
Aligning Arbitrary Surfaces usingPairwise Geometric HistogramsA. P. Ashbrook, R. B. Fisher, N. Werghi and C. RobertsonDepartment of Arti�cial Intelligence, University of EdinburghEdinburgh, ScotlandAbstractIn this paper we present a novel representation for arbitrary surfaces thatenables local correspondences to be determined. We then describe howthese local correspondences can be used to search for the transformationthat best aligns all of surface data. If this transformation is found toalign a signi�cant proportion of the surface data then the surfaces aresaid to have a correspondence.1 IntroductionFinding a correspondence between two or more surfaces is a fundamental prob-lem in many 3-dimensional vision and modelling applications. In this papera novel representation for describing arbitrary surfaces is presented, enablinglocal correspondences between two or more surfaces to be determined. Theselocal correspondences provide evidence towards the hypothesis that a globalcorrespondence exists and enable an e�cient search for the transformation thatbest aligns the data.The representation is based on a shape descriptor previously applied to2-dimensional shape representation problems [1] and recently extended to 3-dimensional surfaces [2]. The main contribution made by this paper is theadoption of a new, more e�cient algorithm for determining global surface cor-respondences based upon local surface matches.2 A Novel Surface Shape Representation2.1 Surface Reconstruction and ApproximationInitially a given surface S, acquired using a range sensor, is described by aset of points samples P = fp1; : : : ; pNg. The points may represent a singleview of the surface or a number of di�erent views, for example from di�erentviewpoints around an object. If a number of views are used then the data mustbe registered so that surfaces common to more than one view are aligned. Thepoint set is then used to construct a triangular mesh approximation Ŝ to theoriginal surface, where Ŝ = ft1; : : : ; tMg and ti is a triangular facet of the mesh.It is important to clarify at this stage that the only requirement of the meshis that it is a good approximation of the surface shape. No assumptions are1



made about the actual placement of facets over the surface as this is unlikelyto be repeatable.In the work presented here an initial, regular mesh was constructed using analgorithm proposed by Hoppe et al [4] and then simpli�ed using an algorithmproposed by Garland & Heckbert [5].2.2 Histogram ConstructionA pairwise geometric histogram hi is constructed for each triangular facet ti ina given mesh which describes its pairwise relationship with each of the othersurrounding facets within a prede�ned distance. This distance controls the de-gree to which the representation is a local description of shape. The histogramencodes the surrounding shape geometry in a manner which is invariant to ri-gid transformations of the surface data and which is stable in the presence ofsurface clutter and missing surface data.Figure 1(a) shows the measurements used to characterise the relationshipbetween facet ti and one of its neighbouring facets tj . These measurements arethe relative angle, �, between the facet normals and the range of perpendiculardistances, d, from the plane in which facet ti lies to all points on facet tj .These measurements are accumulated in a 2-dimensional frequency histogram,weighted by the product of the areas of the two facets as shown in Figure 1(b).The weight of the entry is spread along the perpendicular distance axis inproportion to the area of the facet tj at each distance.
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(b)(a)Figure 1: (a) The geometric measurements used to characterise the relationshipbetween two facets ti and tj . (b) The entry made into the pairwise geometrichistogram to represent this relationship.To compensate for the di�erence between the measurements taken from themesh and the true measurements for the original surface, each entry is convolvedwith an error function before being added to the histogram. Figure 2 presentsthe error in the relative angle and perpendicular distance measurements for a



typical meshed surface. In practice, these error functions have been approxim-ated with Gaussian distributions with a standard deviation of 10 degrees forthe relative orientation and 0.5mm for the perpendicular distance.
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Figure 2: Relative orientation and perpendicular distance measurement errorsfor a typical meshed surface.The complete pairwise geometric histogram for facet ti is constructed byaccumulating these entries for each of the neighbouring facets.3 Classi�cation of Scene Surface FeaturesGiven two surface meshes, ŜA and ŜB, the geometric histogram representationallows correspondences between all facets, tAi and tBj , from each of the meshesto be determined. A match for facet tAi is determined by �nding the best matchbetween its respective pairwise geometric histogram and all of the histogramsrepresenting the facets in surface ŜB . These local correspondences are treatedas hypotheses for the correspondence between the two surfaces SA and SB .The similarity, Dij , between two pairwise geometric histograms hi and hj isde�ned using the Bhattacharyya metric [1, 2]. This is given by the expression:Dij =X�;dqhi(�; d)hj(�; d) (1)4 Estimating Surface AlignmentGood matches between surface facets provide evidence for the correspondencebetween the surfaces and provide constraints on the transformation that alignsthem. To determine whether a pair of surfaces have a global correspondencethese local correspondences are used to determine the transformation that bestaligns all of the surface data. This is done here using a variant of the RANSAC(Random Sample Consensus) algorithm [3] which was developed for robustparameter estimation



To estimate the alignment transformation two passes of the RANSAC al-gorithm are used. In the �rst pass Nr pairs of surface patches are picked atrandom from the scene and these are used to generate Nr estimates of the ro-tation component of the alignment transformation. The amount of consistencyassociated with each estimate is determined by summing the area of matchedsurface facets which are consistent with the estimate. Matched surface facetsare said to be consistent with the estimate if the direction of the surface normalof the aligned facets is within a speci�ed degree of tolerance.In the second pass of the RANSAC algorithm Nt triplets of surface facetsare picked at random from the set of facets which were consistent with thebest estimate in the �rst pass of the algorithm. An estimate of the translationthat aligns the surfaces is then determined for each triplet and the amount ofconsistency is determined as before. In this case, matched surface facets aresaid to be consistent if the perpendicular distance between the aligned facetsare within some tolerance.The complete algorithm is repeated a �xed number of times. If the estimatewith the maximum overall consistency is above a speci�ed threshold then thesurfaces are said to have a correspondence and the alignment transformation isimproved by least squares �tting.5 DemonstrationThe results presented here demonstrate the e�ectiveness of using the proposedpairwise geometric histogram representation for �nding the correspondencebetween scene surfaces and a set of model surfaces.Figure 3(a) and 3(b) presents a pair of scenes containing a selection ofobjects. Each scene was generated by taking a single range image using a laserstriper and then approximating the acquired surface points by a triangularfaceted mesh. The �rst scene was approximated with 1000 triangular facetswhilst 2000 facets were used to represent the second.The set of model objects used as training data in this experiment are presen-ted in Appendix A. To build each of the �rst three models enough range imageswere acquired to cover all of the surfaces. The range images for each objectwere then registered using the Iterated Closest Point algorithm [6] and a sur-face mesh of 1000 facets constructed. The remaining three models were eachconstructed from a pair of range images taken from di�erent sides of the ob-ject and registered by hand. These surfaces were then approximated by 2000facets each. Both scene and model surfaces were represented using geometrichistograms with a resolution of 20x20 bins along the distance and relative ori-entation axes respectively. Pairwise measurements were constrained within aneighbourhood of 15mm.Table 1 and Figure 3(c) and 3(d) present the object recognition and poseestimation results for each of the scenes. The table presents the percentage areaof each scene which was found to be consistent with each of the six models,providing evidence for the presence of the models in each of the scenes. The
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(c)Figure 3: (a),(b) A pair of scenes. (c),(d) The estimated pose of the models.Cylinder Block Widget Calf Pig PonyScene 1 48.5% 2.4% 36.6% 0% 1.1% 0%Scene 2 0% 0% 0% 0% 19.4% 30.9Table 1: The percentage area of each scene which was found to be consistentwith each of the known models.�gure presents all of the detected models, in the lighter shade, superimposedover the scene data, in the darker shade, at the estimated poses. In all casesthe models present have been detected successfully and the pose of each modeldetermined. For each scene the RANSAC algorithm was run for 5000 trialsto determine the best orientation of each model and then for 10000 trials todetermine the best translation of each model.6 ConclusionsIn this paper a novel approach for representing 3-dimensional surface data us-ing pairwise geometric histograms has been described. The representation al-lows local correspondences between pairs of arbitrary surfaces to be determinedand these local matches may then be used to determine global surface corres-pondences. This has been demonstrated in a surface based object recognitionapplication.The representation inherits many of the advantages of the original pairwisegeometric histogram descriptor [1]. By careful selection of the measurements



used to construct the histogram, the descriptor is invariant to rigid transform-ations of the surface data and in combination with its compactness promotese�cient matching. A reasonable criticism would be the large number of histo-grams needed to describe a particular surface, between 1000 and 2000 for thesurfaces used here. This problem can be minimised by developing improved al-gorithms for segmenting surfaces into a small number of planar surface facets.In this paper the search for global surfaces correspondences has been con-ducted using a variant on RANSAC in contrast to the Probabilistic HoughTransform used previously [2]. The random element of RANSAC means thatthere is a small chance of not �nding the best alignment but this is minim-ised by running for a large number of trials. The algorithm �nds the solutionsigni�cantly faster however.A Database of 3D Shape Models
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