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Abstract: Range Imaging offers an inexpensive and accurate method of
digitizing the shape of three dimensional objects. A Low cost range sensor has
been recently developed at the University of Edinburgh, which acquires range
images with colour texture. In order to build build a complete VRML model of
an object, multiple views of the object must be taken to achieve total coverage of
the surface. The principal goal of the project is to investigate the ease with which
the models of everyday objects can be developed. There are several approaches
of implementation and the final model depends on the approach.
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1. Introduction

Range imaging offers an inexpensive and accurate means for digitizing the shape of
three dimensional objects. Because most objects self occlude, no single range image
suffices to describe the entire object. Here a method for combining a collection of
range images into a single polygonal mesh that completely describes an object to the
extent that it is visible from the outside, is presented.

Currently, there is no procedure that will allow a user to easily capture a digital
description of a physical object. A dream tool would give the ability to someone to
have a complete digital description of an object in a few minutes. The reality however
is different and much of the digitization is done by a user touching a 3D sensing probe
to hundreds or thousands of positions on the object, then manually specifying the
connectivity of these points. Fortunately range scanners offer promise in replacing
this tedious operation.

A low-cost range sensor has been recently developed at the University of Edinburgh,
which acquires range images with colour texture. By just using the range sensor
enough information is available to derive a range image. Simultaneously, a colour
image can be acquired to create a texture image that can be mapped on to the surface.
A range scanner is any device that senses 3D positions on an object's surface and
returns an array of distance values. A range image is a mxn grid of distances (range
points) that describe a surface either in Cartesian coordinates (a height field) or
cylindrical coordinates, with two of the coordinates being implicitly defined by the
indices of the grid. Quite a number of measurement techniques can be used to create a
range images, including structured light, time-of-flight lasers, radar, sonar and several
methods from the computer vision literature such as depth from stereo, shading,
texture motion and focus.

Range scanners seem like a natural solution to the problem of capturing a digital
description of physical objects. Unfortunately, few objects are simple enough that can
fully described a single range image. For instance a coffee cup handle will obscure a
portion of the cup's surface even using a cylindrical scan. To capture the full geometry
of a moderately complicated object multiple range images must be acquired in order
to achieve total coverage of the surface. The accuracy of the surface shapes from the
raw data depends on the implementation of the techniques applied to create the model.
The two main issues in creating a single model from multiple range images are:
registration and integration. Registration refers to computing a rigid transformation
that brings the points of one range image into alignment with the portions of a surface
that it shares with another range image. Integration is the process of creating a single
surface representation from the sample points from two or more range images.

The principal goal of the project is to investigate the ease with which complete
models of everyday objects can be developed. In more detail the method used here in
order to build a complete model involves the implementation of the following stages:

Acquire range data (with the aid of the range sensor)

Locate the markers (locate position of reference points)

3D location of markers (locate specific markers for each range image)
Marker correspondence (find identification of markers for each range image)



Marker removal (remove markers from test object)

Surface Repair ( reconstruct surface area left by marker removal)

Initial registration ( compute set of transformations that aligns the data sets to a
common coordinate system)

Further alignment ( further align the data sets according to techniques used)
Triangulation process (make the texture map of the object)

Colour map making (get the colour information for each 3D data point)
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3. Range Data Acquisition

Consider a small hippopotamus toy as the test object being scanned by the range
sensor. With the aid of the range sensor sets of 3D data points are collected. The range
sensor scans the entire object and thus multiple views of the object are being scanned.
Each 3D data set represents one of the multiple views of the object. By just using the
range sensor enough information is available to derive a range image. Simultaneously
a colour image can be acquired to create texture image that can be mapped on to the
surface. Figure 1 shows the typical information acquired by the range sensor. This is
only a small fraction of the existing 3D points data set. Figure 2 shows the range

image corresponding to this data set.
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Figure 1: Information extracted with range scanner. A set of 3D data points and
a set of RGB colour points.




Figure 2: Range image represented by a set of 3D data points and set of RGB
colour points



4. Marker Location

Each object being scanned has a set of markers placed on it. In this representation the
markers are some plastic spheres. Consider Figure 3, which is one of the range images
representing on the views of the hippopotamus. Starting from left to right the
identifications of the markers are the following: 1,2,8,9,5,7,3,10,11,6,4. Each marker
is identified with a unique number. For this test object fifteen markers (although not
all of them are visible from this view) have been placed and are many enough to cover
the entire surface of the object.

The center of each marker is located and thus its position on the test object. Further
more, the radius of each marker is calculated. This need in order to find out which
data points on the object are covered during the scanning. The radius of each marker
has to estimated separately since none of the markers are exactly the same and thus
can not be considered as perfectly similar. Each marker is given a unique
identification in order to recognise its position on the test object. These markers as
used as reference points and going to be needed at the initial registration stage.

Figure 4: Image view showing marker positions

At the marker location stage the markers existing in each separate image view are
identified. Thus for hippopotamus test object the markers for each of the seven
different views are:



SCAN
NO

MARKERS LOCATED IN CURRENT IMAGE VIEW

1 2 3 4 5 14

2 1 4 5 6

3 5 6 7 8 9 10 11 13 14 15
4 2 3 7 8 9 10 12 13 14 15
5 1 2 3 4 5 6

6 4 6 10 11 12

7 2 4 15




5. Marker 3D Location

5.1 An Introduction to the RANSAC Algorithm

The Random Sample and Consesus (RANSAC) algorithm introduced by Fischler and
Bolles [1] searches for suitable solutions directly using the data, repeatedly
constructing solutions from randomly sampled minimum subsets, which are not
related to any concept of an error surface and thus are not restricted to either an
assumption of smoothness or the computational form of the objective function. In
contrast to most optimization algorithms which attempt to maximize the quantity of
data used to identify a solution, RANSAC is expected to identify solutions computed
from outlier free data. To ensure this is the case the objective function used with
RANSAC must be robust to outlier data and so the use of a least square metric is
unsatisfactory. The scope of applicability of the algorithm is great and potentially
encompasses algorithms based on optimisation with or with out the use of local
derivatives. The use of RANSAC as a wrapper around closed form solutions to vision
problems gives potential scope for utility to these otherwise non-robust approaches.
RANSAC gives us the opportunity to evaluate any estimate of a set of parameters no
matter how robust or accurate the method that generated the solution might be. The
RANSAC method could thus be considered as an ideal approach to the solution of
many machine vision problems. However, the random nature of the search makes
direct use of RANSAC as optimisation algorithm inefficient.

RANSAC can be regarded as an optimisation algorithm since, given an objective
function it can determine the parameter set which best positions the model. Provided
that the data and the number of attempts are sufficiently large it is expected that
model position identified by RANSAC is close to the global solution. RANSAC does
not use any local information about the objective function. Instead it samples the
objective function at discrete locations by randomly sampling minimum subsets of
data and generating candidate solutions which are then evaluated. Consequently either
the initialiasation of the algorithm (which is random) or the local smoothness of the
objective function (of which RANSAC has no concept) does not restrict solutions.

Traditional RANSAC is often used to as means of identifying the inlier datapoints,
which are often used in a more conventionally optimisation strategy to find the
optimal minima. This is because RANSAC itself has no mechanism for searching
around data-borne solution. In the RANSAC with fusion algorithm (RANSAC-f) [2]
an ordered list is maintained, with the best n solutions evaluated by RANSAC. After a
number of iterations this list will be populated with outlier free solutions. However,
the longer the list is maintained the less likely it is that new sampled results will be
competitive enough to replace the top ranked solution. Therefore, once the list is
populated with good solutions the algorithm begins combining results in order to
generate improved solutions. When a solution is ranked high enough to enter the list
an attempt is first made to combine it with the solutions already present. Starting with
the top of the list the parameters from both solutions are averaged and a new solution
is found. This solution is then evaluated using the same method as the data point
solutions. If the score from the fused solution is better than both the new and the listed
solution then the recombined result is place in a second list and the listed element is
removed. before a solution is entered into this second list an attempt is made to



combine it with any solutions already present. Again if the combined result is better
than both the source data results then this solution is entered into a third list and so on
until no further combination is possible. At any point, if a combination solution is no
better than both source solutions it is simply placed in the current list at its ordered
location.

The performance of the RANSAC-f algorithm is noticeably improved over the
standard RANSAC approach, often achieving comparable results with a smaller
computational cost. Although the delay in the fusion process has a small impact on
the residual error, it has a significant impact on the rate of decay. RANSAC is
commonly utilized to identify an outlier free subset of data, This only possible if a
robust objective function is used and the algorithm is allowed to iterate for sufficient
cycles. The traditional method of determining the termination point requires the
proportion of outliers present in the data, information which is not commonly
available. The variant of RANSAC algorithm maintains ordered lists of competitive
solutions. The lists are used to uncover solutions which are not available to traditional
RANSAC by combining the parameters of previous good solutions. This has been
confirmed to be an effective technique in order to overcome the O(m) dependency of
the traditional RANSAC algorithm.

5.2 RANSAC Algorithm in Implementation

RANSAC algorithm is used here to get the 3D location of the markers in each image
view of the object. More specificaly the algorithm gives an output of the (x,y,z)
coordinates of the center of the marker sphere. It addition an extra information of the
radious (in mm) of each sphere is given.

The algorithm takes as input a data set of (x,y,z) coordinates for a specific image view
and outputs (x,y,z) coordinates representing the centre of spheres. A typical output of
an image view centre coordinates would be that of figure (3). Thus after executing
RANSAC algorithm for each image view we know which 3D points from the data set
correspond to a centre of a marker. Having the information of the marker radius we
later on find out which 3D data points are cover by the markers and thus for which
points surface information is missing.

11



Marker Positions for Image View No 1

X-COOT. y-COOr. Z-coor. radious
164.418915 -268.496704 -164.971390 2.704491
222.527695 -282.413208 -182.444702 2.526936
189.393631 -237.287262 -181.978455 2.546454
184.078522 -259.892670 -165.120117 2.787332
155.433258 -272.930267 -167.913925 2.743528

Marker Positions for Image View No 2

X-COOT. y-COOT. Z-COOT. radious
67.673096 -266.294037 -247.876587 2.380249
21.278929 -241.597000 -214.983536 2.762125
110.363976 -273.565125 -271.993530 2.502250
122.232414 -259.391052 -247.935074 2.537578

All numbers are in mm

Figure (3): (x,y,z) coordinates representing centre of spheres and radius of
sphere in mm




6. Marker Correspondence

Out of each image view on the test object we got a set of 3D points which correspond
to the centers of the markers for the specific image view. This was implemented in the
Marker 3D Location stage. Initially we don't know which point represents which
marker center on the test object. Thus we need to give a unique identification to each
3D data point; ie we need to know which 3D data point corresponds to which marker
center.

The implementation proceeds in the following way: for each view the distances
between the markers on the test object are calculated. Then the distances between the
3D data points from the output files (out of the Marker 3D Location stage) were
calculated. However, we already know which markers correspond for each view. Thus
the need here was to compare relative distances between the set of 3D data points and
between the set of markers, which belonged to the same view. Thus comparing the
distances between sets of 3D data points and sets of markers gives a 3D point-to-
marker correspondence. For each set of comparisons a common coordinate system
was needed. Thus the 3D point being the center of the camera was considered to be
the origin of the common coordinate frame. The centers of the camera for each
individual scan are shown in the following table:

SCAN NO | CAMERA CENTER

1 211.768 -277.00 54.572
2 226.768 -299.00 69.572
3 201.768 -279.00 74.572
4 201.768 -269.00 69.572
5 151.768 -293.00 74.572
6 181.768 -291.00 114.572
7 196.768 -281.00 99.572




7. Surface Repair

Once the markers have been removed from each image view there are some areas left,
which contain no information. These are the areas originally covered by the markers.
As we can see in figure (4) the information that existed in the black area and was
represented in the 3D data set concerned information about the marker surface and not
the test object surface.

\

Test Object Unknown area after marker removal.
Surface Area The surface information existed here
belonged to the marker surface.

Figure (4): Unknown surface area needed to be filled with information matching
the one represented by the surrounding area of the test object

The surface repair process will not give the original information of how the areas
covered by the markers were originally. It will use the texture already existing on the
rest of the plane and will try to match these areas with the plane. Thus the local plane
needs to be estimated and the markers points need to be projected onto the plane. To
fill the surface the colour form the local plane is going to be used. A method to
proceed with is the following:

The 1dea is to fill the unknown areas with 3D points that lie on a plane.
Let {X,} be the set of points on the marker.

Let {y} be the set of pints with in a distance D from the marker. A good distance is

about 2mm.
1. Fit a plane to {y}

!

2. Project {)C.} onto the plane.
This will give a set of sample points {y } at about the right density and lying close to

-

where the unobserved surface ought to be.



We also need to estimate a colour for each new point.
Let {C;} be the RGB colours of the points {y}

Let {‘Z j} be a 3D reconstructed point whose colour we are trying to estimate. The

following equation:

will interpolate the colours. It weights the colours of the observed points by the
distance from the reconstructed point. If the colours are blurred more that the normal
squaring the distances in the equation will reduce the blur. When the distances are
squared nearby colours are more emphasized. This colour reconstruction works well if
the colour is smoothly varying across the area. If there is a lot of texture nearby the
reconstruction will not work very well.

15



8. Initial Registration

This stage of the model reconstruction deals with the registration of range images into
a common coordinate frame from the initial estimate of the pose. Pose estimation is
the process of determining the translation and rotation of an object in one coordinate
frame with respect to another coordinate frame. A common need in machine vision is
to compute the 3D rigid transformation that exists between two sets of points for
which corresponding pairs have been determined. The algorithm used here is
considered as one of the most popular and it computes the solution to the following
problem.

Let {,n'} and {d i}, 1= 1...N be two corresponded point sets, such they are related by:

d.= Rm, * T + V, where R is a standard 3x3 rotation matrix, T is a 3D

translation vector and ]/ a noise vector. Solving for the optimal transformation
[ R,7 ] that maps the set {m,} onto {d,} typically requires the least squares error
criterion:

di_k‘mi_fz (D

D)

The algorithm used here was developed by Arun, Huang and Blostein [3] and is based
on computing the singular value decomposition (SVD) of a derived matrix. The
transformation rotation is represented using a standard 3x3 orthonormal matrix, while
translation is a 3D vector as in the equations above. The solution of this method is the
following. After noticing that, the point sets should have the same centroid at the
correct solution, the rotation component is found first by analysing point sets after
their translation to the origin. A 3x3 correlation matrix given by

N
T
H = ch,idc,i (2)
i=1
is computed based on these new centered point sets. Its singular value decomposition,

H=UA VT, is determined. The optimal rotation matrix is then R = [/ [J " This
computation is also known as the orthogonal Procrustes problem, the SVD solution
has been known for some time [¥]. The optimal translation is found as that which
aligns the centroid of the set {d i} with the centroid of the optimal set {d ,}’ that is

T=d-Rm.

The time complexity of the algorithm is of order O(N). Considering the of the linear
term of the time equation, the algorithm initially spends time computing the sums for
the correlation matrix. When considering the constant terms it computes the singular
value decomposition of a 3x3 matrix followed by matrix multiplications and
determinant operations.

A MATLAB pose estimation code in Figure (5) estimates the 3D transformation (3
rotation angles, 3 translation coordinates) from sets of matching 3D points.



% solves for the 3x3 rotation matrix R and 3x1 translation vector T given 3*n
% (n>2) matrices Y and X of corresponding points ideally stisfying Y = R*X + T
function [R,T] = solvepose(X,Y)

% solve for position

Ymean = mean(Y")";

Xmean = mean(X")";

K = (Y - Ymean*ones(3,1)")*(X-Xmean*ones(3,1)")';
[V,D,U] = svd(K);

D =eye(3,3);
D(3,3) = det(V,*U");
R = V*D*U;

T = Ymean - R*Xmean,;

Figure (4): Pose estimation code based on algorithm with SVD approach
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9. Refined Registration Using the ICP Algorithm

9.1 Introduction

A popular method of refining a given registration is the iterative closest point (ICP)
algorithm, firstly introduced by Besl and Mckay [$]. This iterative alignment
algorithm is relatively straightforward. Given a motion transformation that initially
aligns two data sets to some degree, a set of correspondences is developed between
features (usually points) in one set and the next. This is done in the following way: for
each point in the first data set, pick the point in the second which is closest to it under
the current transformation. From this set of correspondences, an incremental motion
can be computed which further aligns these points to one another. This find
correspondence/compute motion process is iterated until some convergence criterion
indicating proper alignment is satisfied.

Although simple the algorithm works quite effectively when given a good initial
estimate. However, there are two major drawbacks. The first is that it is not obvious
how the two set approach can be extended to handle multiple data sets. The second is
that proper convergence only occurs if one of the data sets is subset of the other.

More precisely, the point-matching algorithm is:

9.2 Rigid Iterative Closest Point Algorithm

Let S be a set of Ng points {sy,...,Sns} and M the model. Let || s -m || be the Euclidean
distance between point s € S and m € M. Let CP(s,M) be the closest point in M to the
scene point s.

1. Let T be an initial estimate of the ri gid transformation.
2. Repeat for k = 1.k Or until convergence:
(a) Compute the set of correspondences C =

Ns -
U (G CPT* ™ (5. M)}
(b) Compute the new Euclidean transformation T™™ that minimizes the mean
square error between point pairs in C.

9.3 Improvements to the Basic Algorithm

Many of the improved algorithms attempt to get a better correspondence between the
data sets. Incorrect correspondences could lead to the generation of non-optimal
transformations. The cause of an incorrect correspondence is the existence of points in
a data set, which are not in the other. One attempt to improve the algorithm changes
the point-to-point correspondence, to one between a point in a data set and a location
in the represented surface in the other data set. Such effort was first made by Chen
and Medioni [6]. The approach they followed is: the starting location was found as the
data point in the second set that is closest to a line through the first point in the



direction of its estimated surface normal. The tangent plane at this intersection point is
used as the surface approximation. The initial point is projected onto this plane to give
the corresponding location.

Such an improvement as the above does not deal with the issue of data sets that are
not subsets of another. A solution to this problem involves imposing a heuristic
threshold on either the distance allowed between points in a valid pair or the deviation
of the surface normals of corresponding points. Any pairs of points with distance
greater than the threshold are assumed to be incorrect. The thresholds are constants
related to the estimated accuracy of the initial transformations. Zhang [¥] has
computed an adjustable threshold based on the distribution of the distance errors at
each iteration.

All the techniques discussed up to now are designed to work with two data sets. Thus
if someone wants to merge multiple images he has to consider the approach of
examining the sequence in pairs. This method however, accumulates any errors in the
computations made, leaving the first and the last data set of the sequence poorly
aligned. One method that has searched for a more globally optimal set of
transformations is the following. Introduced by Turk and Levoy [8], it assumes that an
additional continuous cylindrical data scan is available. Individual linear scans were
registered to this, image which should have commonalities with each of them. Many
global optimisation techniques have been developed, but they are still rely on pairwise
correspondence computations.

In all of the techniques, computing potential correspondences is generally the most
time consuming step. In brute-force approach an O(N?) number of comparisons is
performed to find n pairs. A way to reduce the actual time is to subsample the original
data sets. An alternative is to use the full original data sets, but organise the search
using mire efficient data structures such as the k-d tree [4]. The k-d tree is even
efficient O(NlogN), when higher order features of the points are incorporated in the
distance metric.
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10. Triangulation Process

10.1 Integration

Integration of multiple range scans can be classified in to structured and unstructured
methods. Unstructured integration presumes that one has a procedure that creates a
polygonal surface from an arbitrary collection of points in 3D-space. Integration in
this case is performed by collecting together all the range points from multiple scans
and presenting them to the polygonal reconstruction procedure. The Delaunay
triangulation of a set of points in 3D-space is the basis of such a reconstruction
method [Boissonnat 84]. Other candidate for such surface reconstruction is a
generalisation of the convex hull of a point set, known as alpha shape [Edelsbrunner
92]

Structure integration methods make use of information about how each point was
obtained, such as using error bounds on a point's position or adjacency information
between points within one range image. A typical method [Soucy 92] is the following.
Given n range images of an object, first partition the points into a number of sets that
are called common surface sets. The range points in one set are then used to create a
grid of triangles whose positions are guided by a weighted average of the points in the
set. Subsets of these grids are stitched together by a constrained Delaunay
triangulation in one of n projections onto a plane.

10.2 Creating Triangle Meshes from Range Images

To represent the range image data at all stages we use a mesh of triangles [8]. Each
sample point in the mxn range image is a potential vertex in the triangle mesh. We
need to take special care to avoid joining portions of the surface together, that are
separated by depth discontinuities (Figure (6)).

To build a mesh we create zero, one or two triangles from four points of a range
image that are in adjacent rows and columns. We find the shortest of the two
diagonals between the points and use this to identify the two triplets of points that
may become triangles. Each of these point triplets is made into a triangle of the edge
lengths fall below a distance threshold. Let s be the maximum distance between
adjacent range points when we flatten the range image, that is, when we don't include
the depth information (Figure (6)). We take the distance threshold to be a small
multiple of this sampling distance, typically 4s. Although having such a distance
threshold may prevent joining some range points that should in fact be connected, we
can rely on other range images (those with better view of the location in question) to
give the correct adjacency information.
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Figure (6): Buiding a triangular mesh from the range points

10.3 Mesh Zippering

The central step in combining range images is the integration of multiple views into a
single object. The goal of integration is to arrive a description of the overall topology
of the object being scanned. The full topology of a surface is realized by zippering
new range scans one by one into the final triangle mesh Zippering two triangle
meshes consists of the following steps.

e Remove overlapping portions of the meshes.

e Clip one mesh against the other.
e Remove the small triangles introduced during clipping.
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11. Colour Map Making

Colour mapping is a common scalar visulalisation technique. The technique maps the
scalar data value to a representative colour. The mapping is usually done via colour
lookup table and the scalar values serve as indices into that table. The algorithm is the
following. If the values are to be mapped to n colours, then we must determine the
dynamic range (maximum - minimum) of the scalar data. If the index associated with
the minimum scalar values is zero and the associated with maximum scalar value is
n-1 the following will hold;

s(x) < min, index = 0;
s(x) > max, index =n-1;
index = n*(s(x) -min)/(max-min);
s(x) — colour-table (index)

Colour mapping is a one-dimensional technique since we are mapping a scalar value
to a single colour. However, the display is not limited to one dimension and can be
extended to two or even three dimensions. The key to colour mapping is the choice of
the lookup table. The table should accentuate the important features, while
minimising the less important differences



12. Conclusion

Range imaging is an inexpensive and accurate method for digitizing the shape of
three-dimensional objects. The accuracy of the surface shapes from the raw data
depends on the implementation of the techniques applied to create the model The
techniques involved here were discussed at the implementation stages. Some of the
techniques involved here are commonly used and approved due to their efficiency or
their ease of use. According to the complexity and efficiency of the techniques one
will get an accurate or less accurate surface shapes. The methods approached here
give accurate surface shapes to a certain extend.
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