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Abstract: This project considers the Best Next View problem for a robot
using range data to find a suitable grasp with which to pick up an object. To
date, the Best Next View problem has concentrated on getting a complete range
image of a scene or object, requiring many views. This project instead aims to
gather enough data to allow a reasonable grasp to be found from just a few views,
rather than the dozens required for a complete scene. Data capture is simulated,
using real range data views of objects from different positions.
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1. Introduction

A common problem in robotics is that of grasping an object. This is hard enough
when the size, shape and orientation of the object are known; the problem is
exarcebated when a robot wishes to pick up an unknown object in front of it.
Range data from several views can be used to identify suitable grasping points
on an object; however, range images take a long time to obtain. Previous work
on selecting the Best Next View has concentrated on minimising the number of
images needed to get complete and high quality coverage of an object or scene;
however, this is far more than is needed simply to pick up an object. This project
looks at a method for minimising the number of views needed to gather enough
data to find a reasonable grasp.

1.1 Motivation

Range data scanners have been used for some time now to produce 3D repre-
sentations of scenes. These range images are similar to a normal visual image,
but have a depth value associated with each pixel, rather than a colour or light
intensity. Typically, several range images of a scene will be combined to produce
a single collection of 3D points that covers the whole scene; this will often then be
converted into a mesh to allow further analysis of the objects in the scene. Com-
plex scenes generally require many high detail views, which are time-consuming
to obtain. Hence previous research has been directed at determining from which
position the scene should next be observed to maximise the amount of new in-
formation captured and minimise the number of views required to capture the
entire scene.

It is worth noting the difference between range images and simple 3D point sets.
Range images are structured: they are 2D arrays like normal images. Points are
stored in order, so it is a simple matter to find data points that are adjacent to
a given point. This helps with tasks such as plane finding, where the problem
is vastly simplified by simply having to inspect neighbouring points, which are
trivial to find, instead of having to inspect every point in the set. 3D point sets,
on the other hand, are simply unordered collections of 3D points. Although range
images can be very useful, they lose their ordered property when two or more
are registered. This project, then, can make little use of the structure of range
images, and treats all range data as simple 3D point sets.

Instead, this project considers the situation of a robot that wishes merely to
grasp an object, and has no interest in the range data once this task has been

1

Fnar



2 1. INTRODUCTION

accomplished. Fewer views will be required for this task, as once the robot has
identified a suitable grasp, it does not need to capture any more data. Addition-
ally, lower resolution (i.e. larger distances between depth samples) range data
will suffice; this takes less time to capture, speeding up the process. The project
finds features in a 3D point set that are promising from the point of view of
grasping; these include parallel sides, opposable planar patches and concavities.
With these features detected, it considers what combinations of features form
part of a promising grasp. The best location to take the next range image from
is then determined by guessing which view is most likely to contain features that
complete the grasp, and another range image is then taken to fill in the region
of the missing graspable feature(s). This process is repeated until a good enough
grasp is found with the current data.

1.2 Objective and Approach

The project’s aim is to develop a system that can gather enough range data to find
a reasonable grasp with as few different views as possible. Rather than using a
physical range scanner and robot manipulator, it will simulate data capture from
previously captured (real) range images that encompass the entire object. This
speeds up the testing and evaluation processes and removes reliance on hardware
availability. The simulated range sensor has five degrees of freedom: translation
in the z, y and z axes, and rotation about the z and z axes.

The project can be split into several stages:
e Simulated range data capture and registration
e Generation and evaluation of possible grasps
e Determining the Best Next View

The first two parts have been researched before, and the system will make use
of previous work where possible. The Iterative Closest Point algorithm will be
used to register (combine) new data with data that have already been captured.
Much work has also been done on evaluating grasps; the system will make use of
this where appropriate.

However, Best Next View research has, as has already been mentioned, concen-
trated on finding the Best Next View for complete model capture. This has
considered factors such as the size of occluded areas that will be viewed, and the
quality of all the data captured — the nearer the sensor is to being perpendicular
to the object being scanned, the better the data. Objects that are scanned at
an angle to the sensor have fewer data points than those that are scanned when
perpendicular to the sensor, as illustrated in Figure 1.1. As the system only needs
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enough data to find a reasonable grasp, high quality data is not needed — finding
new data that will combine with current data to provide enough to find a good
grasp is the essence of the problem. This reduces the utility of much Best Next
View research; however, some useful techniques have been developed that will be
used in the system.

Figure 1.1: Quality of the range data depends on the angle between the object
and the scanner head. The object face that is perpendicular to the scanner head
yields six data points; the oblique object yields only three or four per face, and
fewer if the faces and the laser are more nearly parallel. Additionally, the data
obtained from the oblique faces is noisier.

A voting model will be used to decide which view to choose next. Views will be
taken from the centre of each cell of an approximated hemisphere surrounding
the object; each vote will be for one of the unseen cells of the hemisphere. The
cell with the highest number of votes will be the one to be viewed from next.

Initially, the project will consider simple two-fingered grasps; it can then be ex-
tended to consider more complicated robot manipulators, such as the Utah/MIT
dextrous hand [21]. The nature of a two-fingered grasp means that only parallel
or nearly-parallel sides can be considered as a grasping option. A dextrous hand
allows many more possibilities, such as a three point force closure grasp, or use
of concavities; these allow much more stable grasps than the simple two contact
point grasp offered by a parallel jaw gripper.

For two-fingered grasps, the voting will be quite simple: for each grasping point
identified, take the dot product of the normal of the plane p fitted through it and

those of all unseen viewpoints :
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The cell that is nearest to facing in the opposite direction to the grasping point is
the one most likely to view a useful grasping point (that is, one that is opposed to
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4 1. INTRODUCTION

the grasping point under consideration), so the grasping point will cast its vote
for this cell. The dot product of the unit normal of a graspable patch and the
unit normal of the viewing cell is -1 at best, and 1 at worst. -1 indicates that the
normals are pointing in diametrically opposed directions, the situation where a
parallel patch is most likely to be found; 1 means that the normals are pointing
in exactly the same direction, so useful data will not be found when the object
is scanned from this view. Additionally, votes could have more or less weight
depending on the value of the dot product, or could be discounted if there is
little chance of a useful patch being found from its optimal view (e.g. if the dot
product is greater than -0.5).

More complicated manipulators require a different voting scheme. One possibility
for a three fingered grasp would be to choose two grasping points at random and
determine which unseen cell of the voting structure is most likely to view the
optimal point to complete a three point grasp. The weighting assigned to this
vote would be the expected quality of the grasp, if a suitable grasping point were
found.

The entire grasp-finding process can be described by the following pseudocode:
1. Choose random position to take initial view from.
. Capture data.
. Combine new data with previous data.

2
3
4. Find and evaluate a number of possible random grasps.
5. If the best grasp found is good enough, return it.

6

. Otherwise, determine the best next view and go to step 2.

1.3 Summary

The development and testing of a system for determining the best next view for a
two-fingered robot manipulator is presented in this report. The aim of the system
is to gather enough range data of an object to find a good grasp from as few views
as possible. Empirical evaluation has shown that the system succeeds in finding
a grasp from two or three views in 75% of cases with the test objects, outputting
a pair of grasping points that result in a stable grasp. Following further views of
the objects, all cases eventually resulted in a good grasp.

e n e a



2. Data Capture

This chapter describes the equipment used and steps taken to capture and prepare
the data for simulated range data capture.

2.1 Resources

A range scanner was used with a rotating bed to obtain the range images used
by the system. The rotating bed obviates the need for the scanner head itself to
rotate; a rotation of the scanner of a real robot around one axis can be perfectly
simulated by rotating the bed through the same angle around the same axis, but
in the opposite direction.

2.1.1 Range Scanner

A Reversa laser scanner was used to capture the range data for the system,
controlled by RISCAN software [1]. It projects a laser stripe onto the object being
scanned, and uses two cameras to determine the depth of the stripe at each point.
The output is a series of z, y and 2z values. The scanner has an orthographic
projection, and can be translated along all three axes. Range images are built
up by repeatedly moving the scanner head all the way along the z axis, and
moving it a small amount in the y axis between repetitions. The scanner can
capture all possible parts of the object that are not occluded and face the sensor.
Figure 2.1 shows that this misses both surfaces that are parallel to the laser, and
surfaces that are self occluding or occluded by other objects; only one z value
can be recorded for a given (z,y) coordinate. Unfortunately, the scanner cannot
determine the depth of surfaces that are very dark; however, this could be used
to the system’s advantage to remove unwanted data points, such as the bed, that
were not part of the object being scanned. These points simply do not show up
in the range data (an infinite depth is recorded), so by simply covering external
objects with black paper, they become invisible to the scanner. In a real physical
system, if there were any chance of the robot observing itself, making it black
would prevent this from causing any problems.

Unfortunately, there are other situations in which the range scanner cannot de-
termine a depth value. If the laser stripe cannot be seen with both cameras, no
value is returned, leaving blank patches in the range data. This typically occurs
with surfaces that are almost vertical; the problem can be solved by rotating the
object being scanned to allow both cameras to see the object.

5



6 2. DATA CAPTURE

@ Range Scanner Head

I A

Figure 2.1: The scanner moves horizontally in this diagram, projecting its laser
vertically down. The image on the right shows what the scanner captures.

This scanner can perceive objects approximately 10cm away from the scanner
head. As some of the objects went outside this range, particularly when rotated,
several view volumes had to be built up by performing several scans at different
depths and concatenating the points found. Unfortunately, in certain positions,
such as when viewing from around the horizon (i.e. at an elevation of 0°), the
rotating bed did not allow the scanner head to approach near enough to capture
all of the object. This was accepted as a limitation, as the missing parts of the
object would be seen by other views. An alternative to this would have been to
attempt to reconstruct the data from other views; this was rejected, as a real
robot would have to deal with this problem and would not know what the object
was or what it ‘should’ be seeing.

2.1.2 Rotating Bed

The bed used was capable of rotating through any angle around one axis in the
zy plane (depending on orientation); it was set up to rotate around the z axis. A
rotating plate was used to provide rotation around the z axis (see Figures 2.2 and
2.3). Although the surface normal of the rotating plate would change as the bed
was rotated, it remained constant with respect to the object being scanned, and
the data could easily be transformed back to represent the object in its initial
orientation.
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Errata

Figure 2.5, page 9: for ‘range ima ge’, read ‘range image’.

Section 4.2.2, page 26: disregard ‘although this was’ at end of section.

Section 5.3.2, page 31: after ‘more surface area’, read ‘is in contact with the
gripper’.

Section 5.3.4, page 33: for ‘distance from the lines is desired’, read ‘distance from
the line is desired’.

Section 6.2, page 41: for ‘divide its number of views by n + 1’, read ‘divide its
number of votes by n +1’.

Section 6.2, page 41: for ‘acos(d)i45’, read ‘acos(d) < 45°’.

Section 7.1, page 53: for ‘foce closure’, read ‘force closure’.

Section 7.1, page 53: for ‘closer then 5mm’, read ‘closer than 5mm’.

Section 7.1, page 53: for ‘rotating However’, read ‘rotating. However’.

Section 7.1, page 54: for ‘Table 5.3, read ‘Table B.3’.

Tosdes & \w 6.3 7






2.2. TEST DATA ACQUISITION 7

Scanner Head

Rotating Bed

Figure 2.2: The bed can be rotated about the z axis, passing roughly through
the base of the object being scanned. The rotating plate allows the object to be
rotated about its local z axis.

2.2 Test Data Acquisition

2.2.1 Scanning

Several objects were scanned, to give a range to test the system with. They
ranged from a simple wooden block to a small toy cow. It was decided to use
steps of 45° for both the azimuth and the elevation (see Figure 2.4 for a definition
of azimuth and elevation), resulting in 17 views for each object (eight from an
elevation of 0°, eight from an elevation of 45°, and one looking straight down
from an elevation of 90° — the azimuth angle does not matter at this elevation; 0°
was used). This converts the hemisphere of points from which the object can be
viewed from a continuous representation into a set of discrete cells. This simple
method of discretising a hemisphere was suggested by Horn [13] and Connolly
8].

The objects were scanned with Imm between samples in the z and y directions,
which was found to be adequate for this task, though model acquisition typically
requires a higher resolution (e.g. 0.1lmm between samples). The range scanner
finds depth values with great accuracy; the error has been found experimentally
to be approximately 15 pm.

2.2.2 Extraneous Data Removal

Areas of the scene such as the rotating bed — the floor for a real robot — must
be removed before any analysis of the data can proceed. For a real robot this
is a trivial problem — the data would simply be thresholded, and data points
with a depth value below a certain threshold (the z value of the floor) would be
discarded as floor data. For this project, data was examined using the RISCAN
software and points corresponding to the bed were removed manually. The data

e ——— T ———— Y —————————




8 : 2. DATA CAPTURE

Figure 2.3: This picture shows the experimental setup for gathering range data.
The range scanner’s laser is emitted in the direction of the red arrow; its two
cameras observe the object from the directions of the white arrows. The rotating
bed can revolve the object roughly around its z axis, indicated by the yellow
arrow; while the object can be rotated about its z axis by the revolving plate.
The cow on the platform was used as one of the data sets.

was not cleaned up too perfectly, though, as a real robot would have to deal with
some uncertainty and would not have a human available to aid it.

2.3 Results

17 views were taken of each object with 45° steps for both the azimuth and
elevation (see Figure 6.1). Table 2.1 summarises the data captured; Figure 2.5
shows a typical range image from the Stuttgart Range Image Database [24].



2.3. RESULTS

0o

Figure 2.4: The azimuth is the angle § around the horizon from the zero point,
from 0° to 360°. It corresponds to rotation around the z axis. The elevation is

the angle ¢ above the zy plane, from 0° to 90°.

Object Min size | Max size | Mean size
Cow 915 2045 1652
Stone 83 784 410

Wooden Block 1886 4054 3159

Table 2.1: Number of points captured for each test object.

Figure 2.5: A range ima“ge of a banana.
7
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3. Range Data Registration and
Fusion

Range data registration is the process of taking two views of a scene, taken
from different positions and/or orientations, and finding a transformation that
maps corresponding points from one set of data onto another. This allows the
system to consider all of the data that it has collected so far as a single data set.
The Iterative Closest Point (ICP) algorithm was used to register the data. This
requires an approximate transformation to match the two data sets into roughly
the same position, then uses a least-squares approximation to get the best possible
match between the two data sets. Once the two data sets are aligned, fusion is
carried out; this is the process of converting the two aligned data sets into one.
Ultimately, a single data set that covers both input data sets is returned.

3.1 Transformation

A reasonably accurate initial transformation is essential for the ICP algorithm
to successfully register range data. This was found manually, although it would
be simple for a calibrated robot equipped with a range scanner to carry it out
automatically. The reasons that this process was carried out manually were
that the exact origin of rotation about the z axis was not known, and the axis
of rotation about the z axis did not intersect the plane of the rotating plate,
meaning that the scanned objects were rotated about an axis slightly below their
bases. A real robot would not move the object, but move its range scanner head
to known positions, making the initial estimates of the data sets’ positions easy
to find.

The point sets were all transformed to a standard position prior to running the
ICP algorithm. The 90° elevation, 0° azimuth position (i.e. looking straight
down on top of the object) was chosen as the standard position; all views not
taken from this position were transformed, then aligned with this data set by
hand to prepare them for use with ICP.

The first step in transforming the data to the standard orientation (rotation)
was to translate the data in each set to its centroid (the centre of mass of the
object, found by taking the mean z, y and z values of its points), in order to keep
the data in roughly the same position once it had been rotated. This involves
simply finding the mean z, y and 2z values of the data points, and subtracting
them from each point. The data was then rotated about the z and/or z axes by

11



12 3. RANGE DATA REGISTRATION AND FUSION

the negation of the angle that the object had been rotated through during the
scanning process. Next, the data was translated back to its initial position by
adding the mean values back on. A short Matlab script was written to carry out
this task.

With the data in the standard orientation, the next step was to translate each
point set to align it with the standard position. The tool used was handalign, by
Neil McCormick, formerly of the University of Edinburgh Machine Vision Unit.
This allows two or more point sets to be loaded, each of which can be indepen-
dently rotated and translated to align it with another point set. The reason that
the data was rotated independently of this program was that it can be quite
unwieldy for rotation, and the angles that the objects had been rotated by were
known quite precisely. Thus it was easier and less error-prone to rotate the ob-
jects separately, and handalign was used for translation, which it handles well,
and any minor rotations that inaccuracies in setting the rotating bed introduced.
The output from handalign is a 4 x 4 transformation matrix that can be mul-
tiplied by a 4 x n matrix of points to effect the complete transformation to the
standard position and orientation; this was used in the main Matlab program to
transform all loaded data to the standard position, ready for the ICP algorithm.

3.2 Iterative Closest Point Algorithm

3.2.1 Literature Review

The ICP algorithm was introduced by Besl and McKay in 1992 [3]. The orig-
inal algorithm took two point sets P and @), where P was a subset of @, and
an approximate transformation between them, outputting a precise transforma-
tion to map P on to Q. The following steps are repeated until the calculated
transformation converges:

1. Find nearest point: For each point p; in P, find the nearest point ¢; in Q.

2. Compute registration: Find transformation 7' that minimises the sum of
the squared distances between all pairs of closest points p; and gj.

3. Perform transformation: Apply transformation T to P.

These steps are repeated until the difference in total squared distance error be-
tween two iterations falls below a threshold. The algorithm converges quickly to
the nearest local minimum to the initial position of P.

The squared distance error can be defined in a number of ways. Typically, the
Euclidean distance between two points is used; however, other functions can be
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used — Chen and Medioni [6] minimised the squared difference in the surface nor-
mal direction. The Euclidean distance was used in this project for its simplicity
and good performance.

Much work has been done to extend and improve this algorithm. These im-
provements have included: faster rates of convergence; different cost functions
(as noted above); and the ability to register point sets which are partially over-
lapping, but that each have unique points not present in the other set. This last
improvement is of great importance to this project, as it relies on being able to
register a point set with another that has some, but not all, points in common.
It has been implemented in different ways by many researchers, including Chen
and Medioni, Zhang [27], and Turk and Levoy [25]. Turk and Levoy and Chen
and Medioni both also proposed methods for pairwise registration of more than
two sets of points; this is also an important part of this project, in case more
than two views of an object are necessary to find a good grasp.

It has been noted that pairwise registration of several overlapping point sets into
a common coordinate frame does not necessarily provide optimal registration —
registering two sets A and B, followed by the registration of another set C' with
A, will minimise the squared distance between sets A and B, and between sets
A and C, but not necessarily between sets B and C. Several papers, including
Bergevin et al.’s, [2], Eggert et al.’s [9] and Blais and Levine’s [4], have proposed
an extended version of the ICP algorithm that considers many range images
simultaneously, and minimises the sum of the squared distances for all views. This
approach solves this problem in registering multiple range images; however, In
practice, registering one pair of images at a time was not found to be a significant
problem in this project, due to the low expectations made of the range data, and
made the implementation simpler. Additionally, Blais and Levine highlight the
fact that this problem is most severe when the first and last views of a complete
object to be registered are compared; as the system aims to stop after just a few
views, the issue becomes even less of a problem. '

The ICP algorithm has been found to be very effective, given a reasonable initial
registration. However, it can have problems with regular solids, such as cubes
and cylinders. For example, two views of a cube, taken from different angles,
may only have points on one face in common. These points may ‘slide’ along
the face of the cube, and any position where some of the common points overlap
will succeed (see Figure 3.1). Similarly, a cylinder could be rotated through any
angle about its axis. However, with a good initial estimate of the registration,
the transformation will ‘lock in’ to a suitable local minimum of squared distance
error. Objects that have not been precision engineered do not typically exhibit
this behaviour, as there are enough imprecisions (e.g. small surface details) in
the data to match data sets precisely. Brujic and Ristic [5] empirically found
this to be true using a Monte Carlo simulation, and also that registration error
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converges to zero as the number of points increases. ‘Sliding’ was not found to be
a problem with the system, as the initial registration estimates were sufficiently
accurate.

Another problem that was encountered was in the case that two data sets share no
points, e.g. data sets from diametrically opposing views located on the horizon.
Such views will almost certainly share no data points. In this case, the system
carried out the next view decision process again, but excluded the previously
chosen view from the process.

Similarly, two data sets that share just a few points were also treated as being
entirely distinct. This is because a few outliers in both sets that happened to be
near each other could cause the sets to be incorrectly registered. The transforma-
tion mapping one group of outliers onto another would be unlikely to represent
the true transformation mapping one set’s points on to the corresponding points
in the other set. As the system dealt with data sets ranging from about 350 to
4000 points, a simple single value threshold was not suitable. Instead, the num-
ber of points in the data set to be registered was divided by 30, and this number
was used as a minimum number of corresponding points, without which the data
set was rejected as being distinct.

P

Figure 3.1: The two 3D point sets, sharing the indicated areas, can be translated
in the directions shown. Any translation could be accepted by ICP, provided that
some points overlap.

3.3 Fusion

Range data fusion, or integration, is the process of taking two sets of range data
that have been registered and producing a single set that is composed of both
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input sets, but does not contain any redundant points. No vastly superior method
for carrying this task out has yet been found, but several have been developed
using different methods. Those applicable to 3D point sets like those used in the
project include: measuring the distance from a point to a surface consisting of
the k nearest points and updating it to fit the surface (Masuda [15], Hoppe et al.
[12]); and using Venn diagrams of overlapping surfaces to decompose the data
into subsets, followed by constructing a canonical grid (with vertices z; and y;)
and computing the average z value of all overlapping patches at all values of z

and y (Soucy and Laurendeau [23]).

As this is not the focus of the project, a far simpler approach was taken. The ICP
code returns the registered data set, as well as a list of corresponding points found
in both the input newly-registered data set and the data set it was registered with.
The fusion system simply removes the corresponding points from the registered
data set, and concatentates the new subset of unique points with the data set
with which these points are now registered, i.e. the new set R = QUTP. As
previously mentioned, a more sophisticated method is essential when many views
are to be registered with great accuracy; however, for the purposes of this project,
this uncomplicated approach suffices.

One slight complication was that each point had the angle from which it was
captured associated with it. This information was used in the grasping point
detection stage to determine the directions of the surface normals of grasping
patches — all normals should point away from the object, i.e. towards the range
scanner head. For each fitted plane equation p, found in a data set with an
associated viewing angle @, p’- U should be positive; if it is not, the plane normal
is pointing the wrong way, and the plane parameters are negated to fix this
problem.

This raises the issue of what should be done when points from two different data
sets (that have different viewing angles) are fused. The approach decided upon
was to sum the viewing angles for fused points. A simple average was not used,
as fusion of a fused point with a third data point would skew the viewing angle
in favour of the third point — it would have 50% influence, while the first two
points would each have 95% influence over the viewing angle, as shown in Figure
3.2. Simply summing the viewing angles keeps the fused viewing angle balanced.
It is not necessary to divide the viewing angle by its magnitude (to normalise it),
as only the sign of the calculation p'- 7 is important; a magnitude of more than
1 does not affect this.

The reason why the original viewing angle is not simply kept is that a point could
conceivably be fused with another point that had a very different viewing angle
(e.g. a point along the edge of a cube). If this point is then incorporated into a
patch whose points were seen from a different angle, it could have an effect on
the average viewing direction of the points. This determines the direction of the
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plane normal, so failure to rectify the point’s viewing angle could cause a patch’s
normal to point into the object igﬂtead of out of it.

.

-

Figure 3.2: On the left, when the viewing angles A and B are fused, a vector
equivalent to twice their average is the result. When C is also fused, the result is
a vector whose direction is the average of all three viewing angles. On the right,
however, fusing A and B simply takes their average. When this average is fused
with C, a vector biased in favour of C is the result.

3.4 Implementation

Because developing an ICP implementation was not within the scope of the
project, a publicly available implementation of ICP in Matlab was used [17].
This code accepts two sets of points in approximate registration and a tolerance
value for specifying how far apart two points can be, while still representing the
same point on the object. A value of lmm was chosen for this, as this was the res-
olution of the range data; larger values would allow unrelated points to be treated
as being the same point, while smaller values could prevent related points from
being matched. It returns the rotation and translation matrices found, a list of
indices of the corresponding points found amongst the two data sets, and the
second data set transformed to be registered with the first. A small amount of
glue code was written to interface this with the rest of the system, as well as a
simple method for fusing the two data sets (described above).

The method used by the algorithm for registering a data set P that was not a
subset of the other set () was as follows:

1. Find nearest point ¢; in () to every point p; in P

2. If the Euclidean distance from pj; to §j is greater than the tolerance, ignore
P;. The remaining points are the non-unique points that are present in both

P and Q.

3. Find the transformation 7' that minimises the squared distance between
corresponding points.
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4. Apply T to all points in P, including those that have no corresponding
point in Q.

As previously mentioned, it is possible for two data sets to have no or too few
points in common with the given tolerance value. When this occurred, the system
carried out the voting for the next view again, but excluded the view that had
previously been chosen from selection. This was repeated until a view was found
that could be registered.

3.5 Results

The tables in the Appendix show, for each object, the number of points in each
view, the mean distance error when two views were registered, and the number of
points returned when two views were fused. A dash in the table indicates either
that the views are the same, or the pair of views could not be registered, as they
did not share enough data points.

The approximate dimensions of the objects are:
e Cow: 76 x 26 x 46mm
e Wooden block: 67 x 44 x 43mm
e Stone: 46 x 26 x 16mm
The maximum errors for each object were:
o Cow: 0.67/1\7mm
e Wooden block: 0.6455mm
e Stone: 0.67’/73mm |

3.6 Evaluation

The implementation was found to work well for some pairs of views, typically
registering and fusing two sets of roughly 1800 and 2050 points, of which 550
were shared, in about a second and a half on a 2.6GHz Pentium 4 DICE PC with
512MB of RAM. (The same specification of PC was used for all tests.) The error
was of the order of magnitude of approximately one hundredth of the dimensions
of the objects; this was considered to be more than accurate enough for the
purposes of the system. Data sets that shared too few points were rejected, so
pairs of data sets with this property, such as two faces of a cube that only shared



18

hﬁﬁ.\ \v s..... ..“.%\\ 7

%%sc.\...,.k%.%x

3. RANGE DATA REGISTRATION AND FUSION

Figure 3.3: These two data sets cannot be registered because they share too few

points.

an edge, were not registered. Figure 3.3 shows this situation. Figure 3.4 hows

how two sets of range data are registered and fused.
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Figure 3.4: The image at the top left was taken from the 0° azimuth, 0° eleva-
tion position; the image at the top right was taken from the 135° azimuth, 45°
elevation position. The bottom left image shows the two images in approximate
registration, having been rotated and translated. The bottom right image shows
the final data set once the two views have been registered and fused.

—w s
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4. Grasping Point Detection

The system treats any near-planar set of points over a certain circular area as a
potential grasping point, provided that the plane consists of a reasonably large
number of points. Plane equations centred on random points are found using
a least squared distance solution; the normals and centres of mass of suitable
planar patches are used to evaluate potential grasps. This part of the system
aims to find as many good graspable patches as possible, and to determine the
quality of the planes fitted through their centres.

4.1 Algorithm

Two methods were tried for this process. The first was as follows:
1. Choose a random data point.

9. Find the number of neighbouring points within a specified distance of the
data point.

3. If there are too few nearby points, try again with another data point.

4. Otherwise, fit a plane to the nearby points. Ensure that the plane normal
is pointing in the correct direction.

5. If the plane is a poor fit, try again with another data point.

6. Otherwise, remove the points from the data set and save the plane’s equa-
tion and centre of mass.

7. Repeat until there are no more points, or the number of consecutive failures
has exceeded a specified threshold.

This method was found to work fairly well, although it exhibited some behaviours
which could be regarded as flaws, namely: it often fails to find all possible grasping
patches, due to the maximum number of failures occurring before all grasping
patches have been selected (see Figure 4.1); and many possible grasping points
are eliminated because another one overlaps it (see Figure 4.2).

The first issue was the main problem with this algorithm, as it was hard to
determine a suitably high threshold for the maximum number of failures in a row.
This was attempted by setting the threshold to a supposedly unrealistically high
value (10000), and recording the largest number of failures in a row (excluding the
threshold), resulting in a very long runtime. The maximum number of consecutive
failures reached around 1150 for data sets ranging in size from about 900 to 2000

21
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points, and took up to ninety seconds to terminate. It was therefore decided
simply to check all points once each (removing points that were found to be part
of a plane, regardless of whether or not they had been checked), as the reason the
first method failed was because the same points were being checked many times.
Checking every point was found not to be intractable, taking from eight to 19

seconds to find from 68 to 150 patches in data sets containing between 900 and
2000 points.

The second algorithm was identical, except for the first and seventh steps:
1. Find the first point that has not already been tried and set it to tried.
7. Repeat until all remaining points have been tried.

Although this method does not necessarily maximise the number or quality of
patches, the set of rejected points will not contain any patches; it represents an
improvement over the first method in both speed and number of patches found.

Whae s o

o
et
-

Figure 4.1: This is an example set of points rejected by the first point finding
algorithm, where the maximum consecutive failures threshold was set too low. As

can be seen, not all possible grasping patches were found; at least two reasonable,
small, roughly planar regions are in this set.
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The second issue was also found to be relatively unimportant (for both methods),
and in fact beneficial in some ways. As can be seen in Figure 4.2, the removal of
the points constituting a found patch prevents unfound patches from making use
of these points; only a few of the points that they need remain. However, this
works to the system’s advantage in certain respects. Were a patch’s points to
remain under consideration after the patch was found, the patch could be found
again and again (with the first method, though not with the second), wasting
time. The patches that would otherwise remain unfound could be considered for
grasping; however, at the scale of the robot’s gripper, a grasping point just a
millimetre away from another is little different. Additionally, the vastly greater
quantity of grasping points to be considered would involve much more compu-
tation, slowing the system down in order to compare grasps that were almost
identical. 'The relatively small number of grasping points generated allows all
possible grasps to be evaluated within a reasonable amount of time.

Figure 4.2: Finding either of the two patches outlined with a solid circle, or any
other overlapping patches, precludes the possibility of finding the one outlined
with a dashed line, or any others that are overlapped.
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4.2 Implementation

This part of the system can be divided into three parts: finding candidate grasping
patches; fitting planes through candidate patches’ points; and determining the
quality of the planes.

4.2.1 Finding Dense Patches

With a point chosen, the Euclidean distances from this point Zp to all other points
in the data set Z; were found with the following equation:

di = /(@ = 5)? + (5 — 5% + (5 — 2)° (4.1)

The gripper contact was assumed to be a circle of radius 2.5mm (though this
could easily be modified) giving a contact area of 7 x 2.5% ~ 20mm?2. All points
Z; with d; < 2.5 were incorporated into the patch. As the scanning resolution
was lmm between points in both the z and y axes, the patch can consist of
up to roughly 20 points. A good grasping patch, however, may be on the side
of an object that was not scanned perpendicular to the range scanner’s head;
as noted in Section 1.2, it will have fewer data points in the z and/or y axes.
Additionally, dark spots on the object will not be picked up, so perfectly good
graspable patches may consist of many fewer than 20 points. Patches were found
that were visually good, but that were not perpendicular to the scanner head
when scanned, resulting in as few as 9 points. For these reasons, 9 was used as
the lower limit for the number of points in a graspable patch.

Good grasping patches that were scanned at an extremely low resolution from
a certain view, and so have fewer then 9 points, can be ‘filled in’ from another
view that scanned the area at a more perpendicular angle (see Figure 4.3). As
the grasping patches are ‘re-discovered’ in every iteration, patches that were

discarded in a previous iteration can be used when range data from another view
has filled them in.

4.2.2 Plane Fitting

With a reasonably dense patch, the next step was to fit a plane through its
points. A plane fitted through a set of points can be defined by the equation
p= Az + By+Cz+ D = 0. The distance d; from one of N homogeneous points
U; = (i, ¥i, 2i, 1) to a plane can be calculated by plugging the point’s z, y and 2
values into the plane’s equation:
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Figure 4.3: If a patch is scanned when it is almost parallel to the direction of
the range scanner’s laser, few points are recorded. The patch can be ‘filled in’ by
registering it with data taken from a better view.

d; = A:vz—{—Byi—i-C’zi—i-D (42)

assuming that the plane is normalised, i.e. A>+ B?+C?=1.

The best-fitting plane through a set of points minimises Q, the sum of the squares
of the distances from each point to the plane, ie. @ = v ,d?. This can be
written as:

N N N
Q=Y (T2 =Y. i ol =p" (O 6] )= Mp (4.3)
i=1

i=1 =1

The plane equation can be found using Singular Value Decomposition (SVD).
SVD decomposes any m X n matrix, where m > n, into the form UDVT, where
U is an m X n matrix, V is an n X n matrix, and D isann X n diagonal matrix
[16]. V contains the eigenvectors of M, and D their associated eigenvalues. In
this case, the three eigenvectors represent the best, an intermediate and the worst
plane equations through the points in M (in terms of squared error), in increasing
order of the associated eigenvalue.

It is essential for both grasp evaluation and next-view voting that the normals of
the planes point away from the object. As the view that the object was scanned
from was included with each point, this can easily be checked. First, the average
normal of the plane’s points is calculated. It is quite possible that the plane
consists of points taken from different views, or that the points have been fused
from two or more points taken from different views, so an average view angle is
essential. Once this has been found, the dot product of the plane normal and the
average view angle is found. If this is negative, the plane normal is facing the
wrong way. This is rectified by negating the plane’s parameters.
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The plane finding code was substantially based on the code from the Advanced
Vision module at the University of Edinburgh [10], with some task specific mod-
ifications. With a typical data set of around 2500 points, this step took about

ninety seconds to complete execution ~atthongh-thiswas .

4.2.3 Plane Quality

Of course, the best plane through a set of points may not be a particularly good
fit; if the points are not approximately coplanar, there simply is no good plane.
The quality of a plane equation found with this method can be found from the
eigenvector, which is related to the average squared distance from the points to
the plane. Initially, the eigenvalue threshold was set quite high (0.6), resulting in
many grasping points being found. However, it was later found that this lenient
policy caused problems when determining which view each grasping point voted
for; the inaccurate plane normals caused inappropriate views to be voted for. By
setting the threshold to a lower value (0.2), fewer, but higher quality, planes were
found. This helped with the voting process and ensured that better decisions
were made on which view should be captured next.

Because the eigenvalue only represents an average of the points’ fits to the plane,
it is possible that, despite a low average, one or more points are present that
render the plane useless for grasping. For example, a single point representing a
spike could make it impossible to use the patch as a grasping point (see Figure
4.4). To detect and eliminate planes like this, the distance from every point in
a grasp to the plane was calculated using Equation 4.2 was found. If any point
was more than one millimetre away from the plane, the plane was rejected.

A

AN A

Figure 4.4: Although the high quality of the points on the plane ensure a low
eigenvalue, the spike makes the point unusable. The plane can be ruled out when
the distance from the point on the spike to the plane is found to be too large.



4.3. RESULTS 27

4.3 Results

Table 4.1 shows what grasps were found from which views for each object.

Azimuth/° | Elevation/° | Cow | Wooden block | Stone
0 0 92 228 o7
0 45 150 367 40
0 90 149 248 35

45 45 134 293 48
45 90 139 300 11
90 45 68 265 49
90 90 70 151 4
135 45 133 260 a7
135 90 139 304 1
180 45 150 303 48
180 90 149 225 32
225 45 126 254 41
223 90 114 288 23
270 45 107 294 22
270 90 64 148 12
315 45 12i4 318 22
315 90 114 306 13

Table 4.1: Number of grasping points found from each view for each object.

4.4 Evaluation

The algorithm may not maximise the number or quality of grasping points, and
is not particularly efficient; indeed, apart from the range data capture, finding
grasping points is the bottleneck in the system. However, it was found to work
well in practice, and successfully detected suitable grasping points, while rejecting
plane fits that were problematic for the voting process, and were too non-planar
for a robot manipulator. The set of rejected points returned by the second version
of the algorithm is guaranteed not to contain possible grasping points, unlike the
initial version; once the algorithm had finished running, the only points that had
not been incorporated in grasping patches either formed non-planar patches, or
were the left-over points in between detected grasping patches.
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5. Grasp Generation and
Evaluation

With graspable points determined, the next step for the system is to generate and
test possible grasps. Grasp generation is simple; evaluating a grasp to differentiate
between the quality of different grasps is more involved.

5.1 Two Finger Grasps

As the number of grasping patches the system generates is quite small, it is not
unfeasible or intractable to evaluate every single combination of two grasping
patches. This generates n? — n grasps over n grasping points. Each grasp can
then be evaluated for possibility — whether or not the grasp could actually be used
to pick the object up — and quality — how good the grasp is compared to others.
It is assumed that the two fingers are dextrous (i.e. they have six degrees of
freedom and can be applied at any position and orientation) rather than being a
simple parallel jaw gripper, whose two jaws must be directly opposite and parallel
to each other.

5.2 Grasp Possibility

5.2.1 Physically Impossible Grasps

The robot’s manipulator will have a maximum distance that it that can span;
it may also have a minimum distance. These are clearly the first properties to
check of a grasp, as they are simple to calculate, and failure will minimise wasted
computation time. The length of the grasp azis connecting the two grasping
points is compared to minimum and maximum values.

It may also be that the object obstructs the robot’s manipulators; this is path
planning, as opposed to grasp planning. As the system is not designed for a
particular robot, this check is not carried out; however, it would be simple to
incorporate it into the system and fail grasps that do not meet this condition.

29
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5.2.2 - Force Closure -

The force closure property determines whether or not a grasp will hold an object
in equilibrium. It is a binary condition; as such, further measures must be made
to determine the quality of the grasp.

For a two fingered grasp, the force closure property [19] can be determined using
friction cones. These are imaginary cones that have the apex at the grasping
point and the vertex in the opposite direction to the grasping point normal; that
is, they point into the object. A friction cone is determined by the angle o
between its vertex and surface. This is derived from the coefficient of friction p
between the gripper and the object: a = atan(u). For the force closure property
to hold, the grasp axis must lie inside both cones. This can be checked for each
grasping point by taking the dot product of the normalised grasp axis and the
plane normal at the grasping point, giving the cosine of the angle between them.
Subtracting this angle from 180 gives the angle ¢; between the grasp axis and
the vertex of the friction cone; if this is less than «; for both grasping points, the
grasp is force closure (see Figure 5.1). Non-force closure grasps can be discarded
immediately; those that satisfy this property are evaluated for grasp quality.

An

Figure 5.1: The grasp on the left (A+B) is not force closure; the dashed line
connecting the grasping points only falls inside only one of the friction cones.
The right hand grasp (C+D) is force closure; ¢; is smaller than ¢; for both
friction cones.
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5.3 Grasp Quality

Of the many grasps that the system evaluates, it is possible that at least several
will exhibit the force closure property once enough data has been gathered. The
next step is to decide which of these grasps is the best. Desirable qualities for a
grasp include stability and robustness to positioning errors and noise.

5.3.1 Literature Review

Two-fingered grasping has not come under such scrutiny since dextrous hands
have become widespread; however, there is still some recent literature dealing with
this problem. Smith et al. [22] examine parallel jaw grasps on two dimensional
slices through the centre of mass of a polygonal three dimensional object. Five
criteria are considered, although three of these are binary conditions that must
be satisfied, or the grasp will not be considered. These are: minimum distance
from corners of grasp points; the force closure property; and accessibility for the
grippers. The two quality criteria are dependence on friction and torque required
to prevent the object from rotating. Both of these criteria were included in the
system developed in the project.

Montana [18] uses some other properties to evaluate grasp quality. These include:
object curvature, gripper shape, and gripper and object viscoelasticity (‘softness’
or ‘squishiness’). Curvature makes use of the fact that the more concave a surface
%s, the b'etter it is for gripping (within limits')‘, \an(g’g&%ju}i% feater 4 copvex §urface
is to being planar, the more surface area;.\’ ﬁowever, these propoérm\ag were not
implemented, as the gripper properties wete assumed to be constant, the object
viscoelasticity was unknown, and calculating object curvature was considered to

be beyond the scope of the project.

5.3.2 Implementation

As determining grasp quality is not the focus of this project, only a simple (though
reasonably effective) method for determining grasp quality was used, though it
would be simple to ‘plug in’ a more sophisticated method. It consists of two
criteria, which are merged to produce a single value for grasp quality. These are
dependence on friction and distance from the grasp axis to the centre of mass of
the object.

The dependence on friction can be found by calculating how near the grasp axis
is to the limits of each of the friction cones. All other factors being equal, a grasp
that uses two parallel, oppesed grasping points (i.e. the grasp axis is aligned
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with the friction cones’ orientations) is better than one whose grasping points are
more nearly perpendicular (see Figure 5.2). Given the angles between the grasp
axes and the friction cones ¢, ¢ and the friction angle «, the independence from
friction Q) is calculated thus:

- $1 + @2

2c¢

Qy (5.1)

This gives a score in the range 0 to 1, where 1 represents grasping points that are
perfectly parallel, and 0 represents a grasp that is on the point of slipping from
the robot’s fingers. The grasp zone is the area where the finger may be placed
while retaining the force closure property; the higher @y is, the larger the grasp
zone. It is determined by finding the points where the grasp axis coincides with
the outside of the friction cones. A better grasp gives a robot more leeway in the
exact placing of its fingers, making the grasp more likely to succeed.

Of course, if a finger is misplaced within its grasp zone, the grasp zone for the
other finger will change. The ‘true’ grasp zone is the area in which a finger can
be placed anywhere while still guaranteeing force closure. This is half the size of
the grasp zone.

]
0

Figure 5.2: The left hand grasp is better than the right hand one, as the sum of
angles between the grasp axes and the outsides of the friction cones is greater.
The left grasp zones are larger, giving more leeway in placing the fingers. The
‘true’ grasp zones are shown inside the main grasp zones.

The second measure of quality that the system uses is the distance from the centre
of mass to the grasp axis, illustrated in Figure 5.3. Minimising this distance
results in a more stable grasp; the object is less likely to rotate around the grasp
axis, as the weight is more evenly distributed in front of and behind the grasping
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points. This can also be seen as minimising the amount of torque that the fingers
must apply to prevent the object from rotating.

5 . - ’
Moot M-
. .
. - . -
< - ,
) .
. - . R
. L , 5
7 3 G >
. 2 . X
. = .
. .
. . .
, .

Figure 5.3: The left grasp, denoted by the two large circles, is likely to cause the
object to rotate in the indicated direction, as the grasp axis is far away from the
centre of mass, denoted by the small circle. The axis of the right grasp, however,
passes straight through the centre of mass, so the object will not rotate when it
is lifted.

Of course, it is not possible to know the centre of mass of an unknown object.
However, assuming that the object’s mass is evenly distributed, it is possible to
make an estimate using the captured range data. The centroid of the data is
simply the mean z, y and z value of all the data points; this is an approximation
of the object’s centre of mass. Not having a complete set of data points means
that this value will probably be less accurate than in the ideal case, particularly
with data from only one view. However, because the system does not need to
calculate the centre of mass until it is evaluating grasps, and it needs at least two
roughly opposing views to produce force closure grasps, it will have a reasonable
representation of the object. This approach was found to work well in determining
the approximate centre of mass of the object.

The smallest distance from a point to a line can be found with the following
equation from Mathworld [16], where I, and Iy are two points on the line (the
centres of mass of the two grasping patches were used), and p'is the point whose
distance from the lines is desired (the centre of mass of the object):

|l — 0]

The cross product @ x ¥ is calculated as follows:

i x T = &, T, — @,0,) — §(U0, — ©;0z) + 2(Ts0y — Uyls) (5.3)

where %,  and 2 are unit vectors along each axis.

It is desirable for this distance to be converted into a measure between 0 and 1,
so that it can be easily merged with the other criterion. Of course, the distance d
should be minimised, so it should be subtracted from some maximum allowable
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distance m. However, using a constant for m would treat differently sized objects
inconsistently, ¢.e. using a value for m consistent with a large object would mean
that all distances in a small object would become insignificant, while a small
value of m would give a negative quality for all but the smallest distances in
large objects. For this reason, m was determined dynamically by finding the
largest distance from a data point (not necessarily a point in a grasping patch)
to the object’s centre of mass. The quality measure for distance to the object’s
centre of mass, taking values between 0 (bad) and 1 (good), is:

Qe = (5.4)

Finally, the overall quality measure is simply the average of Q; and Q.

5.4 Results

The tables in the Appendix show how different pairings of views produce different
numbers and qualities of grasps. For each object, the number of grasps found
when two views were registered is shown, followed by the number of these that
satisfied the force closure property, and the maximum quality of grasp that these
two views offered. A dash indicates that the two views could not be registered
together, or that no grasps were found. The best grasp is shown graphically.

Figure 5.4 shows a grasp of quality 0.82575, found after five views had been
taken of the stone. The other grasping patches and their surface normals are also
shown.

5.5 Evaluation

A value of 0.75 was chosen as the threshold for a good enough grasp. This ensured
that both criteria were at least reasonably good; scores of 0.5 and 1 represent the
worst case for one criterion. As the results show, the cow and the wooden block
have many combinations of two views that result in a good enough grasp. The
stone has considerably fewer force closure grasps, and all of them score below
the threshold. The result of this is that the stone will always require at least
three views before a good enough grasp can be found, while good grasps for the
wooden block and the cow will often be found from just two views.

The centre of mass detection could be slightly inaccurate in its estimation; this
caused grasps to tend away from the true centre of mass of the object. For
example, given four faces of the wooden block (three sides and the top), the top
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face and the side face whose opposing face had not been seen caused the estimated
centre of mass to be shifted in their direction (see Figure 5.8). This sometimes
caused grasps to gravitate away from the optimal grasping position; however, it
was not a major problem.

In practice, a typical ‘best grasp’ scored from roughly 0.8 to 0.9 and had similar
friction and distance qualities. Generally, several grasps of this quality were found
after a few iterations; the highest scoring one of these was returned as the final

grasp.
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Figure 5.4: The green points are those that form part of a grasping patch; the
rejected points are in blue. The short red lines are the normals of the grasp-
ing patches. The long red line links together the two patches that formed the
successful grasp. The red dot is the stone’s estimated centre of mass.
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Figure 5.5: This is the best grasp that can be found from two views from the
stone data set. The two view positions are 0° elevation and 180° azimuth, 90°
elevation. This grasp scored 0.5889.

Figure 5.6: This is the best grasp that can be found from two views from the cow
data set. The two view positions are 0° azimuth, 90° elevation and 225° azimuth,
90° elevation. This grasp scored 0.92221.
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Figure 5.7: This is the best grasp that can be found from two views from the
wooden block data set. The two view positions are 225° azimuth, 45° elevation
and 45° azimuth, 45° elevation. This grasp scored 0.96703.
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Figure 5.8: The green centre of mass (circled) was shifted by roughly one sixth
of the side length towards the side and top faces.



6. Next Best View
Determination

The goal of this part of the system is to decide, given the grasping points found
in the current data, from which position the system should next capture data.
A simple voting structure was used, which, based on angles between grasping
patches and cell directions, decided which cell would be the best to examine
next.

The azimuth of the initial view was chosen randomly. However, the elevation was
always set to 45° for the first view. This helped with registration of subsequent
views; an elevation of 0° or 90° would have made it difficult to find views that
could be registered with data from the initial view.

6.1 Voting Structure

The hemisphere surrounding the object was divided into 17 cells, spaced at 45°
intervals. Figure 6.1 shows the front 11 of the 17 views used. This choice of
relatively coarse discretisation was made to reduce the number of scans required
per object for the simulation; for example, just reducing the step size to 30°
would have increased the number of scans required per object to 37. However, a
real robot would not be using pre-scanned views, but would be scanning to order,
allowing views from any azimuth and elevation. In this case, the step size might
be 5°, resulting in 1297 cells (360 + 5 = 72 cells per level, 90 + & = 18 levels,
1 cell at the top of the hemisphere; 72 x 18 + 1 = 1297 cells). This model was
proposed by Horn [13] and Connolly [8].

As discussed in Garcia et al.’s paper[11], this is not an ideal method for discretis-
ing a hemisphere. The cells are not of uniform size - those at the top have less
area than those nearer the horizon. This has the result that votes for an area
around the top of the hemisphere are likely to be split among several cells, while a
single cell representing the same area further down will collect all of the votes for
that area; the net effect is that cells nearer the horizon will have a better chance of
being voted for. A spherical discretisation map, as proposed by Garcia et al. [11],
or a tesselation based on a regular polyhedron, suggested by Horn [13], would
be superior. However, it was considered that given the relatively coarse level
of discretisation, neither of these more sophisticated approaches would provide
greatly improved results. Additionally, cells around the horizon are more likely
to be those of interest, as graspable points will often have normals corresponding
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?

Figure 6.1: Views were taken from the indicated points on the hemisphere towards
its centre (rear arrows and circles omitted for clarity).

to areas found in those cells, so this bias could be useful.

6.2 Face Quality Determination

Initially, the decision about which viewing cell each grasping point should vote
for was simple, as all that is required for a two-fingered grasp is a pair of parallel,
opposed grasping patches. The dot product of the normals of each unseen viewing
cell and each grasping patch was calculated (see Equation 1.1), and the one vote
allocated to each grasping patch was cast for the viewing point that resulted
in the lowest dot product; this corresponded to the patch that was most nearly
opposite it. The next view chosen was the one whose corresponding cell had the
most votes.

This simple algorithm was found to work well. However, some refinements were
made to improve its performance with some objects.

When the largest dot product of a grasping patch’s normal and every unseen
viewing cell is 0 or greater, it is highly improbable that any more information
will be found that will help form a grasp. The only situation in which this could
occur is that of a patch with a normal pointing straight up (see Figure 6.2), but
even then the number of points found would probably be too small for a patch
to be found.

Because finding a patch in this way was extremely unlikely, and in the vast
majority of cases a patch that had a dot product of 0 or more would nominate a

T —
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!

Figure 6.2: The dot product of the top patch’s normal and the viewing direction
is zero; however, the patch on the underside of the object could be used as part
of a grasp.

patch that would not be any use, it was decided to discount any votes that did
not have a good enough score, t.e. 0 was the maximum threshold.

A second improvement involved increasing the probability that a new view con-
tained significant new information, i.e. it was a reasonable distance from previous
views. If a grasp was not found after two iterations, or if corresponding points
could not be found for ICP, a view very close to the previous one was often chosen.
This is undesirable, as little new data will be captured from this view. Figure 6.3
shows one situation where this causes a problem. The initial view 1 (azimuth 45°,
elevation 0°) sees faces A and B. As B has a larger area than A, more grasping
points are found on it, and its favoured view 2 (azimuth 270°, elevation 0°) is
chosen. Unfortunately, the face seen by view 2 is irregular and offers no new
grasping points. The second round of voting acts on the same data as the first
round, but cannot this time vote for view 2. Instead, it will typically choose view
3 (azimuth 270°, elevation 45°). This offers information on the top face, but this
is of little use. A preferable view would be 4 (azimuth 180°, elevation 0°). This
captures grasping points that form grasps with those on face A, completing the
process.

Given this initial view, the smallest number of views possible is three (e.g. 1,
2 and 4). The system must be dissuaded from voting for views that are close
to other views that have already been seen. The process used was t0 find the
number of previously seen views within 45° in direction of the view under
consideration n, and to divide its number of &aws by n + 1. This reduces the
influence over the choice of the next view of cells that are in a similar region
to cells that have already been viewed. In the example above, view 4 would
be chosen over view 3, as the importance of view 3 would be diminished by its
proximity to view 2. The dot product d was used to determine which views were
within 45° of the view being considered; if acos(d)j45, the view is near.

<
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Figure 6.3: View 3 would normally be chosen after view 2 is found not to be
useful, though view 4 would be preferable.

6.3 Example 1

The following example used the stone data set; the initial view was from the 0°

azimuth, 45° elevation position. A grasp was found after three views had been
taken.

40 patches constituting 440 points were found in the first view’s data; these are
shown alongside the 101 points that were rejected in Figure 6.4. The votes that

rere cast given these patches are in Table 6.1. = Qb
W given P es are in 7 o0 W 7\’,«“

The view chosen was at the 180° azimuth, 45° horizon position. Its 615 points
were registered with the first view to give a new set of 1118 points. 88 patches
were found in this; 156 points were rejected. These are shown in Figure 6.5. 44
grasps (see Figure 6.6) were found at this stage; the best of these had a quality

of 0.64512. As this grasp quality was not good enough, a second round of voting
was carried out. The results are in Table 6.2.

The 180° azimuth, 90° horizon position provided 100 patches (see Figure 6.7)

following registration, and a good enough grasp (of quality 0.79824) was found.
This is shown in Figure 6.8.

6.4 Example 2

This example used the cow data set and an initial view from the 225° azimuth,
45° horizon position. The initial set of 126 patches, drawn from 1858 points, is
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shown in Figure 6.9. The votes are shown in Table 6.3; the view from the 0°

azimuth, 45° hoorizon position was chosen.
s 2

Following regis'tfation, the data set grew to 3354 points, from which 209 patches
were found. 580 force closure grasps were found; the best one had a quality of
0.87793 (see Figures 6.10 and 6.11).

6.5 Evaluation

The system successfully chose good next views for some objects, allowing grasps
to be found after typically two views. Generally, these were about 180° apart,
though this depended on what could be seen from the initial view. In cases where
the second view offered no useful information, further views from this area were
successfully avoided to allow views from more useful angles. However, the stone
typically required about five views before a sufficiently good grasp could be found,
although possible grasps were often found after just two or three views.

Tables of all results are in Appendix C.
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Figure 6.4: The initial stone data set. The points of the found planes are green,
the rejected points are blue. The red lines are the normals of the planes.
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Azimuth | Elevation | Votes
0° 0° 0
0° 45° 0
0° 90° 0

45° 45° 0
45° 90° 0
90° 45° 0
90° 90° 0
135° 45° 0
135° 90° 3
180° 45° 0
180° 90° 26 -
225° 45° 0
225° 90° 11
270° 45° 0
270° 90° 0
315° 45° 0
315° 90° 0

Table 6.1: First round of voting for the stone.

Azimuth | Elevation | Votes
0° 0° 0
0° 45° 0
0° 90° 12

45° 45° 0
45° 90° 7
90° 45° 0
90° 90° 0
135° 45° 0
135° 90° 2
180° 45° 0
180° 90° 14.5
225° 45° 0
225° 90° 9
270° 45° 0
270° 90° 6
352 45° 0
358 90° 11

Table 6.2: Second round of voting for the stone.
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Figure 6.5: The stone data set following the registration of the second view. As
before, the points of the found planes are green, the rejected points are blue, and

the red lines are the normals of the planes.
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-110

-115

-120

230

-280
270 _ogp  —285

-295
_305 -300

-310

Figure 6.6: The red lines are the normals of the patches used in feasible grasps,
the green lines connect the constituent patches of the grasps, and the red diamond
is the estimated centre of mass of the object.
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Figure 6.7: The stone data set following the registration of the third view. As
before, the points of the found planes are green, the rejected points are blue, and
the red lines are the normals of the planes.
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Figure 6.8: The red points are the planes to be used in the grasp, the green line
contains the grasping patch normals and the grasp axis, and the red diamond is
the estimated centre of mass.
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Figure 6.9: The initial cow data set. The points of the found planes are green,
the rejected points are blue, and the red lines are the normals of the planes.
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200

Figure 6.10: The patches found in the cow data set following the registration of
the second view. The points of the found planes are green, the rejected points
are blue, and the red lines are the normals of the planes.
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Figure 6.11: The red points are the planes to be used in the grasp, the green line
contains the grasping patch normals and the grasp axis, and the green diamond
is the estimated centre of mass.
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Azimuth | Elevation | Votes
0° 0° 0
0° 45° 0
0° 90° 66

45° 45° 0
45° 90° 12
90° 45¢ 0
90° 90° 28
135° 45° 0
135° 90° 6
180° 45° 0
180° 90° 9
225° 45°. 0
225° 90° 1
270° 45° 0
270° 90° 0
315° 453 0
3ili5e 90° 4

Table 6.3: First round of voting for the cow.




7 Conclusions

7.1 Experimental Conclusions

The aim of finding a good two-fingered grasp with just two or three views was
achieved in 75% of cases. This was dependent on the object being grasped: the
cow was grasped with data from only two views in all cases; a grasp was found for
the wooden block with two or three views in all cases except for one anomalous
instance; while the stone required three or five views in most cases. However,
in many cases where a good grasp was not found within two or three views, a
usable grasp was found. These grasps exhibited the fo,f:e closure property, but
their quality was not above the threshold of 0.75. The emphasis of the system
could be changed by altering this threshold; reducing it to 0.6, for example, would
emphasise speed rather than grasp quality, perhaps suiting a robot capable of

very precise finger placement, obviating the need for large grasp zones. Using -

this value would increase the success rate to 83% over all objects. Conversely,
4 value of 0.9 would suit an application that demanded very stable grasps, and
would require more views in most cases.

Range data registration and fusion was carried out successfully and with little
error. Registration of data sets that were too dissimilar (i.e. they had too few
common points) was rejected, preventing points from being registered where they
should not have been.

The grasping patch finding strategy was the slowest part of the system, but was
guaranteed not to miss out any feasible grasping patches, and had safeguards in
place to prevent unsuitable patches from being accepted. However, the removal
of a patch’s constituent points from_the pool of potential patches meant that
patch centres could be no closer thgn Smm to each other. When picking up
large objects this is of little import; however, a small object may require more
flexibility in finger placement to find a good grasp, as the shorter the grasp axis
is, the smaller the grasp zones are.

Although it is hard to objectively define a quality measure for a grasp, it was felt
that the system delivered good, perhaps even conservative, decisions on a grasp’s
quality. The slight inaccuracies in determining the objects’ centres of mass, as well
as the assumption that the objects’ masses were evenly distributed, could make
the grasps more reliant on torque to prevent the object from rotating However,
the distances from the grasping patches to the ideal points (those in line with
the true centre of mass) was small. The assumption of a fairly high coefficient
of friction was not altogether unwarranted; robot fingers are frequently rubber
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tipped to provide much-needed friction.

The best next view decision worked well in general, in particular for the wooden
block and the cow, allowing good grasps to be found with just two or three
views. Its performance on the stone was not quite as good; however, as can be
seen in Table B3, there are very few good immediate next views for the stone,
so this is not a simple problem. In this case, 1t is more of a matter of luck in
randomly choosing an initial view that has suitable partners for good grasps.
One reason for this poor porformance is that the rounded, graspable sides of the
stone require views from near the horizon to find enough points to form grasping
patches whose normals are almost parallel to the ground plane. These views are
hard to register with other, similar but opposed views, as they share few or no
points. Experimentation with different step sizes in discretising the hemisphere
surrounding the object could help: a view with an elevation of about 20° might
be able to see enough points to form a grasping patch, while also seeing enough of

the top of the stone to allow registration with a similar but diametrically opposed
vies (see Figure 7.1).
W

Figure 7.1: The view from an elevation of 45° can see only the grasping patch
represented by the dotted line, which is useless for grasping. The view from an
elevation of 20°, on the other hand, can see the edge of the stone that approxi-

mates the vertical grasping patch represented by the dashed line, which can be
used as part of a grasp.
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7.2 Furthef Work

79.1 Further Research

A major improvement to the system would be to allow three- or more-fingered
grasps. This would allow much more flexibility in both picking up and manipu-
lating objects, as well as more stable grasps. Several heuristics could be employed
in choosing the best next view. For example, Chinellato et al. [7] state that a
three-fingered grasp ideally has the three fingertips at the points of an equilat-
eral triangle to improve the balance of the grip. With this in mind, two grasping
patches could be picked at random, and the view observing their ideal companion
voted for, if it had not already been observed. The weighting of the vote could
be commensurate with the area of the triangle the grasp would form, a large
grasping triangle also rendering the grip more stable.

7.2.2 Implementational Improvements

Improvements could be made in several areas of the system:

e If it was necessary to register many views to obtain a good grasp, a more
sophisticated version of ICP could be used for simultaneous re-registration
of the captured data for more accuracy in this process.

e Crasping patch finding could allow patches to be closer together, and could
also evaluate the curvature of the patches to admit advantageously curved
areas. Concave patches are better than convex ones for grasping; this could
be used in grasp evaluation. This process could also be made more efficient
by attempting to retain the structure of the range images in areas that
shared no points with other views to speed up plane finding.

e Further measures could improve the assessment of a grasp’s quality; for
example, it is preferable for the grasp axis to be above rather than below
the object’s centre of mass, or the object may rotate when it is grasped.

o A less coarsely discretised hemisphere would allow finer control over the
next view. As pointed out above, this could have helped with finding
grasping patches on the edge of the stone. Also, a structure such as an
icosahedron would distribute votes more evenly, rather than concentrating
them around the horizon.

P —— T P



56

7. CONCLUSIONS




Appendix A. Range Data
Registration and Fusion Results

Tndex | Azimuth/° | Elevation/® | Cow Wooden block | Stone
s 0 45 2045 4054 541
2 0 90 1952 2950 431
3 45 45 1804 3674 599
4 45 90 1878 3276 180
5 90 45 1052 3039 616
6 90 90 1000 1900 83
i 135 45 1804 3360 676
8 135 90 1878 3253 174
9 180 45 2045 3436 615

10 180 90 1952 2861 433
11 225 45 1858 3306 533
12 225 90 1571 3220 324
13 270 45 1588 3307 313
14 270 90 915 1886 151
15 315 45 1858 3961 311
16 315 90 1571 3336 209
17 0 0 1309 2892 784

Table A.1: Number of points for each object and view angle for each view.

o
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Table A.2: Mean distance error for registering pairs of views from the cow data

set.
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0.34233
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0.64289
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0.63214
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0.25788
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0.27222

0.52376

0.53438
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0.52126

0.58924
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0.60147
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0.43599
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0.41483
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e
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0.54475
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—
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0.26762

0.39726
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0.39183

0.26888
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14

15

16
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0.51256

0.49701

0.49761

0.618

0.4905

0.46958

0.38186

0.4097

0.28784

0.41384

0.5027

0.52984

0.54342

0.50516

0.48284

0.36811

0.63689

0.62719

0.49551

0.37998

0.49436

0.38649

0.34717

0.60684

0.59054

0.48407

0.60691

0.47266

0.34938

0.4705

OO ~J| | U v WO DO} =

0.36997

0.49262

0.3701

e}

0.39973

0.47523

0.50655

0.47034

0.47107

0.36163

10

0.40917

0.26986

L

0.58567

0.58999

0.50071

0.57407

0.48567

0.48612

0.46664

12

0.36734

0.49526

0.4812

0.36765

0.37441

0.29447

13

0.47889

0.48986

0.38291

0.48074 -

0.49307

0.36247

14

0.40563

0.273

0.27723

0.28984

15

0.4956

0.47104

0.51318

0.56652

0.3996

0.57513

0.47737

16

0.41447

0.29946

0.49011

0.3759

0.51614

17

0.39298

0.26342

0.39295

Table A.4: Mean distance error for registering pairs of views from the wooden

block dataset.
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Table A.5: Number of points returned from fusion of two views from the wooden

block dataset.
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1

2

3

4

5

6

7

8

9

0.35409

0.48738

0.43409

0.50202

0.54301

0.55004

0.5934

0.32342

0.47769

0.38269

0.52564

0.44333

0.50363

0.3883

0.46299

0.45608

0.47748

0.49768

0.55782

0.56986

0.56142

0.61549

0.55694

0.39794

0.47122

0.52959

0.45566

0.48776

0.32507

0.4656

0.50066

0.5

0.59764

0.56175

0.4862

0.52134

0.61583

0.52376

0.51685

0.49503

0.45352

0.45145

0.49397

0.38053

0.4679 |

0.50958

0.5368

0.41617

0.47105

0.5613

@Oor\]@m»hwwl——*

0.50624

0.54157

0.50687

0.48115

0.51924

10

0.60697

0.5654

0.56234

0.32887

0.42772

11

0.5508

0.56485

0.57276

0.49742

12

0.52019

0.56956

0.57891

0.51632

13

0.50483

0.53721

0.46042

0.57461

0.57374

14

0.67737

15

0.50173

0.53605

0.54587

0.49105

0.54913

0.48003

0.6382

16

0.55721

0.56833

0.49579

0.31927

0.4035

0.525657

0.4868

0.51545

0.32162

0.49963

0.44576

0.54575

0.36563

10

11

12

13

14

15

16

17

0.55572

0.47239

0.51772

0.41898

0.50749

0.41381

0.33641

0.58152

0.52104

0.48089

0.52401

0.48231

0.56842

0.44053

0.55548

0.54554

0.54186

0.6096

0.43577

0.52071

0.3498

0.47547

0.52787

0.53457

0.55091

0.45894

0.39851

0.45399

00| ~I| S| U x| | DO

0.43209

0.61003

0.58422

©

0.38357

0.47527

0.45747

0.47741

0.45752

0.49114

0.35978

10

0.56099

0.43794

0.59216

0.47246

11

0.54724

0.37803

0.50972

0.51966

0.52308

0.55655

12

0.46791

0.41232

0.52736

0.47778

0.52987

13

0.58285

0.5816

0.54371

0.33076

0.49021

0.48147

0.42399

14

0.56703

0.51688

0.42127

0.57028

0.51175

0.47343

15

0.56083

0.48936

0.51431

0.34145

0.55034

16

0.488

0.49125

0.44535

0.55373

17

0.46495

0.54206

0.55583

0.33239

0.52786

0.49917

0.59439

Table A.6: Mean distance error for registering pairs of views from the stone
dataset.




1 2 3 4 5 6 7 8 9
1 - 621 | 681 [ 631 | 879 |588|1080| - |1118
2 | 646 - 826 | 528 | 993 | - | - = -
3 | 731 | 800 - | 665 | 758 | 621 | 951 | 756 | 1050
4 | 576 | 481 | 608 | — | 707 | 234 | - - -
51898 | 944 | 769 | 718 | - |625| 7567 | 703 | 901
6 | 585 593 | 225 | 577 669 | 231 | 682
711097 | - 974 777 | 704 | - 715 | 795
8 = 754 | — | 683 | 234 | 667 S 669
9 | 1112 1056 906 | 685 | 778 | 687 -
10| - - - | 1003 914 | 508 | 722
11 - 1056 989 885 | 667 | 686
12| - = 925 936 - 729
13} 788 = 828 | — | 842 | - | 849 750
14| - = = = = 749
15| 612 | 590 | 683 | 461 | 817 | - | 931 881
16 | 660 | 508 | 786 |374| - =
17 | 1012 [ 1092 | 907 | 911 | 914 | 830 | 912 | 902 | 920
10 1al} 12 | 13 | 14 | 15 | 16 17
1 - = - |7781 - |643| 669 | 1016
2 = i 3 = - | 605 | 549 | 1138
3.1 - |1056| - |841| - |726| 786 | 902
4 - = = = - | 454 | 370 | 902
5 | 1008 | 1006 | 921 | 847 | - |[825| - 874
6 = -3 = = = = 832
7| 931 | 934 | 940 | 895 | - |940]| - 894
8 | 491 | 664 - o 894
9 | 0769 | 733 | 771 | 809 | 760 | 888 | - 933
10 635 | 541 | 665 | - - - {1050
11| 652 = 584 | 667 | 641 | 801 | - 944
12| 515 | 557 518 | 400 | - - 988
13| 670 | 634 | 497 376 | 451 | 444 | 860
14| - 634 | 391 [ 359 | - |412] 292 | 918
LolllSos 792 458 | 421 | - | 406 | 863
16 - - 445 | 292 {398 | - 972
17 { 1057 | 965 | 982 | 906 | 914 | 900 | 968 =

63

Table A.7: Number of points returned from fusion of two views from the stone

dataset.
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Appendix B. Grasp Generation
and Evaluation Results
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— | 2256 | 2652 | 2070 | 4556 | 1640 | 6642 | — | 7656
2162 | - | 4160 | 1482 | 5700 | - - = =
3306 | 3782 | - | 2450 | 3660 | 2352 | 5700 | 3192 | 6972
1482 | 1190 | 2162 | - | 2756 | 156 - = i
5256 | 5550 | 3906 | 2652 | — | 2352 | 3540 | 2862 | 5700
1722 | - 2070 | 30 |2070 | - |2550 | 210 | 2862
7310 | - 6006 | - |4290 3192 - |3306| 3906

- - 2970 | - 2352 182 |2162 | - | 2550
8556 | - | 7140 | - | 5256 | 2652 | 3422 | 2862 | -

- = - - | 6806 | - |5402 | 1332 | 2756
6162 | - 5256 | - | 4422 | 2450 | 2256

= - - - | 5256 | - 5700 - | 3306
3660 | — [4032| - |4032; - |[4290 3192

- - = = 3306
1806 | 1892 | 2352 | 812 | 3660 | - | 5256 4830
2450 | 1560 | 3540 | 552 = =
6006 | 7310 | 5256 | 4160 | 4970 | 3192 | 4692 | 4422 | 4830

10 11 12 13 14 15 16 144

[y ey [y Uy Uy Sy -
\]@m.’kwwHOQOOO\]CDU'\QOJ[\D}—l
|
|

1 5 = - 3192 | - | 2450 | 2352 | 6480
2 = - = = - | 2256 | 1892 | 7832
3 - | 6806 | - |3906 3192 | 3660 | 5700
4 = = . 702 | 462 | 3782
5 | 6320 | 6162 | 4830 | 4290 | - | 3660 | -— | 4422
6 - = 0 - - | 3540
7 | 5700 | 5256 | 5700 | 4830 | — | 5256 | - | 4556
8 | 1482 | 2450 | - = = (], = - | 4422
9 | 2862 | 2652 | 3422 | 3540 | 3422 | 4290 | - | 5112
10| - |2162 | 1332|2162 | - = - | 6480
1112352 | - | 1722 ] 2256 | 2070 | 3422 | - | 4422
120112227 (F4e6t = (111227028 TS - | 5700
13 | 2162 | 1560 | 1190 | - 600 | 756 | 650 | 3660
14| - 1980 | 702 | 420 - 650 | 156 | 4692
15| - |3782] - 930 | 812 = 600 | 4160
6T = < = 650 | 272 | 650 - | 4556
17 | 6162 | 4830 | 5700 | 4422 | 4422 | 5112 | 5112 | -

Table B.1: Number of grasps considered for each pair of views from the stone
data set.
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Table B.2: Number of grasps exhibiting the force closure property for each pair

of views from the stone data set.
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Table B.3: Maximum grasp quality for each pair of views from the stone data
set. The best two view grasp is found when views 17 and 10 are registered.
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1
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4

5

6

8

27060

23562

31862

24180

36672

54990

62750

32942

36672

29070

33306

36290

75350

82082

18360

27722

22350

17556

26082

43890

62250

55932

30800

20692

29070

27060

24492

62750

60270

69960

23256

32220

13340

28392

9312

15750

31506

26732

37830

35910

26082

25760

11130

28730

25122

39402

56882

74256

44732

59780

18632

28730

24806

18360

ol 3| | O x| 3| DO

77006
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27390

e

62750
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55460
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24492

31152

—
o

82656

68906
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37056

33672

29756

32580

—
—

43472
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59292

22952

32580

22650

30800

19182

—
[N

64262
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[y
L
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33306

[
=
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32580
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[
(S

20592

25440

20592
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20592

31506

45156

58322

39800

[ou
D

28056

20022

29070

28056

28730

31506

59292

—
-3

29070

37830

23256

41412

10100

19740

23870

41006

27390

10

11

12

13

14

15

16

17

80940

44732

60762

31506

34782

22952

34410

26732

28806

62750

46010

36672

36290

31152

43890

72092

38220

31862

31152

17822

29070

20592

60762

47306

38220

36290

30102

39402

35532

21462

32220

17292

16252

18906

8190

35156

34410

28730

32580

32580

20022

25760

21756

29070

35532

32942

40200

22650

19182

28730

24492

51302

33306

60762

39402

30102

22350

34782

34410

32220

43056

62750

26082

40602

30102

48180

30102

61752

62250

45582

27390

22650

17822

17822

26732

39006

19740

21462

30102

29412

13572

46440

36672

35910

41412

23256

30102

11342

21170

32220

15006

34040

22052

12656

12656

23256

16002

18360

62250

28392

45156

16770

20592

23562

18632

58322

42230

37442

29412

14280

29070
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43472

19182

34410

16002

18090

18360

32942

Table B.4: Number of grasps considered for each pair of views from the cow data

set.
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s
no
w
N
ot
D
-J
oo
e

1 . . - 14 - | 34 | 702 - | 1074

2 =3 2 4 28 | 16 | 1078 1390

3 4 = 4 - 4 | 398 | 730 | 618

4 6 B 4 i 16 | 2 | 994 | 1314 | 1174

5 4 24 2 18 = 2 2 22 10

6 30 12 4 4 ia - 2 4 46

7 | 684 {1014 | 388 | 918 | 2 | 10 = - -

8 | 1068 | - 754 | 1368 | 22 | 14 — e 26

9 | 1074 | 1456 | 654 | 1324 46 - 16 -

10 | 1448 | - 822 - 34 | 30 2 4 =

11| 580 | 932 | 374 | 854 | 70 | 218 | 40 | 138 =

12 | 1038 | 1362 | - - |338| — | 252 | 372 | 22

13174822 58 | 202 | 510 | 298 | 790 | 278 | 490 | 20

14| 22 30 | 312 | 774 | 388 | - | 316 | 746 | 34

184 = 4 42 | 100 | 42 | 216 | 426 | 782 | 540

16| 10 = 212 | 470 | 342 | 632 | - 5 832

17| 4 40 2 58 - | 28 2 32 .
10 11 12 13 | 14 { 15 | 16 17

1| 1434 | 462 | 1014 | 6 800 &= 26 o

2 = 734 | 1408 | 52 | 26 | 4 2 50

3 | 858 | 386 = 224 | 302 | 48 | 234 <

4 == 912 = 552 | 820 | 162 | 398 | 44

5 | 36 62 | 402 | 322 | 406 | 50 = =

6 | 26 | 192 = 910 | — | 248 586 | 32

it 2 64 | 232 | 276 | 316 | 436 | — 2

8 6 110 | 376 | 642 | 780 | 794 | - 64

9 = : 30 6 26 | 576 | 958 =

0N~ = 4 8 38 | 32 | 8021182 | 54

fujivise 5 o 4 - | 322 | 548 8

12| 4 = = 14 2 |626| 974 | 88

13| 54 6 14 - = 5 16 30

14| 28 - = = = 2 = 36

15| 816 | 320 | 622 = 2 : — 2

16 | 1106 | 544 | 922 | 16 2 7 i 64

171 40 = 66 10 | 48 | 16 | 58 —~

Table B.5: Number of grasps exhibiting the force closure property for each pair
of views from the cow data set.
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0.64415

0.59242

0.84641

0.87147

0.42482
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0.81849
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0.85142
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0.80887

0.86062

0.86832

0.51044

0.58342

0.54115

0.55896

0.50138

0.59144

0.62123

0.50931

0.62045

0.48245

0.51864

0.61194
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0.57492

0.62086

0.86425

0.86653

0.83805

0.81723

0.56094

0.63741

0.87164

0.84147

0.86594

0.59179

0.62004

0.60759

0.86869

0.87666

0.8548

0.87387

0.59174

0.54238

0.89216

0.83803

0.66293
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0.43846

0.44498

0.87139
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0.86052
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0.4583
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0.85536

0.79161
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0.85175

0.70193

0.81492

0.64336

0.57058

0.87259

0.82976

0.87692

0.91038

0.85681

0.58199

0.83064

0.86461

0.84521

0.83628

0.52495

0.46784

0.8059

0.84223

0.88577

0.83949

0.88422

0.4043

O | Oy U =] W DN~

0.7137

0.84581

0.87068

0.83384

0.82798

0.63767

[{e]

0.44557

0.60912

0.42919

0.52691

0.87619

0.91715

10

0.43884

0.62082

0.79683

0.63055

0.88393

0.89929

0.64434

11

0.47082

0.87253

0.9207

0.45027

12

0.48677

0.63898

0.47832

0.8377

0.80992

0.68899

13

0.68679

0.49112

0.73039

0.72802

0.56123

14

0.59692

0.20742

0.32163

15

0.8781

0.86297

0.91587

0.41953

0.41392

16

0.8869

0.79576

0.71573

0.39336

17

0.66141

0.83013

0.70004

0.57568

0.65683

0.58637

0.71329

0.64164

Table B.6: Maximum grasp quality for each pair of views from the cow data set.
The best two view grasp is found when views 12 and 2 are registered.
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1

2

3

4

5

6

i/

8

9

141752

149382

218556

214832

242556

197580

390000

215760

164430

182756

122850

93942

89102

121452

115940

130682

121452

270920

167690

212060

98910

194040

211140

87320

227052

225150

218556

142506

203852

83232

175980

144780

240590

178506

109230

120062

104652

193160

206570

146306

199362

74256

77006

131406

105300

305256

222312

197580

92720

192282

234740

239610

180200

336980

163620

196692

135056

202950

202950

115260

159600

197580

150156

122850

159600

107912

190532

95172

257556

184470

223256

230880

1185330

158802

142506

171810

122150

118680

129240

1198470

176820

156420

193160

217622

93330

324207

173472

[ A e e e R
a5l ml el o] S| 5] © | | o o m| o] =

167690

128522

105300

99540

116622

10

11

12

.13 

14

15

16

1%

325470

187756 |

241572

175142

227052

129960

7216690

204756

127092

138756

120756

171810

90902

| 165242

256542

177662

249500

228962

116622 |

7148610

175980

73712

51756

154842-

148610

100806

218556

135056

159600

69432

97032

235710

178506

126380

113232

204756

171810

191406

86142

177662

120756

115260

148610

88506

113906

141752

243542

64770

85556

202050

219492

85556

303050

214832

112560

220430

93942

152490

217622

88506

141752

105300

109230

177662

107912

133590

271962

127092

131406

132132

I e e e ey e
= et Bl e o] M = = K- RN R RS U R R

273006

234740

234740

93942

226100

102720

17

89700

113906

131406

Table B.7: Number of grasps considered for each pair of views from the wooden
block data set.
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1 2 3 1 5 6 7 8 9
T - - — ~ | 2352 | 16806 | 11466
2 = =) i = - = — iy ]
3 = = 3 = = — [ 1200 | 10284 | 6850
a0lE, = — = - = — [ 1948 | 16536 | -
5 . == — s = s . E=) -
6 — — = . = — s o -
7 | 2196 | - | 1258 | 1890 | - - = - =
8 - — [ 10686 [ 16098 | - | - = - -
9 | 12476 | — | 6570 | 11196 | - :: - = =
10 o — | - o = i = =
11 | 4546 | — | 3466 3728 | 5288 | 2038 | 4738 | -
TR | - = = — [ 7706 | 19360 | -
T3 = — [ 3760 | - |15626| - | 9094 =
14| - = - = z = = 5 -
i — [ 1684 | 7796 | 7350 | - | 4880 | - | 5844
T — | 3478 | 16288 | - = - - -
7 - - - - - - -
10, [ ALT|. 12 2 13, |s 14 | a5 gk W6 AT
1 | 21108 | 4680 | - - - - = =
2 — - = A = = = e
3 — |3694] - | 3582 - |1820] 3646 | -
aql = = = - 7972 | 17010 | -
5| - |3716 14972 | - |7330] - =
6l - 510 = E — = =
7| — | 222678128 | 7934 . — 5048 [ - _
8 | - |4242 (18348 - - - - -
9 - - = - T -
0] - - - - - - - =
il - = = — [ 2264 | 4202 | -
I = - - = — 8468 [ 15446 | -
%3 [ - - E 38 | - 8 Z
R = = = - = = - =
15| - |2144| 8774 | - = - -
16| - |4236|16338 | - — . =
T2 - - - - — = -

Table B.8: Number of grasps exhibiting the force closure property for each pair
of views from the wooden block data set.
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1 2 3 4 5 6 7 8 9
1| - = = . - ~ | 0.86596 | 0.92765 | 0.90769
2 — = = = - — — — [
3| - = _ . - ~ 088237 | 0919 | 0.91337
i - . = - . — [0.83504 | 0.94471 | -
5 — — . - — = — — sz
6 — - . . = — 5 = =
7 (081587 | - | 0.88593 [ 0.85438 | - - = = -
8| - ~ [ 0.92198 [0.93433 | - - - - -
9 (090378 | — |0.89251|0.90313 | - - - - .
0] - = - . - = - -
11 | 0.94865 0.92209 | - | 0.91504 | 0.89341 | 0.88119 | 0.89515 | -
12| - - = - - — [0.92279 | 0.93498
13| - — 084881 | - | 0.93839 0.93156 | -
4| - - - - : = = =
15 - ~ [ 0.85866 | 0.94380 | 0.95661 | - | 0.92401 | - | 0.84607
16 = [0.72072 | 0.93523 | - - - -
17 = =4 == =5 3E g . . .
10 11 12 13 14 15 16 17
1 |0.93685 | 0.90756 | - = - - - -
2 fzz . — s . . o =
3| - |006703| - |083956| - |0.85854|0.84485| -
i - - = - 0.93753 | 0.9501 | -
5 ~ | 005888 | - |003524| - | 0.9084 | - -
6 0.92387 | - - = = . -
7 1 - | 0.89571 | 0.94647 | 0.90286 | - | 0.90614 | - .
8§ | - |0.89646 | 0.95808 | - = : - -
9 | - - = = — 083908 - -
0| - = = : Z - - -
i) - & = - - 0923 | 095099 | -
12 - . - ~ 088249 [ 093514 | -
13 - - = 054098 - | 037195| -
14| - - B = = — =
15 0.92102 | 0.89569 | - S E = -
16 0.91971 | 0.92149 | - = S - -
17| = - - = - - -

Table B.9: Maximum grasp quality for each pair of views from the wooden block
data set. The best two view grasp is found when views 11 and 3 are registered.




Appendix C. Overall Results

As the system is entirely deterministic once the initial viewing position has been
chosen, and there are only eight initial viewing positions (the initial elevation was
set to 45°), each object can only be tested eight times. The results are shown

below.
Initial Total Best grasp | Best grasp | Final Number of
azimuth | views after two | after three | grasp patches in
views views quality | initial view
0° 2 0.91397 = 0.91397 | 367
45° 2 0.91764 - 0.91764 | 293
90° 3 0 0.93783 0.93783 | 265
135° ) 0.84368 -5 0.84368 | 260
180° 2 0.91747 - 0.91747 | 303
2253 2 0.95023 = 0.95023 | 254
270° 2 0.94127 - 0.94127 | 294
315° 11 0 0 0.92004 | 318
Second | Number of | Number of | Third Number of | Number of
view votes patches in | View votes patches in
second view third view
0° 180°/45° | 205/299 465 = < =
45° 180°/45° | 125/283 410 = = =
90° 0°/45° 122/263.5 | 468 180°/90° | 202/403.5 | 677
135° 0F//452 144/256.5 | 455 =2 = e
180° 0°/45° 249/301.5 | 490 = =
2253 0°/45° 150/254 445 B
270° 90°/45° | 126/293 399 = = =
315° 0°/45° 122/310 350 180°/90° | 121/282 n/a

Table C.1: Summary of results for the wooden block data set.
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76 APPENDIX C. OVERALL RESULTS
Initial Total Best grasp | Best grasp | Final Number of
azimuth | views after two after three | grasp patches in
views views quality | initial view
0° 3 0.64512 0.79824 0.79824 | 40
45° 5 0 0.74447 0.83714 | 48
90° 16 0.61699 0.63898 0.79376 | 49
135° 5 0 0 0.82575 | 57
180° 3 0.64443 0.80140 0.80140 | 48
225° 12 0 0 0.85057 | 41
270° 3 0 0.79577 0.79577 | 22
315° 5 0 0 0.84321 | 22
Second | Number of | Number of | Third Number of | Number of
view votes patches in | View votes patches in
second view third view
0° 180°/45° | 26/40 88 180°/90° | 14.5/61.5 100
45° 180°/45° | 15/48 84 0°/45° 23/72.5 100
90° 270°/45° | 17/49 66 225°/90° | 15/54.5 79
135° 315°/45° | 20/57 i3 270°/90° | 18/60.5 80
180° 0°/45° 24/48 93 180°/90° | 14/66.5 99
225° 0°/45° 19/41 n/a 45°/90° | 13/31.5 n/a
270° 45°/45° | 7/22 64 180°/90° | 15/54 87
315° 135°/45° | 10/22 73 270°/90° | 19/60.5 80

Table C.2: Summary of results for the stone data set.
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Initial Total Best grasp | Best grasp | Final Number of
azimuth | views after two | after three | grasp patches in
views views quality | initial view
0° 2 0.87764 = 0.87764 | 150
45° 2 0.89818 = 0.89818 | 134
90° 2 0.90454 = 0.90454 | 68
135° 2 0.89993 =2 0.89993 | 133
180° 2 0.87764 = 0.87764 | 150
225° 2 0.87793 = 0.87793 | 126
270° 2 0.92538 = 0.92538 | 107
315° 2 0.87027 = 0.87027 | 127
Second | Number Number of | Third | Number Number of
view of patches in | View of patches in
votes second view votes third view
0° 180°/45° | 101/143 251 ~ - =2
45° 180°/45° | 73/133.5 | 237 - = )
90° 270°/45° | 20/67.5 132 — = =
135° 0°/45° 72/132.5 | 239 - = =
180° 0°/45° 101/146.5 | 251 - = N
225° 0°/45° 66/126 209 = =
270° 90°/45° | 52/107 133 = = =
315° 180°/45° | 63/125.5 | 200 o = 5

Table C.3: Summary of results for the cow data set.

T T T T T T T

e ———————




78

APPENDIX C. OVERALL RESULTS




Bibliography

[
2]

3]

[4]

[9]

3D Scanners (UK), http://www.3dscanners.co.uk

Bergevin, R., Soucy, M., Gagnon, H. and Laurendeau, D. “Towards a
general multi-view registration technique”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 5, pp 540-547, May 1992

Besl, P. J., and McKay, N. D. “A Method for Registration of 3-D Shapes”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp 239-256, Feb 1992

Blais, G. and Levine, M. D. “Registering Multiview Range Data to Cre-
ate 3D Computer Objects”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 8, pp 820-824, Aug 1993

Brujic, D. and Ristic, M. “Analysis of Free Form Surface Registration”,
Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp 393-396, 1996

Chen, Y. and Medioni, G. G. “Object modelling by registration of multiple
range images”’, Image and Vision Computing, vol. 10, no. 3, pp 145-155,
Apr 1992

Chinellato, E., Fisher, R.B., Morales, A. and del Pobil, A.P. “Ranking
planar grasp configurations for a three-finger hand”, Proc. IEEE Int. Conf.
on Robotics and Automation, Taipei, pp 1133-1138, September 2003

Connolly, C. J. “The determination of the next best views”, Proc. IEEE
Int. Conf. on Robotics and Automation, St. Louis, pp 432435, October
1985

Eggert, D., Fitzgibbon, A. W. and Fisher, R. B. “Simultaneous registration
of multiple range views for use in reverse engineering”, Proc. Int. Conf. on
Pattern Recognition, Vienna, pp 243-247, Aug 1996

[10] Fisher, R. B. Advanced Vision, http://www.inf.ed.ac.uk/teaching/

modules/av/MATLAB/TASK3/

[11] Garcia, M. A., Velazquez, S. and Sappa, A. D. “A Two-Stage Algorithm

for Planning the Next View From Range Images”, Proc. British Machine
Vision Conference BMVC98, Southampton, pp 720-729, September 1998

[12] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W.

“Surface reconstruction from unorganized points”, Proc. SIGGRAPH 92,
Chicago, pp 71-78, Jul 1992

79

A

————



80 BIBLIOGRAPHY

[13] Horn, B. K. P. “Extended Gaussian Images”, Proc. IEEE, vol. 72, no. 12,
pp 1671-1686, December 1984

[14] Massios, N. A. and Fisher, R. B. “A Best Next View Selection Algorithm
Incorporating a Quality Criterion”, Proc. British Machine Vision Confer-
ence BMVC98, Southampton, pp 780-789, September 1998

[15] Masuda, T. “Object Shape Modelling from Multiple Range Images by
Matching Signed Distance Fields”, Proc. 1st Int. Symposium on 3D Data
Processing, Visualisation and Transmission, Padova, pp 439-448, Jun 2002

[16] MathWorld, http://mathworld.wolfram.com/

[17] Mian, A. S. “Automated 3D Model-Based Free-Form Object Recognition”,
http://www.csse.uwa.edu.au/"ajmal/

[18] Montana, D. J. “Contact Stability for Two-Fingered Grasps”, IEEE Trans-
actions on Robotics and Automation, vol. 8, no. 4, Aug 1992

[19] Nguyen, V.-D. “Constructing Force Closure Grasps”, Int. Journal of
Robotic Research, vol. 7, no. 3, pp 3-16, 1988

[20] Sanchiz, J. M. and Fisher, R. B. “A next-best-view algorithm for 3D scene
recovery with 5 degrees of freedom”, Proc. British Machine Vision Confer-
ence BMVC99, Nottingham, pp 163-172, September 1999

[21] Sarcos, Inc., University of Utah, MIT. Utah/MIT Dextrous hand, http:
//www.sarcos.com/telespec.dexhand.html

[22] Smith, G., Lee, E., Goldberg, K., Bohringer, K., Craig, J. “Computing
Parallel-Jaw Grip Points”, IEEE Int. Conf. on Robotics and Automation
(ICRA), Detroit, pp 1897-1903, May 1999

[23] Soucy, M. and Laurendeau, D. “Surface Modelling from dynamic integra-
tion of multiple range views”, Proc. 11th Int. Conf. on Pattern Recognition,
The Hague, pp 449-452, Sep 1992

[24] Stuttgart Range Image Database, http://range.informatik.
uni-stuttgart.de/

[25] Turk, G. and Levoy, M. “Zippered Polygon Meshes from Range Images”,
Proc. SIGGRAPH ’94, Orlando, pp 311-318, Jul, 1994

[26] Wren, D. and Fisher, R. B. “Dextrous hand grasping strategies using pre-
shapes and digit trajectories”, Proc. IEEE Int. Conf. on Systems, Man and
Cybernetics, Vancouver, Vol 1, pp 910-915, October 1995

[27] Zhang, Z. “Iterative Point Matching for Registration of Free-Form Curves
and Surfaces”, Int. Journal of Computer Vision, vol. 13, no. 2, pp 119-152,
Oct 1994

e —— T

e rm



