
Zero-thresholding of KH and KJ sign images for multiple scalesegmentation of surfacesLi-Dong CaiDepartment of Computer ScienceJiNan University, Guangzhou 510632, China.Email: ldc@mars.jnu.edu.cnAbstractThis paper compares the KH and KJ sign imagesin the context of the zero-thresholding at single andmultiple scales. It points out that consistent zero-thresholding of curvatures remains necessary formultiple scale surface segmentation. Even thoughKJ sign image is a good choice for single scale sur-face segmentation with a zero-thresholding formula�J = �K, the KH sign image is a better choicefor multiple scale surface segmentation, whose zero-thresholding formula �K � 2jHj�H + �2H maintainse�ectiveness for both KH and KJ sign images.KeywordsZero-thresholding, KH and KJ sign image, Gaussianand mean curvature, multiple scale segmentation.1 IntroductionSurface segmentation is an important stage inearly vision processing. It can produce symbolic de-scriptions of surfaces for later processing, such assurface reconstruction or recognition.Apparently, descriptions of segmented surfacesdepend on the given shape category, which is deter-mined by some geometrical properties of surfaces.They also depend on the spatial scales at whichsegmentation is implemented since the signi�canceof surface shapes, like other surface features, maychange at di�erent scales. Surface segmentation atmultiple scales is therefore necessary.As the stringent properties of surfaces, curvaturesplay a fundamental role in surface segmentation. Asimple combination of the principal curvature signscan classify surfaces into six shape types: 
at, peak,pit, ridge, valley and saddle as illustrated in Tab. 1.A more sophisticated combination of principalcurvatures, which makes an implicit comparison ofboth principal curvatures in the mean curvature H,

Table 1: Surface shapes from the C1 and C2 curva-ture signs.C1 C2 � 0 +� peak ridge saddle0 ridge 
at valley+ saddle valley pitTable 2: Surface shapes from the K and H curvaturesigns. K H � 0 +� saddle minimal saddleridge valley0 ridge 
at valley+ peak (none) pitleads to the KH sign image:K = C1 �C2 (1)H = 12(C1 + C2) (2)It classi�es surface shapes into eight types: 
at,peak, pit, ridge, valley, saddle ridge, saddle valleyandminimal as illustrated in Tab. 2, where the ninthcombinationH = 0; K > 0 is excluded as an impos-sible case since H = 0 implies C1 = �C2, leading toK < 0. Unfortunately, this theoretically impossiblecase may occur in practical processing as the \phan-tom shape" if improper zero-thresholdings of K andH are applied. An investigation on this problem[5]resulted in the consistent zero-thresholding inequal-ity of K and H.Certainly, the \phantom" shape type can be re-placed with a new shape type sphere by appealing toa non-linear transformation from K-H plane to theK-J plane as shown in Fig. 1 and Fig. 2 in the nextsection, or by using a series of complex mappingsfrom C1-C2 plane to K-J plane as discussed in [4].Although the adoption of the sphere type has lit-tle substantial e�ect in segmentation results in thepresence of data noise and discretisation errors, the



removal of the \phantom" type could be signi�cantfor zero-thresholdings of curvatures. It raises a ques-tion: whether the KJ sign image makes the consis-tent zero-thresholding redundant?This paper gives a negative answer by comparingthe KH and KJ sign images in the context of thezero-thresholding at both single and multiple scales.2 KH sign image vs. KJ sign imageIt will be more intuitive if we represent the KHsign classi�cation in the K-H plane1 as in Fig. 1:
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Figure 2: Surface shapes represented in the K-Jplane.From the de�nitions of K and H, it is easy to seethat they subject to H2 � K. Therefore, a shadedregion which denotes the forbidden area H2 < Kmust appear on the K-H plane, This open regionhas the parabolic curve H2�K = 0 as its boundarywhich corresponds to the shape type sphere. This1Obviously, such a representation will also involve in themagnitudes of curvatures rather than their signs alone as il-lustrated by the shaded region in Fig. 1.

region also covers the positive K axis which corre-sponds to the \phantom shape" (H = 0; K > 0).By de�ning a functional�(�) = H2 � �K � 2 [0; 1] (3)the shaded region and its boundary can be describedas a family of parabolic curves in the form:�(�) = 0 � 2 [0; 1]; K 2 [0; 1) (4)where �(1) = 0 is the parabolic boundary curveH2 = K, and �(0) = 0 is the positive K axisH = 0; K � 0, i.e., a degenerated parabolic curve.As for those parabolic curves �(�) = 0; � 2(0; 1], note that �(�) is continuous, and monotonicwith respect to � for any K � 0. Thus, if undera transformation from (K;H) to (K; J), the bound-ary curve �(1) = 0 and the positive K axis �(0) = 0(K � 0) in the K-H plane are mapped to the samepositive axis in the K-J plane: J = 0; K � 0, so willbe the whole shaded region �(�) = 0; � 2 [0; 1).Therefore, the whole forbidden region will be trans-formed to null in the new plane and the \phantomshape" type will be replaced with the sphere shapetype as illustrated in Fig. 2.This task can be achieved by a simple (K;H) to(K; J) transformation: J2 = 4 �(0) ��(1), that isJ2 = 4 H2 � (H2 �K) (5)or J = 2H ~H (6)where ~H =pH2 �K (7)It is just the same as the transformation obtained byBesl in [4], using a series of complex valued mappingsfrom the C1-C2 plane to the K-J plane, where ~H ispresented as �H:�H = ~H = 12(C1 �C2) � 0 (8)3 Zero-thresholding at single scaleFor the KH sign image, a perturbation analysisin [5] has made explicit the relationship between thezero thresholds of H and K (see Appendix), givingthe consistent KH zero-thresholding inequality be-low: �K � 2jHj�H + �2H (9)By this formula, a zero-threshold value �K can beyielded from the zero-threshold value �H in order toprevent the \phantom shape" (K > 0; H = 0) fromoccurring.



Note that the major advantage of the KJ signimage is the removal of the \phantom shape" fromthe surface shape category. The consistency requiredbetween di�erent zero-thresholds is therefore relaxedalong with this removal. As J and K have the samedimension, it is hopeful that a single zero-thresholdcould be shared by both J and K, such as,�J = �K (10)However, this is only a conjecture since the fact thatK and J have the same dimension does not itself in-dicate more. Whether the conjecture is true shouldbe justi�ed by further analysis.As shown in [1], an algebraic error analysis of cur-vature computation based on local surface approx-imations usually produces some unrealistic resultssince too many terms are involved in the estimation,thus forcing the upper error bound to be overesti-mated seriously, giving little help for determiningthe zero-thresholds for curvatures. So it is preferredto start an analysis straightly from the principal cur-vatures themselves instead of those variables that areused to calculate the principal curvatures throughapproximation.Suppose that small perturbations �1 in principalcurvature C1 and �2 in C2 have the common bound�: 0 < j�1j; j�2j � � (11)If starting the analysis directly from Besl's de�ni-tions of J as in Eq. (6) and ~H as in Eq. (8), we shallget the following error estimation:jEH j = j (C1 + �1) + (C2 + �2)2 �Hj= 12 j�1 + �2j� � (12)jE ~H j = j (C1 + �1) � (C2 + �2)2 � ~Hj� 12 j�1 � �2j� 12(j�1j+ j�2j)� � (13)and jEJ j = j2(H +EH)( ~H +E ~H) � J j= 2jHE ~H + ~HEH + EHE ~H j� 2(jHj� + j ~Hj� + �2)� 2(2(jC1j+ jC2j)� + �2) (14)It should be noticed that the error bound givenby Eq. (14) might still be overestimated since many

intermediate terms, such asH; ~H;EH and E ~H , otherthan the primary terms C1 and C2 are involved inthe expressions (cf.[2]). In fact, by setting �H = �,Eq. (14) leads to the following constraint betweenthe thresholds of J and K:�J = 2�k (15)because �J � 2(2(jC1j+ jC2j)� + �2)� 2(2jHj� + �2)= 2(2jHj�H + �2H) (16)Changing the de�nition of J in Eq. (6) to itsequivalent one based only on primary terms C1 andC2: J = C21 � C222 (17)and taking a similar analysis, we will get:jEJ j = j2C1�1 � 2C2�2 + �21 � �222 j� 2(jC1j+ jC2j)� + �2= 2(jC1j+ jC2j)�H + �2H (18)This estimate provides a better error bound than inEq. (14), resulting in a zero-thresholding formula interms of H and �H :�J � 2jHj�H + �2H (19)which puts the zero-threshold of J at the same po-sition as the zero-threshold of K as given in Eq. (9),thus justifying the conjecture �J = �K. In turn,it shows the consistent zero-thresholding formula ofthe KH sign images remaintains e�ective even forthe KJ sign images2.4 Zero-thresholding at multiplescalesWhile an empirical imposition of a zero-thresholdto both J and K is feasible in a single scale process-ing, it is improper to use a unique value as the zerocurvature threshold for all scales; it is also imprac-tical to set up a sequence of zero thresholds for cur-vatures at individual scales, where the scale e�ectschange from scale to scale, including a decreasingnoisy pollution but an increasing surface distortionwhen the smoothing scale varies from �ne to large.A zero-thresholding formula working at multiplescales should be able to change the threshold value2The above analysis also shows that to keep Eq. (10) validJ should be calculated directly from principal curvatures C1and C2 as in Eq. (17) instead of from intermediate terms Hand ~H.



adaptively. The formula �J = �K does not have sucha mechanism, as it takes no account of the scalee�ects. But the formula �K � 2jHj�H + �2H can dothis job as it can introduce scale e�ects through theterm of H in the inequality. Once a multiple scaleprocessing has been started at a �ne scale, the zero-threshold of K will be determined with respect tothe whole surface S by:�H = max [�0; minS jHj] (20)where the �0 is a small positive number, say 0.00005,dependent on the given data and the task. Thenaccording to the following formula as proposed in[5]: �K = 2 AverageS jHj �H + �2H (21)the zero-thresholding goes on for larger scales with-out any supervision, where H changes continuouslywhen the scale increases.5 ConclusionThe comparison of the zero-thresholdings for theKH and KJ sign images shows that the consistentzero-thresholding is still required in the multiplescale surface segmentation. While the KJ sign imageis a good choice for single scale surface segmenta-tion, with a zero-thresholding formula �J = �K , theKH sign image is a better choice for multiple scalesurface segmentation, its zero-thresholding formula�K � 2jHj�H+ �2H , maintains e�ectiveness for eithercase. This is the reason why the KH sign imageis still widely used in the multiple scale processing,even though KJ sign image is elegant enough toavoid the \phantom shape" at individual scales.AppendixConsistent zero-thresholding inequal-itySuppose that small perturbations �1 in the prin-cipal curvature C1 and �2 in C2 have the commonbound �: 0 < j�1j; j�2j � � (22)These perturbations introduce errors EH in H andEK in K. Both errors can be estimated byjEH j = j (C1 + �1) + (C2 + �2)2 �Hj

= 12 j�1 + �2j� � (23)jEKj = j(C1 + �1)(C2 + �2) �Kj= jC1�2 + C2�1) + �1�2j� (jC1j+ jC2j)� + �2 (24)Since jC1j+ jC2j � 2jHj, setting �H = � as the zero-threshold of H leads to the zero-threshold of K:j�Kj � (jC1j+ jC2j)� + �2� 2jHj�H + �2H (25)References[1] N. N. Abdelmalek, and P. Boulanger, 1989: Al-gebraic Error Analysis for Surface Curvaturesof 3-D Range Images. in Proc. of Vision Inter-face '89, pp. 29-32.[2] G. Alefeld, J. Herzberger, Introduction to In-terval Computations, Academic Press, 1983.[3] P. J. Besl, R. C. Jain, 1986: Invariant Sur-face characteristics for three dimensional objectrecognition in range images. Computer Vision,graphics, image Processing 33, 1 (January), 33-80.[4] P. J. Besl, 1990: Geometric Signal Processing.Analysis and Interpretation of Range Images,R. C. Jain and A. K. Jain (Eds.), pp. 173-175.[5] L. D. Cai, 1990: A Consistent Zero-Thresholding Inequality of the Gaussian andMean Curvatures. in Proc. of the 4th IMA Con-ference on the Mathematics of Surfaces, Bath,UK, September 14-17, 1990.[6] M. P. Do Carmo, 1976: Di�erential Geometryof Curves and Surfaces, Prentice Hall, Engle-wood Cli�s.


