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In this paper, we address the problem of modeling, recognising and localising non-polyhedral shapes or objects
in a partially known scenes, using 3D depth images. The applications this work aims at are mobile robotics for
intervention or survey in environments like factories or nuclear plants.

This paper focusses on the problems of the recognition of non-polyhedral landmarks or objects and misplaced
feature detection. In our approach, planes and some simplified classes of quadrics play an important part in
the different processes. Surface classification takes into account the uncertainties on the measures and relies on
probabilistic tests. The surface features belonging to those simplified classes provide a pose estimate which can
be refined, if needed, using iconic methods. After registration, we compare the scene description and the a priori
model for model validation and change detection.

1 Introduction

This paper deals with the problems of modeling, recognising and localising non-polyhedral shapes or objects
in a partially known scehe. Applications are mobile robotics for intervention or survey in environments like
factories or nuclear plants. For such environments, the a priori models provided by engineering drawings
may no longer be an accurate description of the actual factory, because of differences in construction or
subsequent modifications. Our work investigates environment modeling issues, focussing on the problem
of the correction of the a priori maps, using a mobile robot, 3D depth images, and partially correct maps.

Whereas much work has been done previously on 1) world modeling using polyhedra or planar surface
facets and 2) scene understanding where the scene is known exactly ini advance, current applications require
the use of non-planar primitives for scene descriptions, and show the need to tackle cases where the a prior:
model of the environment is only partially correct. These are two important features of the investigated
project.

This paper focusses on the problems of the recognition of non-polyhedral landmarks or objects (known
by a partially correct CAD-type [10] model) and misplaced feature detection. In this paper, we present
the global approach undertaken, and describe the different steps of the procedure: scene description (data
segmentation and surface classification), matching and pose estimation, feature misplacement detection.
Some simplified classes of non-planar primitives play an important part in all these processes. Surface
classification takes into account the uncertainties on the measures and relies on probabilistic tests. The
surface features belonging to those simplified classes provide a pose estimate which can be refined, if
needed, using iconic methods. After registration, we compare the scene description and the a priori model
for model validation and change detection. Finally, we present some experimental results and the next
steps of this work. While a mobile vehicle, for the applications this work aims at, will usually be equipped
with a multisensor perception system, we focus in this paper on the interpretation of range data.
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The work presented here is based in part on the IMAGINE2 integrated recognition system at the
Department of Artificial Intelligence [11].

2 The problem. Overview of Approach

Most research dealing with the problem of environment modeling have concentrated on building purely ge-
ometric representations; in most cases, environment modeling consists of incremental fusion into a common
model of the geometric primitives obtained from the segmentation of the data obtained from successive
sensory acquisitions(l, 2, 6, 14, 16, 17]. But geometric models have shown serious limitations with respect
of the traditional tasks to perform (robot localisation or navigation for example), because the complexity
of those tasks increases as new data are acquired, and the consistency of the models is difficult to keep.
Complex environments need heterogeneous representations [8, 9], which must be dedicated to the task to
be performed, and several levels of representation are needed {7, 8]:

— a geometric level, containing the basic descriptions, and essentially the metrical parameters of the
different primitives involved: curves, surfaces, volumetric elements.

— a symbolic and semantic level, characterising primitives of the same type (that may represent different
entities), or sets of primitives (defining landmarks - e.g. a door, a room corner, a group of pipes in
a factory — or particular objects as corresponding to a given set of primitives). This allows control of
the navigation or localization tasks, choice of relevant information to keep in the model (according to
a given task), and rejection of spurious geometric primitives arising in the segmentation.

— a topologic level, which can be useful in several ways. Topological relationships between several primi-
tives or semantic entities (for exemple, object A lies at the right of object B, in front of object C,. . .) can
be used for various tasks such as perception planning, or propagation in the model of the environment
changes that are detected locally. Besides, a global topologic layer in the model of the environment
can be used at a mission definition level. This global layer, for a factory-like environment, could give
a representation of the factory as a set of topologic loci like corridors and rooms, and the positioning
of the local reference frames attached to each of those loci.

At the geometric level, we notice that in man-made environments, many relatively simple features are
expected to be present in the environment (walls, polyhedral obstacles, pipes, elbows, ...). Such features
can be represented with sufficient accuracy by using a few simple surface primitives (like planes or simplified
classes of quadrics). In the strategy defined for landmark recognition and misplaced feature detection, such
features play a particularly important part in the control of the process, because (a) they are well-suited
for the kind of environments we are interested in (b) they are easier to fit and match than more general
primitives and (c) they provide reliable and stable 3D invariants for 3D pose estimation.

In the rest of this paper, we focus on the problems of non-polyhedral landmark recognition and feature
misplacement detection. Figure 1 presents the strategy we have defined for the entire process (from sensory
data acquisition to feature misplacement detection). We will discuss in detail below the differents steps

presented in this diagram.

3 Segmentation and surface classification

Segmentation extracts a collection of homogeneous patches from the range data. A patch corresponds to
maximally connected sets of surface points in which the signs of the Gaussian and mean curvature do
not change [20]. Local surface shapes are divided into four main classes (planar, cylindrical, elliptic and
hyperbolic) and finally planes or quadrics are fitted to the patches.

As simplified classes of quadrics are to play an important part in the object recognition strategy, the
next step is to classify the quadric surface patches into the following classes: {planes, cylinders, cones,
spheres, others}, labelled as PLAN, CYL, CONE, SPH, OTH. We present here the method we have
developped.

Quadrics can be expressed according to the general equation:
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| seauenTATION + QuADRIC cLaSSIFICATION |

PLANES + (CYL, SPHERES, CONES GENERAL QUADRICS

MODEL UPDATE

Fig.1.: Non-polyhedral landmark recognition and change detection: a global approach

XCAX+X'.B+C=0

Classification can be performed by using the parameters of the canonical forms. Canonicalization finds
the (R, T) transform (for central quadrics: ellipsoids and hyperboloids) such that the transformed quadric

is expressed by:
Xlt-Acano-X, + Ccano =0

where Acono = diag(A1,A2,23) and X' = RX +T.
Then, the simplified classes listed above are characterized by:

e cylinder: Cegno < 0and A} = A3 >0and A3 =0

e sphere: Cegno <0and Ay =A2=2A3>0

o cone: Cegno =0and Ay, A2>0and A3 <0

In the presence of noisy data, it is difficult to perform a reliable classification by using empirical
thresholds for testing the relations above.

Thus, we take into account the uncertainties on the measured points, and we propagate them through
the canonicalization processes. We know that Ceano = C + T*.(A.T + B) where T is such that By, =
2T*.A.R + B*.R = 0. Computing the Jacobians of C,4n, with respect of the different parameters of the
quadric, we can compute the uncertainty on C,an, from its 1st order Taylor development. We just recall
here that if we have the relation z = f(£,, #2,..., #n), where { is non-linear and (%;);=1...» are uncertain
data having a covariance matrix o, then:

n
0y =) SO Ji+ ) Jite ;)]
i=1 i%j
where J; is the Jacobian of f with respect of Z;, and the second term takes into account the correlations

between &; and z;.
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The uncertainties on the eigenvalues of A are more difficult to estimate; we used an upper bound
provided by the Bauer-Fike theorem [13].

Finally, for the patch classification, we compute the plausibilities that each quadric patch belongs to
each class within the set {cylinder,sphere,cone}, according to the class characterizations given above. The
canonical parameters are given by their Gaussian distributions. If we are interested in the signs of the
parameters, we compute, from the distributions, the probabilities that the parameters have the required
sign. To compute the plausibility that some parameters have a given value (e.g. Ceano = 0), we use heuristic
functions involving the probabilities that the corresponding parameter is greater or lower than the required
value (zero).

The uncertainties on the parameters on the fitting quadrics are evaluated by using the Extended Kalman
Filter (the initial state is provided by a least-squares fitting; the associated uncertainties are provided by
the non-linear optimization theory [3]).

When this classification has been performed, we fit the classified patches with the relevant dedicated
primitive (cylinder, sphere, cone); we verify a posteriori the classification by evaluating the quality of that
dedicated fitting (the average quadratic distance over the fitted patch, if lower than a given threshold,
confirms the results of the classification). The final scene description is a set of surface patches labelled
as follows: plane, cylinder, sphere, cone or other (general quadric), as well as their parameters and the
uncertainties.

4 Matching and pose estimation

From the scene description obtained, we compute, for the simplified quadrics, the 3D invariants to be used
for the matching and pose estimation: length and radius for a cylinder, radius for a sphere, and half angle
and length for a cone (lengths, of course, are very sensitive to occlusions). The pose is then computed
using the surface normals of planes, the centers of 2 matched spheres, or the axes of cylinders or cones
(and possibly other elements like the ends of a cylindric element if entirely seen, or the apex of a cone, if

actually perceived).
The matching and object recognition processes in the IMAGINE?2 system are described in [12]. The

current project aims at improving the procedure. In our approach, the matching and recognition processes
are performed in two steps:

1) We first use the planes, cylinders, cones and spheres, because (a) they are well suited for the
kind of environments we are interested in, (b) they are easier to fit and match than more general primitives
and (c) they provide reliable and stable 3D invariants for 3D pose estimation. This allows us to compute
a first estimate of the pose, using those reliable matchings, and thus to reduce the uncertainty on the pose

estimate.

2) Applying the transform deduced from the first pose estimation to all the surface primitives in the
perceived scene (and projecting them onto the model), we can now reduce the complexity on the matching
of general quadrics. For the latter, it is more difficult to extract reliable and stable invariants. But if we
have a first estimate of the pose, other criteria can be used now for the matching of those primitives (like

overlapping, spatial proximity, ...).

In both cases, if needed, an Iterative Closest Point (ICP)-like method can be used for fine position regis-

tration [5, 15, 21]. Such a refinement of the pose estimation is mainly needed if:
1) the pose estimation is underconstrained and leaves some degrees of freedom (DOF) (we need at

least 3 plane normals, or 2 cylinder or cone axis, or 3 sphere centers to estimate the pose), or
2) the uncertainty on the pose estimate needs to be reduced.

5 Feature misplacement detection

This part of the project deals with the problem of validating the correctness of the model and determining
when inconsistencies occur; this is a novel approach with respect of the state of the art, as most research

——

o, TNV



275

work so far questions the validity of perceived data rather than the correctness of the mode@ and most
research work related to change detection so far has been related to image differencing morsthan on the
detection of important structural changes in the model [4].

We may need to validate the model or detect changes on 2 different levels: (1) on a numerical level,
which has already been tackled by using numerical fusion tools (the Kalman filter, notably, has been
extensively used); (2) on a structural level, if part of the structure of the model is wrong.

In a first step towards the second issue, the current project is investigating the problem of misplaced
features detection along two lines:

— We decompose the matching and recognition strategy into two steps. The first one involves a tight
matching procedure, with strong constraints, and will eliminate the primitives or object sub-parts that
do not satisfy rigidity constraints; the matchings obtained at that stage allow computation of a pose
estimate. In the second step, relaxing the constraints in the matching procedure allows to match those
primitives or object sub-parts which do not meet rigidity constraints associated to the former pairings
but lie in a small enough (in a statistical sense) neighborhood of the predicted position.

— The final part deals with the analysis of differences. 2 levels of analysis (one geometric level and a
semantic one) are needed.

Indeed, we need to be able to check for the presence, absence or misplacement of objects or semantic

entities in the scene with repect of the information contained in the model (some objects may be in a

different position from the one given in the model, some objects may have articulated sub-parts, ... ),

and to distinguish this case from the case where a few surface features (patches) in a given object
description do not match the model. Here, we need at a scene description level a semantic grouping

operator.

At a geometric level, we can distinguish:

1. moved features for features matched in the loose matching procedure;

2. missing features if model features that were predicted to be perceived could not be found in a neigh-
bourhood of the predicted positions;

3. new features when perceived features could not be matched with one in the model;

4. altered features when features appear “at the same place” (i.e. in a close neighbourhood in a statistical
sense) in the new model and the old one, but have different shape parameters.

Both semantic and geometric level should be involved in the model validation and change detection
procedures. After registration, the presence of an object could be checked by counting the number of model-
data surface pairings obtained from the matching procedure, for the patches describing the considered
object in the model (in a similar approach to the one presented in [4], where segments detected in an
image are used for the validation of wireframe-type buildings models).

Finally, the model has to be updated according to the former labels and the numerical uncertainties
on the features. We do not address this problem in this paper.

6 Experimental results

So far, we have used the segmentation, surface patch classification and registration methods presented
above 1) on simulated range images from a synthetic model of a factory-like environment (including
simulation of the sensory acquisition with given sensor characteristics, and simulation of noise) and 2) on
real range images of small objects and of a factory mock-up acquired with a range sensor [19]. Figures 2
and 3 show respectively a cosine shaded range image of a real scene, and the surface patches obtained after
segmentation. .

The following table shows details of the results we obtained for the quadric patches classification, giving
for each quadric region (using the number given figure 3) the plausibilities P(cyl), P(sphere), P(cone) that
it is a cylinder, a sphere or a cone. The last column of the table gives the label finally given to those
surfaces; a label among CYL, SPH, CONE is given if the corresponding plausibility is the highest and its
difference with the other plausibilities is greater than a given threshold (0.2 in our case). All regions not
listed in the table were classified as planes during segmentation.
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Fig.2.: Cosine shaded range data Fig.3.: Regions image

The patches corresponding to the description of cylinders in the real scene, and most patches cor-
responding to planes, have been successfully classified. The quadric patch number 19 corresponds to an
elbow between 2 horizontal pipes in the scene, and the quadric patch number 5 corresponds to a Jjunction
between a horizontal pipe and an elbow (see figure 2). They have been successfully given the label OTH.
Patches number 16, 18, 21, 22, 23 have been classified as quadric patches with the label OTH, whereas they
correspond to the description of planar surfaces in the scene. This is due to the fact that they are small
patches containing a small number of noisy measure points: a small pipe section, corners, occlusions, lead
to noisy data, sensitive to footprint (the laser beam intersects several surfaces) or specularity problems.
Thus, the corresponding patches could not be labelled as planar patches during segmentation.

Region Num.|P(cyl)|P(sphere)|P(cone)|Class
5 0.05 0 0 OTH
6 0.48 0 0.09 [CYL
7 0.54 0 0 CYL
9 0.47 0.03 0.06 |CYL
11 0.55 0 0.24 |CYL
12 0.33 0 0.11 |[CYL
13 0.21 0 0 CYL
15 0.34 0.09 0.06 |CYL
16 0 0 0.04 |OTH
18 0 0 0.01 |OTH
19 0 0 0 OTH
21 0.32 0.02 0.15 |OTH
22 0 0 0.05 |OTH
23 0 0 0.14 |OTH

Finally, we present now the results obtained for model-data registration. The factory scene is known
by a CAD-type [10] model. We show here two examples. Figures 4 and 5 show an example of a successful
hypothesis considered durind the tree-search performed by the matching procedure [11], involving 2 cylin-
ders and one plane pairings. Figure 4 shows the initial pose estimate obtained by using the 2 cylinders
and the plane descriptions only (and their associated invariants). The data appear in light colour, the 3D
display of the CAD model is displayed in a darker colour. Figure 5 shows the refined pose obtained after
calling the ICP procedure. Again, the data appear in light colours, the 3D display of the CAD model is
displayed in a darker colour; the matched features are displayed using the darkest colour. Figures 6 and 7
show the results obtained from another hypothesis, involving 3 cylinder pairs this time. The accuracy of
the obtained registration is about 1mm; this is illustrated by the overlap between model and data (see
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the horizontal pipes, the slanted pipe, and the wall on the right in figure 5, and the horizontal pipes, the
slanted pipe and the planes in figure 7).

Fig.6.: Registration: initial pose estimate Fig.7.: Final registration after ICP refinement

7 Current progress and conclusion

The research work presented in this paper deals with non-polyhedral modeling in a factory-like environ-
ment. In this paper, we have presented an approach for non-polyhedral landmark recognition and model
update. This approach is decomposed in several steps. It first emphasizes the role played by simpler surface
primitives (planes, cylinders, cones, spheres) in the scene description and data-model registration. At a
scene description level, the surface classification procedure takes into account the uncertainties on the data;
they are propagated through the canonicalization processes and used to compute the plausibilities that
the patches obtained after segmentation belong to one of the simplified classes above. The corresponding
geometric descriptions lead to simpler and stabler 3D invariants for the registration. An ICP like method
can be used for pose refinement.

So far, we have used the segmentation, surface patch classification and registration methods presented
above 1) on simulated range images from a synthetic model of a factory-like environment (including
simulation of the sensory acquisition with given sensor characteristics, and simulation of noise) and 2) on
real range images of small objects and of a factory mock-up acquired with a range sensor [19]. Successful
results on real images have been provided. I
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The next steps of this work will further investigate the problem of questioning the model correctness.
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