduced by fixed percentages and the position esti-

mated. The error tolerances were:

Model Value Data Value Data Uncertainity
O1m 1.0 | 614 1.0p | o1 0.1
O2m 1.0 | 64 1.0p | 03 0.1
K1im 0.05 | not used not used | not used not used
Kom 0.10 | not used not used | not used not used
fim  (0,0,-1) | 7ig transformed | € 0.1
Gim  (1,0,0) | Gua transformed | B, 0.1
Gy (0,1,0) | @24 transformed | B 0.1
Pm  (0,0,0) | By transformed | 4 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
7 and 8.

As with the cylinder-cylinder case under assumption A3, the surface normal was pro-
gressively less constrained, whereas the axis was always estimated well. The third axis
constraint did not produce better rotation estimates than with the cylinder-cylinder case,
because here the axis correspondences could not be made so accurately. The translation
estimates also increased smoothly, but were better than those of the cylinder case, largely

because of the different radii and the curved surface allowed less spatial separation than
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Table 7: Generic-Generic Parameter Estimation Statistics for Assumption A3

[» (%) [ Constr. [ Angle [ Quat. Width | Trans. | Trans. Width |

100 100 | 0.40 0.80 0.99 b5.29
90 100 | 0.48 0.91 1.01 6.98
80 100 | 0.b54 1.00 1.06 8.69
70 100 | 0.64 1.13 1.12 10.43
60 100 ] 0.67 1.21 1.24 12.18
10) 100 | 0.7b6 1.30 1.39 13.96
40 100 | 0.84 1.38 1.60 16.74
30 100 | 0.94 1.45 1.86 17.83
20 100 | 0.98 1.48 2.16 19.33
10 100 | 1.06 1.562 2.560 21.12

Table 8: Generic-Generic Parameter Estimation Statistics for Assumption A2

[ (%) [ constr. [ Angle [ Quat. Width | Trans. | Trans. Width |

100 100 | 1.13 1.64 8.37 39.29
90 100 | 1.13 1.63 7.71 37.83
80 100 | 1.13 1.63 7.08 36.32
70 100 | 1.13 1.62 6.47 34.77
60 100 | 1.13 1.62 5.87 33.18
60 100 | 1.13 1.61 5.30 31.54
40 100 | 1.13 1.61 4.76 29.86
30 100 | 1.13 1.60 4.25b 28.16
20 100 | 1.12 1.69 3.76 26.42
10 100} 1.11 1.68 3.31 24.67

along the cylinder.

Under assumption A2, the errors again smoothly decreased as the patch size decreased,
but were worse than under assumption A3, as was expected. The rotation mean error and
range were roughly constant, whereas the translation error and range decreased substan-

tially as patch size decreased.

7 Examples Of Use

This section shows some examples of the use of the constraints in the context of the

IMAGINE II system [10], currently under development. The main input for this system is
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Figure 11: Cosine Shaded Range Data Of Test Part

dense range data, such as that for the block shown in Figure 11.
This data is segmented into a set of surface patches based on the signs of the principal

curvatures. The main steps of the process are:

1. Detection of depth discontinuities,

2. Smoothing (but not across the depth discontinuities),

3. Detection of orientation discontinuities,

4. Calculation of mean (H) and Gaussian (K) curvatures,

5. Curvature sign-based classification of local surface shape,

6. Erosion and expansion to remove small patches and connect fragmented features and
7. Extraction of patches based on continuity and shape classification.
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Figure 12: Surface Patches Extracted From Object

Figure 12 shows the surface patches extracted for the data shown in Figure 11

Descriptions of the surface patches are then produced, including:

Surface areas and curvatures,

Center-of-mass and surface normal at that point

Boundary of patch

Relative sizes and orientation

Adjacency

The main use of the descriptions is in the model selection and position calculation processes.
The object models are defined using the SMS modeling language [9]. A synthesized

image of the model of the block whose data was shown in Figure 11 is seen in Figure 13.
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Figure 13: SMS Model Of Object
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Model selection {11],{13] is based on an evidence accumulation process, where evidence
comes from: (1) the degree to which data descriptions satisfy expected properties, (2)
component, class and generic relationships, (3) general associations and (4) competitive
inhibition. For this scene, the surface model patches selected for each data patch was the
correct model only.

These model invocations drive the model-matching and position estimation process.
The model-matching process is still under development, but works with polyhedral objects.
It is at this point that the position constraints are generated, according to the theory
developed in this paper (only some of the constraints have been implemented so far and
some simplifications are used). These constraints are then input to the network-based
geometric reasoning process to resolve the constraints.

For this scene, the extracted properties of the center data patch were:

pa = (-1.0,3.0, 900.5)

A, = (-0.0017, 0.0092, -0.9999)

g = (0.1861, -0.9825, -0.001)

¢y = (-0.9825,-0.1861, 0.0034)
and the model properties were:

Pm = (35.4,354,0)

fim = (0,0,-1)

1

= (0.7071, 0.7071, 0)

&, = (0.7071,-0.7071, 0)
Figure 14 shows the graphs of w,,(¢) and wy(¢). From this, we extract ¢4 = 0 (arbitrary

choice), ¢, = 0.78 and @ = {—0.87---—0.53}. (Note that there are four possible rotations
compatible with the four-way rotational symmetry and this is just one of them).

Other parameters are:
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Figure 14: w versus ¢ For Model And Data

€ = 0.02
v = 1.0

B = 0.02
U = 100
|4 = 100
wa(da) = 96.7
wa(da+2I) = 959
A = 0.07
B = 2.2

C = 2.6

These values were used to derive the constraints described in Section 4.1 and were input

into the network shown in Figure 10. Using this network, the evaluated position was:

Rotation quaternion:

High: (0.563,0.068,0.066,-0.828)
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Figure 15: Estimated Position Of The Top Patch

Low: (0.374,-0.070,-0.072,-0.927)

Mean: (0.464,-0.006,-0.003,-0.878)
Translation vector:

High: (16.233,58.130,912.048)

Low: (-12.7567,28.611,888.020)

Mean: (1.738,43.370,900.034)

Using the mean estimated rotation and translation, a synthesized image of the model patch
is seen in Figure 15, where it is drawn on top of the range data. There is some drift from
the true position, but this is a position compatible with the position constraints given
above. (It must be said that all positions compatible with the constraints are generated,

but not all positions in the range of estimates satisfy all constraints, because this method

of solving the constraints is sub-optimal.)

These position estimates were based on a limited set of constraints obtainable from

a single patch. When multiple patches and constraints derivable from pairs of patches
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Figure 16: Estimated Position Of Whole Object

are used (e.g. [15]),better results occur. Figure 16 shows the model for the whole block
superimposed on the raw data. Note that alignment is good enough that only a few data
pixels are seen around the edge of the projected model. While the correspondence is quite
good, the only rotation constraints used here were those on the patch normals.

We are still implementing the model matching for curved surfaces, but Figure 17 shows
(a) cosine shaded range data for a head and (b) the superposition of a face model on the
data, where the position of the face was estimated by the network technique using only

surface normals and central points (patch correspondences were determined by hand).

8 Discussion

The paper identified several geometric constraints for estimating surface positions, given
information about the shapes of the patches and the relationships between the model and
data patches. The constraints were specified for what we felt were the most important
patch shapes and model-to-data relationships. The experiments of Section 6 showed both

that the constraints are valid, and how well they perform and the demonstration of Section
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Figure 17: Estimated Position Of Face

7 showed how they can be used in a model-based vision system.

We would like to now discuss some of the implications of the constraints and experi-
ments.

For simplicity and uniformity, we mainly used properties from a width bounding of the
patches. Clearly, there are some boundary shapes (such as with a long, narrow protrusion)
where this uniform bounding loses information. Other types of bounding could be devel-
oped; however the use of the width did allow a precise statement of the range of allowable
rotations. Moreover, most of the patch types currently used in our scene analysis are fairly
compact, so this bounding approach is appropriate.

We considered only four generic model-to-data patch relationships. Other relationships
undoubtedly exist, especially in restricted scenes, and constraints similar to the above can
be specified.

It is possible that tighter constraints could be developed for the cases. For exam-
ple, the position constraints generally treated the three axis directions independently, and

then transformed the bounds relative to these to bounds in the three coordinate direc-
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tions. There is likely to be some dependence between the factors, allowing tighter position
estimates.
The estimation of the patch orientation is not always accurate. This stems from three

problems:

1. the axis constraints are not particularly strong, so the overall orientation is dramat-

ically affected,

2. the TV2 rotation estimation module is not particularly effective when estimating

rotations from inputs with substantial variation and

3. each stage of the TV2 rotation estimation process increases the size of the output

intervals, so that modest errors are amplified in the output.

The result of these problems is that there are many rotation estimates where the precise
direction of the rotation cannot be determined (i.e. determined to be § or —g) and hence
the output rotation intervals are large.

It is our belief that the position constraints from individual patches are generally weak.
While some features are strong and reliable, such as the normals on planar surfaces or
curvature axes on strongly curved surfaces, many other direction vectors are weak, and
do not greatly constrain object position. Work in progress shows that using constraints
from pairs of surfaces (e.g. two normals) gives better position estimates. For example,
the vector between two distant, highly curved features gives much more reliable data than
the surface normals on either. Adding a third vector also considerably strengthens the
estimation process, because the results affect each other by value propagation.

Though the network-based constraint satisfaction process may not be ideal, the position
constraints presented in this paper hold, irrespective of the process used to estimate the

position parameters from the constraints.

Acknowledgements

This work was funded by the University of Edinburgh. I’d like to thank M. Cameron-Jones,

J. Hallam, H. Hughes and M. Trucco for suggestions with the text and work.

49



Bibliography

1. G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,

London, 1983.

2. D. H. Ballard, H. Tanaka, “Transformational Form Perception in 3D: Constraints,
Algorithms, Implementation”, Proc. 9th Int. Joint Conference on Artificial Intelli-
gence, pp 964-968, Los Angeles, 1985.

3. P. J. Besl, “Surfaces in Early Range Image Understanding”, PhD Dissertation, Elec-
trical Engineering and Computer Science Department (RSD-TR-10-86), University
of Michigan, 1986.

4. R. A. Brooks, “Symbolic reasoning among 3-D models and 2-D images”, Artificial

Intelligence, Vol 17, pp. 285-348, 1981.

5. L. D. Cai, “Scale-Based Surface Understanding Using Diffusion Smoothing”, Sub-
mitted PhD Thesis, Department of Artificial Intelligence, University of Edinburgh,
1990.

6. E. Davis, “Constraint Propagation with Interval Labels”, Artificial Intelligence, Vol
32 (3), pp281-331, 1987.

7. H. F. Durrant-Whyte, “Uncertain geometry in robotics”, IEEE J. on Robotics and
Automation, vol 4(1), pp 23-31, 1988.

8. O. Faugeras, M. Hebert, “A 3-D Recognition and Positioning Algorithm Using Ge-
ometrical Matching Between Primitive Surfaces”, Proc. 8th Int. Joint Conf. on

Artificial Intelligence, Karlsruhe, pp 996-1002, 1983.

9. R. B. Fisher, “SMS: A Suggestive Modeling System For Object Recognition”, Image
and Vision Computing, Vol 5, No 2, pp. 98-104, 1987.

10. R. B. Fisher, “The Design of the IMAGINE II Scene Analysis Program”, in Frisby and
Mayhew (eds), 3D Model Recognition from Stereoscopic Cues, MIT Press, forthcom-

50



11.

12.

13.

14.

15.

16.

17.

18.

19.

ing. See also Univ. of Edinburgh, Dept. of Artificial Intelligence, Working Paper
211, December 1987.

R. B. Fisher, From Surfaces to Objects: Computer Vision and Three Dimen-

sional Scene Analysis, John Wiley and Sons Ltd, Chichester, 1989.

R. B. Fisher and M. J. L. Orr, “Solving Geometric Constraints in a Parallel Network”,
Image and Vision Computing, Vol 6, No 2, 1988.

R. B. Fisher, “Model Invocation for Three Dimensional Scene Understanding”, Proc.

10th Int Joint Conf. on Artificial Intelligence, Milan, pp 805-807, 1987.

R. B. Fisher and M. J. L. Orr, “Experiments with a Network-Based Geometric
Reasoning Engine”, Proc. 11th Int Joint Conf. on Artificial Intelligence, Detroit, pp
1623-1628, 1989,

W. E. L. Grimson, T. Lozano-Perez, “Model-Based Recognition and Localization
from Sparse Range or Tactile Data”, International Journal of Robotics Research,

Vol. 3, pp. 3-35, 1984.

R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, M. Kim, “Pose Estimation

from Corresponding Point Data”, in Freeman (ed), Machine Vision for Inspection

and Measurement, Academic Press, pp 1-84, 1989.

R. Hoffman, A. Jain, “An Evidence-Based 3D Vision System For Range Images”,
Proceedings 1st IEEE International Conference on Computer Vision, pp. 521-525,
1987.

R. Horaud, “Combining Image and Spatial Reasoning for Model Retrieval”, Proc.
7th European Conf. on Artificial Intelligence, Brighton, pp 529-538, 1986.

Z. Q. Li, “A Curve Analysis Approach to Surface Feature Extraction From Range
Data”, Proc. International Workshop on Machine Intelligence and Vision, Tokyo,
April 1989.

51



20. D. H. Lowe, “Perceptual Organization and Visual Reconstruction”, Kluwer Academic

Publishers, Boston, 1985.

21. M. J. L. Orr and R. B. Fisher, “Geometric Reasoning for Computer Vision”, Image
and Vision Computing, Vol 5, No 3, pp 233-238, 1987.

22. Roberts, L. G., “Machine Perception of Three-Dimensional Solids”, in J. T. Tip-
pett, (ed), Optical and Electro-Optical Information Processing, MIT Press, Ch 9,

Cambridge, Massachusetts, pp159-197, 1965.

23. E. Sacks, “Hierarchical Inequality Reasoning”, TM 312, MIT Laboratory for Com-

puter Science, 1987.

24. A. Zisserman, C. Marinos, D. A. Forsyth, J. L. Mundy, C. A. Rothwell, “Relative
Motion and Pose from Invariants”, Proc. 1st British Machine Vision Conference,

Oxford, pp 7-12, 1990.

A Non-Planar Model Patches Paired with Planar Data
Patches

A.1 Planar Data Patch - Model Cylinder

This case assumes that the observed data surface has a low curvature or has been tesselated.
In any case, the scene analysis program has decided that the data surface should be
paired with a cylindrical model feature. One characteristic of this case is that there is no
curvature-based constraint on the orientation of the data axis about the complete cylinder.
Another characteristic is that the origin of the model feature lies on its axis, rather than
on its surface.

The only rotation constraint is given by the elongation of the patch, when compared
to the axis of the cylinder. If A3 holds, we can relate the model and data elongation axes,
within the observed angular error of 8. This constraint limits the rotation of the model
surface in the plane of the data surface, such that it still fits around the observed data

patch:
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Let:

wm (@) = boundary width (see Figure 2) of the flattened model
surface at orientation ¢

wq(¢) = boundary width of the data surface at orientation ¢

Q= {0:V¢(wm(p — 0) > wa(¢) — b.)} is the set of possible
rotations of the model that can fit around the data

@, = the vector in the flattened model surface corresponding to the
cylinder axis (at orientation ¢,,)

@; = average orientation of @, over {1 (at orientation ¢,)
If size(2)/2 + B < 7 then:

Ty, - @q > cos(size()/2 + B)

If more than one interval of angles exists in {1, then each interval creates an independent

alternative constraint.

The translation constraints have the form:

- - 1 — — P d g =
(TPm — Pa+ ;—nd) € I(Ary) + I(Bay) + I(Céea) + I(7)

m

where the constants A, B and C depend on the specific assumptions as given below. Let:
M = ming(wn(d))

N = mazy(wm(d))
U = mazy(wm(P)) over dpa — ¢ € N

V = mazy(wn (¢ + 7/2)) over ¢g — ¢ € 0
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Asmp. A

B C

Al E\/B2+02 R—-lz-(M-l-wd((}Sd)) —5(.0) R—%(M+wd(¢d+

'”/2) - 5w)

A2 [ eVBT+CT| (N +wi(a) + bu)

LN + wa(¢a + 7/2) + 6.)

A3 eV B? + C? %(U—wd(qbd) +5w)

3V —wa(da + 7/2) + bu)

A.2 Planar Data Patch - Cylindrical Model Patch

This case exploits the plane-plane case of Section 4.1, but uses some substitutions from

the cylindrical model features. The assumption is that the data is cylindrical, but noise

has caused it to appear to be planar. This means that the curvature axis is not inferred,

so only the boundary constraints can be used. The following substitutions are used:

Model Cylindrical Patch Feature

Corresponding Plane Model Feature

-
Qpm

-

am

W (#)

. )

A.3 Planar Data Patch - Model Cone

This case exploits the plane-plane case of Section 4.1, only using some substitutions from

the conical model features. The assumption is that the data is conical, but noise has caused

it to appear to be planar. This means that the curvature axis is not inferred, so only the

boundary constraints can be used. The following substitutions are used:

Model Cone Feature

Corresponding Plane Model Feature

Gpm

=

am

wWm ($)

wWm (4)

|

A.4 Planar Data Patch - Generic Model Patch

This case exploits the plane-plane case of Section 4.1, only using some substitutions from

the generic model patch features. The assumption is that the data is generic, but noise
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has caused it to appear to be planar. This means that the curvature axes are not inferred,

so only the boundary constraints can be used. The following substitutions are used:

Model Generic Feature | Corresponding Plane Model Feature

—

-
Qpm A

wm () wm ()

B Non-Cylindrical Model Patches Paired with Cylin-
drical Data Patches

B.1 Cylindrical Data Patch - Planar Model Patch

This case exploits the plane-plane case of Section 4.1, assuming that the observed data
cylindrical patch is a noise-corrupted planar patch. The data observations taken for the
cylindrical patch are not directly usable for the planar patch, so the flattened boundary is

used instead. The following substitutions are used:

Data Cylindrical Patch Feature | Corresponding Plane Data Feature
Bpa G
wa(9) wa(4)
b )]
Bu Y

B.2 Cylindrical Data Patch - Model Cone

If we could not estimate the cone’s rate of radius change, we could use the reduced con-
straints by treating it as if it were a cylinder. The following substitutions are needed for

using the constraints of Section 4.2.1:
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Model Cone Feature | Corresponding Cylinder Feature
(Kmazm + Kminm) /2 Km
@m [
Om, Om
lm lm

B.3 Cylindrical Data Patch - Generic Model Patch

If we could not estimate the generic patch’s second curvature magnitude, we could use the
reduced constraints by treating it as if it were a cylinder. The following substitutions are
needed for using the constraints of Section 4.2.1. Here there are two possible substitutions

for the two axes.

Model Generic Feature (¢ = 1 or 2) | Corresponding Cylinder Feature
Kim Km
i A
Oim Om
W(3—i)m lm

C Non-Conical Model Patches Paired with Conical
Data Patches

C.1 Conical Data Patch - Planar Model Patch

This case exploits the plane-plane case of Section 4.1, assuming that the observed conical
data patch is a noise-corrupted planar patch. The data observations taken for the conical
patch are not directly usable for the planar patch, so the flattened boundary is used in-

stead. The following substitutions are used:
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Data Cone Feature | Corresponding Plane Data Feature
Gpd dq
wa($) wa(4)
b &
B g

C.2 Conical Data Patch - Model Cylinder

We assume that noise has caused a portion of a cylinder to be observed as conical patch.

The following substitutions are used in the constraints of Section 4.2.2:

Data Cone Feature | Corresponding Cylindrical Patch Feature
ay ay
la Iy
B B
8 &

C.3 Conical Data Patch - Cylindrical Model Patch

We assume that noise has caused a cylindrical patch to be observed as conical. The fol-

lowing substitutions are needed for using the constraints of Section 4.2.1:

Data Cone Feature | Corresponding Cylindrical Patch Feature
dq Qg
04 04
I la
B
6 &
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C.4 Conical Data Patch -

We assume that noise has caused a generic patch to be observed as conical. Because we
cannot align the features properly, we treat this case as if it were a cylinder-cylinder case.
The two curvatures of the generic patch mean that two possible substitutions are allowed,

but one might be eliminated because of incompatibility of curvature signs or magnitudes.

Generic Model Patch

The following substitutions are needed for using the constraints of Section 4.2.1:

Model Generic Feature (i = 1 or 2) | Corresponding Cylindrical Feature

Kim Km

Bim G

Oim Om

W(s—i)m lm

Data Cone Feature | Corresponding Cylindrical Feature

aq aq
04 04
l lag
) o
B B
o o

D Non-Generic Model Patches Paired with Generic

Data Patches

D.1 Generic Data Patch -

This case exploits the plane-plane case of Section 4.1, assuming that the observed generic
data patch is a noise-corrupted planar patch. The data observations taken for the generic

patch are not directly usable for the planar patch, so the flattened boundary is used in-

Planar Model Patch

stead. The following substitutions are used:
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Data Generic Feature | Corresponding Plane Data Feature
pd o
wa(®) wa(¢)
b &
B B

D.2 Generic Data Patch -

Perhaps a cylinder was observed as a generic patch because of noise, but we use constraints

derived from treating it as if it were

for using the constraints of Section 4.2.2. There are two possible substitutions for the two

generic patch axes.

Model Cylinder

a cylinder. The following substitutions are needed

Data Generic Feature (¢ = 1 or 2) | Corresponding Cylinder Feature
i ay
W(s-i)d la
B B
6; )]

D.3 Generic Data Patch -

Here, a cylindrical patch was observed as a generic patch because of noise, but we use
constraints derived from treating it as if it were a cylinder. The following substitutions

are needed for using the constraints of Section 4.2.1. There are two possible substitutions

for the two generic patch axes.

Cylindrical Model Patch
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Data Generic Feature (« = 1 or 2) | Corresponding Cylinder Feature
@ia aq
bia 04
W(3—i)d lq
B 1Y
8 o
o; o

D.4 Generic Data Patch - Model Cone

We assume that noise has caused a conical patch to be observed as generic. Because we
cannot align the features properly, we treat this case as if it were a cylinder-cylinder case.
The two curvatures of the generic patch mean that two possible substitutions are allowed,
but one might be eliminated because of incompatibility of curvature signs or magnitudes.

The following substitutions are needed for using the constraints of Section 4.2.1:

ll Data Generic Feature (2 = 1 or 2) | Corresponding Cylindrical Feature
diq g
04 04
W(3—i)d lq
O;
Bi
5,' 51
Model Cone Feature | Corresponding Cylindrical Feature
%('Cmazm + ’Cminm) Km
Tm T
O Om
I lm
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