
Finding Surface Correspondence for ObjectRecognition and Registration using PairwiseGeometric HistogramsA. P. Ashbrook, R. B. Fisher, C. Robertson and N. WerghiDepartment of Arti�cial IntelligenceThe University of Edinburgh5, Forrest Hill, Edinburgh, EH1 2QLTelephone: +44 131 650 4504Fax: +44 131 650 6899anthonya@dai.ed.ac.ukAbstract. Pairwise geometric histograms have been demonstrated asan e�ective descriptor of arbitrary 2-dimensional shape which enable ro-bust and e�cient object recognition in complex scenes. In this paper wedescribe how the approach can be extended to allow the representationand classi�cation of arbitrary 2 12 - and 3-dimensional surface shape. Thisnovel representation can be used in important vision tasks such as the re-cognition of objects with complex free-form surfaces and the registrationof surfaces for building 3-dimensional models from multiple views. Weapply this new representation to both of these tasks and present somepromising results.1 IntroductionFinding a correspondence between two or more surfaces is a frequently en-countered problem in many computer vision tasks. When surface based descrip-tions are used for object recognition, the hypothesis that a particular object isin a scene is con�rmed by �nding a good correspondence between scene andmodel surfaces [6]. When constructing geometric models of objects by mergingmultiple range images taken from di�erent viewpoints, the surfaces describedby each range image require registration into a common coordinate frame [3, 1].This can be done by �nding the correspondence between portions of the object'ssurface which is common to two or more views.In this paper we present a novel representation for arbitrary 2 12 - and 3-dimensional surface data which enables correspondences to be found reliablyand e�ciently. The representation is based on pairwise geometric histogramswhich have previously been demonstrated as a representation for 2-dimensionalshape data for object recognition applications [4].The approach that we are proposing determines whether two surfaces havea correspondence as follows:



1. Each of the surfaces is approximated by a triangular mesh. The details of thisapproximation and the algorithms we have employed for this are presentedin Section 3.1.2. Each triangular mesh facet is represented by a pairwise geometric histogramwhich records the relationship between this facet and the surrounding facetswithin some speci�ed neighbourhood. This representation is discussed inSection 3.2.3. Correspondences between individual facets are found by matching their re-spective geometric histograms. These local correspondences provide hypo-theses for the correspondence between the two surfaces. The metric employedfor matching geometric histograms is described in Section 4.4. The global surface correspondence is found by �nding consistent local hypo-theses using a probabilistic Hough transform. This is discussed in Section5.2 BackgroundA number of approaches to the problem surface registration have been de-veloped from the \iterated closest point" (ICP) algorithm proposed by Besl andMcKay [2]. These algorithms have been popular for registering multiple viewsof an object for model construction and for re�ning pose in object recognitiontasks. The central idea behind this algorithm is that by forming correspond-ences between points on one surface and their nearest neighbours on anotherand then minimising the distances between them, the registration of the twosurfaces is improved. If this process is iterated the registration of the surfacesoften converges. The approach is computationally expensive because of its useof raw surface point data and because of the iterative nature of the algorithm.A more serious problem is that the algorithm is not guaranteed to converge,sometimes getting caught in local minima, and typically requires good initialalignment of the surfaces to get a reasonable solution. One of the advantagesof the ICP approach is that, because it uses all of the surface data available,when it does converge the registration can be very accurate. The algorithm isalso suitable for arbitrary classes of surface.Other researchers have used interest points on the surface instead of all of thesurface data and formed correspondences by matching geometric descriptors ofthose points. Thirion [13] proposes the use of extremal points on 3-dimensionalsurfaces which can be characterised by a number of properties such as theircurvature. Interest points with similar properties are treated as potential cor-respondents and the transformation that aligns the surfaces is determined fromtriplets of corresponding pairs. Recently, Johnson and Hebert [9] have proposed anovel interest point descriptor which allows point correspondences to be formedbetween surfaces. In their approach the interest points are de�ned by the ver-tices of a polygonal mesh �tted to the surface. At each vertex the geometricrelationship with all of the other mesh vertices are recorded in a 2-dimensionalspin-image which is invariant to rigid transformations of the surface. Interestpoint correspondences are found by identifying points with similar spin-images.



Local surface features such as edges and surface patches have also been usedto determine the correspondence between two surfaces [5]. Initially all featureson the �rst surface are considered as potential correspondents of features of thesame class on the second surface. The number of potential correspondences isthen quickly reduced using approaches based on geometric constraints such as theinterpretation tree. Each pair of matched features provides a constraint on thetransformation that aligns the surfaces and these are used to determine the bestglobal alignment. The motivation for using features is to reduce the amount ofdata to be processed whilst maintaining valuable information needed to performmatching and constrain the alignment transformation. The disadvantage is thata particular choice of features can limit the scope of the algorithm to particularclasses of surfaces.3 A Novel Surface Shape Representation3.1 Surface Reconstruction and ApproximationInitially a given surface S, acquired using a range sensor, is described by a setof points samples P = fp1; : : : ; pNg. The points may represent a single view ofthe surface or a number of di�erent views, for example from di�erent viewpointsaround an object. The point set is then used to construct a triangular meshapproximation Ŝ to the original surface, where Ŝ = ft1; : : : ; tMg and ti is atriangular facet of the mesh.It is important to clarify at this stage that the only requirement of the meshis that it is a good approximation of the surface shape. No assumptions aremade about the actual distribution of facets over the surface as this is unlikelyto be repeatable. To minimise the amount of memory and computation neededto solve the correspondence problem, the mesh should also contain the smallestnumber of facets needed to give a good approximation of the surface.A number of algorithms have been proposed for reconstructing a triangularfaceted mesh from a set of points. In the work presented here an initial, regu-lar mesh was constructed from the sampled point data using a reconstructionalgorithm by Hoppe et al [8]. The resulting regular mesh was then re�ned to min-imise the number of facets whilst maintaining most of the surface shape using asurface simpli�cation algorithm by Garland and Heckbert [7].There are a number of advantages in using a triangular mesh to approx-imate the surface to be represented instead of more complex features such asquadric patches, the most obvious being e�ciency. Constructing a mesh is alsosigni�cantly more straightforward than segmenting a surface into more complexfeatures. A second important issue is scope. Any surface can be approximated bya triangular mesh but selecting a �xed set of features can impose limitations onthe types of surfaces that can be described. Another important issue is that ofstability. If surface patches are assigned to di�erent classes based on their shapethen borderline cases can result in sudden changes in the representation becauseof slightly di�erent viewing conditions or noise.



The disadvantage of using a triangular mesh is that it requires many fa-cets to describe surfaces with high curvature to a high degree of accuracy. Bystatistically modelling the shape error introduced by the triangular shape ap-proximation, it is still possible to obtain a good shape representation when onlya relatively small number of facets are used.3.2 Histogram ConstructionA pairwise geometric histogram hi is constructed for each triangular facet ti ina given mesh which describes its pairwise relationship with each of the othersurrounding facets within a prede�ned distance. This distance controls degreeto which the representation is a local description of shape. The histogram isde�ned such that it encodes the surrounding shape geometry in a manner whichis invariant to rigid transformations of the surface data and which is stable inthe presence of surface clutter and missing surface data.Figure 1(a) shows the measurements used to characterise the relationshipbetween facet ti and one of its neighbouring facets tj . These measurements arethe relative angle, �, between the facet normals and the range of perpendicu-lar distances, d, from the plane in which facet ti lies to all points on facet tj .These measurements are accumulated in a 2-dimensional frequency histogram,weighted by the product of the areas of the two facets as shown in Figure 1(b).The weight of the entry is spread along the perpendicular distance axis in propor-tion to the area of the facet tj at each distance. To compensate for the di�erencebetween the measurements taken from the mesh and the true measurements forthe original surface, the entry is blurred into the histogram. For the work presen-ted here a Gaussian blurring function has been used, but we intend to investigatemore appropriate error models in the future. Certainly the scale of the blurringfunction relates to the coarseness of the mesh. The complete pairwise geometrichistogram for facet ti is constructed by accumulating these entries for each ofthe neighbouring facets.For clarity, an example of a pairwise geometric histogram is presented in Fig-ure 2(a). This has been constructed for the highlighted facet on the hemisphericalmesh presented in Figure 2(b). Note that the representation only depends uponthe surface shape and not on the placement of facets over the surface. This inde-pendence on the placement of the facets is important because recovering exactlythe same mesh for the same surface under di�erent viewing conditions is veryunlikely, particularly if there is some surface occlusion.4 Generating Correspondence HypothesesGiven two surface meshes, ŜA and ŜB, the geometric histogram representationallows correspondences between all facets, tAi and tBj , from each of the meshesto be determined. A match for facet tAi is determined by �nding the best matchbetween its respective pairwise geometric histogram and all of the histograms



ti

tj

π
2

dmin dmax

d

α

Perpendicular Distance

R
el

at
iv

e 
A

ng
le

0
0-D D

α

(b)(a)Fig. 1. (a) The geometric measurements used to characterise the relationship betweentwo facets ti and tj . (b) The entry made into the pairwise geometric histogram torepresent this relationship.representing the facets in surface ŜB . These local correspondences are treated ashypotheses for the correspondence between the two surfaces SA and SB.The similarity, Dij , between two pairwise geometric histograms hi and hj isde�ned using the Bhattacharyya metric. This is given by the expression:Dij =X�;d phi(�; d)qhj(�; d) (1)The Bhattacharyya metric is appropriate when the error on the data can bedescribed using a Poisson distribution. This is a reasonable assumption for meas-ured frequency distributions such as a geometric histogram [12]. A derivation ofthis metric is presented in Appendix A.5 Hypothesis Veri�cationEach pair of matched mesh facets provides evidence that the surfaces to whichthey belong have the same shape, at least locally, and can therefore be registered.The transformation that aligns the paired facets also provides a constraint onthe transformation that aligns the complete surfaces. The problem then is todetermine whether there is enough evidence to support these hypotheses and, ifso, to determine the transformation that aligns the surface data.We have used an approach taken by other researchers in which N-tuplesof matched features, in our case paired mesh facets, are used to estimate the
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Fig. 2. (a) The geometric histogram that characterises the relationship between high-lighted facet and the other facets in the mesh in (b).alignment transformation. These estimates are then accumulated in a Houghtransform resulting in a peak where there is consistency. As an improvementto this scheme we have adopted a probabilistic approach in which the error onthe estimated transformation is integrated into the Hough accumulator [11]. Thiserror is determined by statistically modelling the error between the facets and thetrue surface and propagating this error through the transformation estimator.Initially 2-tuples of paired facets are used to estimate the rotation componentof the alignment transformation and votes are placed in a 3-dimensional Houghtransform. The number of 2-tuples can be very large so only a proportion ofthe largest paired facets are used. If a signi�cant peak is found in this spacethen 3-tuples of paired facets are used to estimate the translation componentof the alignment transformation. Again, only a proportion of the largest facetsare used to allow fast operation. If a signi�cant peak is found in the translationspace then the hypothesis that the surfaces can be registered is accepted.6 ExperimentsTwo applications of the proposed surface representation are presented here. The�rst application is the registration of two di�erent views of an object with acomplex surface. The second application is the identi�cation and localisationof known objects in a scene. All of the data were acquired using a laser striperange scanner with an accuracy of approximately 0.1mm. The pairwise geometrichistogram parameters selected for both of these experiments are presented inTable 1.



Quantisation of Relative Angle Axis 20 binsQuantisation of Perpendicular Distance Axis 20 binsMaximum Perpendicular Distance � 100mmMaximum Relative Angle �2 radiansTable 1. The pairwise geometric histogram parameters used in the experiments presen-ted here.6.1 Registration of Free-form SurfacesIn this experiment the objective is to �nd the correspondence between two sur-faces constructed from di�erent views of an object. The surface meshes, presen-ted in Figure 3, describe the surface of a farm animal model and consist of 1000facets each. It should be noted that the model has quite complex, free-form sur-faces which are di�cult to describe using features such as quadric patches oredges.

Fig. 3. The triangular meshes for two di�erent views of the surface of a farm animalmodel.Figure 4(a) presents the two surfaces in their registered positions. Certainly,from a qualitative point of view, the registration seems to have been successful.This is emphasised by the inter-meshing of the two surfaces on the rear leg ofthe model shown in close-up in Figure 4(b). The fact that this inter-meshing isnot visible over all of the surface suggests that there is some registration error,however.Only the largest 5% of the facets were matched and used to determine thealignment transformation. The entire registration process took approximately4 minutes 24 seconds on a 200MHz Sun Ultra. A breakdown of these times ispresented in Table 2.



(a) (b)Fig. 4. (a) The two meshed surfaces in their registered positions. (b) A close-up of therear leg of the model. The light and dark shades of grey represent the two di�erentsurfaces. Triangular Mesh Construction 110 secondsGeometric Histogram Construction 212 secondsGeometric Histogram Matching 6 secondsResolving Hypotheses 126 secondsTable 2. A breakdown of the time to complete the registration for each of the mainalgorithm stages.6.2 Object Recognition and Pose EstimationThe objective of this experiment is to identify known objects in a scene andestimate the pose of those objects. The object models, presented in Figure 5,have been constructed from multiple views to produce a complete 3-dimensionaldescription of all of the surfaces. Each model is represented by 1000 facets.Figure 6 presents a scene containing two of the known models. The scene hasbeen captured with a single range image and represented by 1000 facets.The classi�cation of each of the scene facets is presented in Figure 7. In eachof the three images the scene facets which best match a facet from the respectivemodel have been drawn. It can be seen that most of the facets have been classi-�ed as belonging to the correct models. Most of the incorrectly classi�ed facetslie very close to surface discontinuities where the recovery of the surface nor-mal is very poor. This is largely due to the mesh construction algorithm whichhas problems preserving discontinuities in the range data. There are also someproblems with the classi�cation of the underside of the cylinder model. This islikely to be because this surface is almost parallel to the viewing direction whichmakes recovery of the surface normal prone to error.



Model 3Model 2Model 1Fig. 5. The three model objects used in the recognition experiment.Figure 8 presents the results of the recognition of pose estimation process.The original scene data is shown in the darker shade and the recognised mod-els are shown in their estimated positions in the lighter shade. The algorithmhas both determined the objects present in the scene and formed a reasonableestimation of their positions.All of the facets were matched and then the largest 5% from each class wereused to determine the model poses. The entire object recognition process tookapproximately 14 minutes 3 seconds on a 200MHz Sun Ultra. A breakdown ofthese times is presented in Table 3.Triangular Mesh Construction 54 secondsGeometric Histogram Construction 96 secondsGeometric Histogram Matching 329 secondsResolving Hypotheses 364 secondsTable 3. A breakdown of the time to complete the recognition process for each of themain algorithm stages.
7 ConclusionsThe problem of �nding a correspondence between two or more surfaces hasbeen investigated by a number of researchers and several solutions have beenproposed. The most reliable approaches are based on �nding point-feature or



Fig. 6. The scene data used in the recognition experiment.surface-feature correspondences between the surfaces being registered and usingthese to estimate the transformation that aligns the complete surfaces.In this paper we have proposed a novel representation for surface data whichenables local surface correspondences to be determined. This representation isinvariant to rigid transformations of the surface data and, because of its stat-istical nature, allows errors in the approximation of the surfaces by triangularmeshes to be modelled.Having established local correspondences we have shown that the transform-ation that aligns complete surfaces can be determined using a Hough votingscheme. The advantage of using Hough voting is that it is possible to modeltransformation errors present in the local correspondences by adopting a prob-abilistic Hough transform.To demonstrate the e�ectiveness of the new representation and the algorithmthat determines the alignment transformation, we have presented two experi-ments. In the �rst experiment two surfaces of a complex curved surfaced objecttaken from di�erent viewpoints are successfully registered. In the second exper-iment, known objects are successfully identi�ed and located in a scene.AcknowledgementsThe work presented in this paper was funded by a UK EPSRC grant GR/H86905.The author would also like to thank Dr. Peter Rockett for the derivation of theBhattacharyya distance presented in Appendix A.



(a) (b) (c)Fig. 7. (a),(b) & (c) present the scene facets which best match facets in Models 1, 2& 3 respectively.A Derivation of the Similarity MetricIn this section the derivation of a statistical metric for comparing binned meas-urements is presented. Given a random variable X , a statistical measure of thedistance D between the endpoints X = x and X = x + �x of a short line isobtained by normalising by the standard deviation �.D = �x� (2)In general then, the statistical distance between any two points X = s andX = m can be determined by the de�nite integral:D = Z ms dx� (3)For N independent measurements the statistical distance is given by a sum ofsquared components: D2 =Xi (Z misi dxi�i )2 (4)It is well known that binned data conforms to a Poisson distribution and thatthe variance of a Poisson variable is equal to its mean. A statistical distancemetric for binned data is then obtained by substitution of �i = pxi.D2 =Xi (Z misi dxipxi )2 (5)



Fig. 8. The identi�cation and localisation of the two objects in the scene. The scenedata is presented in the darker shade and the models in the lighter shade. The secondimage presents the scene from a di�erent view-point.= 4Xi (psi �pmi)2 (6)Removing the constant factor in this expression gives the statistical metric pro-posed by Matusita [10] which is known as the Matusita distance.Dmatusita =Xi (psi �pmi)2 (7)Expanding this expression gives:Dmatusita =Xi si +Xi mi �Xi psipmi (8)If both m and s are normalised, or when using this metric to compare a singlescene histogram with a set of normalised model histograms, this is simply:Dmatusita = const�Xi psipmi (9)Removing the constant results in the Bhattacharyya distance.Dbhattacharyya =Xi psipmi (10)
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