
Improving model shape acquisition byincorporating geometric constraintsN. Werghi, R. B. Fisher, A. Ashbrook, C. RobertsonDepartment of Arti�cial Intelligence, Edinburgh UniversityAbstractWhile the problem of model �tting for 3-dimensional range datahas been addressed with some success, the problem of increasing theaccuracy of the whole �t still remains. This paper describes a tech-nique of global shape improvement based upon feature position andshape constraints. These constraints may be globally applied or in-ferred from general engineering principles. This paper describe a gen-eral, incremental, framework whereby constraints can be added andintegrated in the model reconstruction process, resulting on optimaltrade-o� between minimization of the shape �tting error and the con-straint's tolerances.1 IntroductionThere has been a recent urry of e�ort on reconstructing 3D geometric models ofobjects from single [2, 5, 6] or multiple [3, 10, 9, 11] range images, in part motivatedby improved range sensors, and in part by demand for geometric models in theCAD and Virtual Reality (VR) application areas. Mainly, these reconstructionsare of objects with smooth, free-form surfaces. Oddly enough, in this case, curvedsurface objects are easier to work with, as: 1) the variety of surface geometryprovides many more features for multiple dataset registration, and 2) the tolerancesneeded for most curved surface applications are not high. Or, conversely, one couldsay that objects with developable surfaces are harder to reconstruct accurately,because: 1) the developable surfaces (e.g. including standard engineering surfacesproduced by simple machining { planes, cylinders and cones) allow translationsof the surfaces from di�erent observations relative to each other that still satisfydistance constraints (i.e. two views of a planar surface that slide in the samein�nite plane relative to each other), and 2) developable surfaces tend to haveshape tolerances that are much higher than that achievable by standard rangesensors because these surfaces are commonly used to mate parts together, whereassmooth freeform or spline surfaces tend to have shape tolerances comparable totypical range sensor data.Further, even if all of the data were from a single view, thus avoiding multipledataset registration errors, reconstruction must still cope with errors from mis-calibration across the full sensor �eld of view.
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This paper describes a technique of global shape improvement based on featureposition and shape constraints. The constraints might be either interactively sup-plied by a user, or inferred by a knowledge-based system reasoning from generalengineering principles.The types of constraints exploited here are of these families:1. a set of features have a �xed orientation relationship (e.g. a set of surfacesor edges that meet at a speci�ed angle or are parallel) and2. a set of features have a �xed separation (e.g. the distance between a pair ofparallel lines or planes).These are typical engineering relationships, and, in particular, are the sorts ofproperties that �x relationships between part-mating features.The key to the approach is to parameterize the features in a way that allowsconstraints to be expressed as a function of the shape parameters, and to thenapply an optimization procedure that searches for parameter vectors that satisfythe constraints while simultaneously optimizing the surface �t to the range data.2 BackgroundThe integration of geometric constraints into the shape �tting process has beentreated for wire frame model construction by Porrill [8]. Wire frame models wereconstructed from stereo-data. The model features were given statistical distribu-tions and geometric constraints between features produced dependencies in thedistributions. The model adjustment process maximized the a posteriori probab-ility of the models. Since the models were based on wire frames, the constraintswere related to lines. Four types of constraints were considered: orthogonality,intersection, equality and connection by a small rigid motion. The optimal featureparameters were estimated using an extended Kalman �lter. At each iteration,constraints are linearized in the neighborhood of the current estimate, and thenused to correct the measurement. Porrill's approach is nice since it takes advant-age of the recursive linear estimation of Kalman �ltering, however it assumes aGaussian distribution which may not always the case. Moreover, the method,guarantees the satisfaction of the constraints only to linearized �rst order. Ad-ditional iterations at each estimation step are needed if one would like to obtainmore accuracy. This last condition has been taken into account in the work ofDe Geeter and al [4] by de�ning a \Smoothly Constrained Kalman Filter". Thekey of their approach is to replace a nonlinear constraint by a set of linear con-straints applied iteratively and updated by new measurements in order to reducethe linearization error.3 Problem De�nitionGiven sets of 3D measurement points representing surfaces belonging to a certainobject, we want to estimate the di�erent surface parameters taking into accountthe geometric constraints between these surfaces.
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3.1 Surface ParametrizationConsider S1; :; :SN the set of surfaces and ~p1; :; : ~pN the set of parameter vectorsrelated to them. Each vector ~pi has to minimize a given error criterion Ji associatedwith the surface Si. A reasonable criterion is the least squared error one. So let'sconsider the following objective function composed of the sum of error criterionsJ = J1 + J2 + :::::::JN (1)By considering the implicit equation representation of surfaces, a surface Si isrepresented by: ~hiT ~pi = 0 (2)where ~hi is the measurement vector. Note that any polynomially describablesurface can be presented in this scheme, as each component in ~hi can be of theform (x�y�z) for some (�; �; ).Given mi measurements, the least squares criterion related to this equation isJi = miXl=1 ( ~hliT ~pi)2 = ~piTHi ~pi (3)where Hi = Pmil=1( ~hli ~hliT ) represents the sample covariance matrix of the surfaceSi. (We assume that the assignment of measurements to surfaces is known.) Theobjective function (1) can then be written as :J = NXi=1 ~piTHi ~pi (4)By concatenating all the vectors ~piT into one vector ~pT = [~p1T ; ~p2T ; :; :; :; ~pNT ]equation (4) can be written asJ = ~pTHo~p; Ho = 24 H1 (0) : (0)(0) H2 : (0)(0) : : (0)(0) : (0) HN 35 (5)3.2 Constraint RepresentationThe constraints can be classi�ed into two main categories, constraints on the sur-face parameter vectors and constraints on both data and parameters. A constraintbelonging to the second category would be rather considered as an observationequation since it involves measurement. By a reasoning similar to that in Section(3.1) such kind of constraints can be put into the following formC(~p) = ~pTHc~p+ ~hc~p+Kc (6)whereHc, ~hc andKc are respectively a matrix, a vector and constant, all dependingon the data.
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The constraints which involves only the vector parameters can be representedby the set of implicit equationsCk(~p) = 0; k = 1::K (7)An example of how these equations are instantiated is given in Section 4.2.3.3 Optimization of shape satisfying the constraintsThe parameter vector ~p has to minimize the objective function (5) subject to theconstraints (6) and (7) imposed by the model. So, the problem that we are dealingwith is a constrained optimization problem to which an optimal solution may beprovided by minimizing the following energy function:E = ~pT (Ho +Hc)~p+ ~hTc ~p+Kc + KXk=1 �kCk(~p); �k � 0 (8)known in the literature as the Lagrangian function. the above function containstwo components, the least squares function:F (~p) = ~pT (Ho +Hc)~p+ ~hTc ~p+Kc (9)and the constraint function: C(~p) = KXk=1 �kCk(~p) (10)The method of solving this problem depends on the nature of the objectivefunction (convex or not), the type of the constraints (linear or not) and whether theconstraints could be merged together in order to reduce the number of parametersand eventually combined with the least square objective function.The objective function is convex since it is quadratic and the matrix Ho ispositive de�nite (since each matrix Hi is positive de�nite). The same proprietycan be satis�ed by Hc as well.So the problem can be said to be a convex optimization problem if the con-straints Ck(~p) are also convex functions. On the other hand, the existence of anoptimal solution necessitates that both the least squares function and the con-straint function are di�erentiable. A detailed analysis of the convexity and theoptimality conditions is available in [7].In some particular cases it is possible to get a closed form solution of (8).This depends of the characteristics of the constraint functions and whether it ispossible to combine them e�ciently with the objective function. But generally, itis not trivial to develop a closed form solution especially when the constraints arenonlinear and their number is high. In such case, an algorithmic approach couldbe of great help taking into account the increasing capabilities of computing. Themain idea was to develop a search optimization scheme for determining the bestset (~p; �1; :; :; �k). Moreover, we have been seeing whether it is possible that onecan get the solution which satis�es a desired tolerance. So the objective is todetermine the vector ~p which satis�es the constraints to the desired accuracy andwhich �ts the data to a reasonable degree.
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ally. At each step a new constraint is added to the constraint function C(~p) andthen the optimal value of ~p is found according to the scheme shown in Figure 1b.For each new added constraint Ck(~p), �k is initialized at �0, whereas ~p is kept atits current value.4 Case of Polyhedral ObjectsPolyhedral objects involves the two types of constraints mentioned in the intro-duction. They are represented in this case by �xed angles between the planes'normals and the �xed distances between parallel planes.4.1 Planes with a �xed orientation relationshipA plane surface can be represented by this following equation:pxx+ pyy + pzz + d = 0; (13)where [px; py; pz]T is unit normal vector to the plane and d is the distance tothe origin. For each plane surface we consider a local frame centered on a pointbelonging to the plane (in practice this point is taken as the center of gravity ofthe measurement points), so the plane equation can be written aspxx+ pyy + pzz = 0 (14)Let's consider N planes, where the angles between planes' normals are known.The orientation relationship between the di�erent planes are de�ned by the fol-lowing constraints:(~piT ~pj � cos(�k))2 = 0; i; j 2 [1::N ]; i > j; k 2 [1::K = (N � 1)�N=2] (15)Each plane normal has also to satisfy the unity constraintCi(~p) = (k~pik2 � 1)2 = 0; i 2 [1::N ] (16)The constraint functions are squared in order to have convex functions. Theconstraints (15) and (16) can be written under a matrix formulation:Ui(~p) = (~pTUi~p� 1)2 = 0; i 2 [1::N ] (17)Ak(~p) = (~pTAk~p� 2cos(�k))2 = 0; k 2 [1::K = (N � 1)�N=2] (18)where ~pT = [pT1 ; :; :; pTN ], Ui and Ak are N �N block matrices de�ned by:Ui = 24 (0) (0) : (0)(0) (I3)ii : (0)(0) : (0) (0)(0) : (0) (0) 35 ; Ak = 24 (0) (0) : :(0) : (I3)ij (0)(0) (I3)ji (0) (0): : (0) (0) 35and I3 is the 3� 3 identity matrix.4.2 Parallel planes with a given separationConsider without loss of generality two parallel planes Sp and Sq containing re-spectively Np and Nq points and separated by the algebraic distance dpq . Sincethe two planes have a common orientation a single normal can be associated withthem. Each pair of points (Mpi ;M qj ); Mpi 2 Sp; M qj 2 Sq has to satisfy thefollowing equation: (Mpi Mqj )T ~p� dpq = 0 (19)
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by considering all the planes' points, the normal ~p has to minimize the above leastsquares criterion:C(~p) = Np;NqXi;j ((Mpi Mqj )T ~p� dpq)2 = ~pTHpq~p� 2dpq~hTpq~p+Npqd2pq (20)where Hpq = Np;NqXi;j (Mpi Mqj )(Mpi Mqj )T ; ~hTpq = Np;NqXi;j Mpi Mqj ; Npq = NpNq5 ExperimentsA series of experiments on synthetic and real data have been carried out to checkthe behavior and the convergence of the algorithm. Two representative sampleswill be shown here, the �rst concerned a real tetrahedron, the second a syntheticstep model object. The algorithm optim1 was applied in the �rst case. For thesecond object both algorithms optim1 and optim2 were applied in order to com-pare their performances. The behavior of the algorithms are checked through theunit constraint error, the angle constraint error, the normal orientation error (theangle between the exact surface normal and the constrained one), the least squarefunction and the constraint function, all mapped as function of �.5.1 The tetrahedronFigure 2a (left) shows a tetrahedron with three faces visible, This object involvesthree constraints represented by the three angles 90o, 90o and 120o between thethree surface normals, as well as the unit vector constraints, The energy functionis: E(~p) = ~pTH~p+ �( 3Xk=1 Ak(~p) + 3Xl=1 Ul(~p)) (21)The data was acquired with a 3D triangulation range sensor. All constraints wereapplied simultaneously according to algorithm optim1. The results are the averageof 100 trials, with the initial vector ~p[0] corrupted by a uniform deviation of scale5%.The angle constraint errors (Fig. 2b) are decreasing linearly at a logarithmicscale. Both constraints are highly satis�ed for large value of �. One can observethat increasing � by factor of 10 leads nearly to an accuracy improvement factorof 10 in the constraint. It is seen also that the least squares function converges toa stable value, whereas the constraint function decreases to zero at the end of theestimation (Fig. 2c)5.2 The stepmodel objectThis object contains sets of parallel planes. The prototype objects is composed ofseven faces. We have studied the case when �ve faces are visible (Fig. 3a). For thisview we have assigned a single normal for each set of parallel planes. By this waythree normals ~p1; ~p2; ~p5 are associated respectively to surfaces (S1; S4), (S2; S3),and S5. Besides the three angle constraints (orthogonality of each two vectors)and the three unit constraints, this object involves as well two distance constraintsrelated to the �xed distances between (S1; S4) and (S2; S3). The surfaces' points
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(c)Figure 2: (a) Acquired and segmented real data. (b) decrease of the unit vector and the angleconstraint error functions with respect to �. (c) variation of the LS function and the constraintfunction with respect to �.have been corrupted with a Gaussian noise of 2mm variance. Using equations(5),(6) and (20) the least squares function is:F (~p) = ~pTH~p� 2~hT ~p+K; (22)H = " H1 +H4 +H14 0 00 H2 +H3 +H23 00 0 H5 # ; ~hT = [d14~hT14; d23~hT23; 0; 0; 0];K = N14d214 +N23d223The �rst series of tests have been carried out with the algorithm optim1 inwhich all the constraints are applied simultaneously. Some results are shown inFig. 3(b,c).
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Figure 4: Variation of the angle constraint error related to ( ~p1; ~p2) all along the four steps ofthe algorithm optim2.is added. Normally the incremental process contains six steps, however since theunit constraints are used mainly to avoid the null solution there is no need toapply them incrementally, instead they are inferred at once simultaneously in asingle step. Thus the algorithm will comprises four steps, in the �rst the unitconstraints are considered, afterwards the three angle constraints are inferred oneby one. Some results are illustrated in Fig. 4 and Fig. 5.Results similar to the tetrahedron case were obtained in both algorithms for theunit constraint, the angle constraint, the least squares function and the constraintfunction. Comparison of Fig. 3b and Fig. 4 shows that the angle constraint iswell satis�ed in the two algorithms.This synthetic example allows the comparison of the estimated surfaces' nor-mals to the actual ones. Fig. 3c and Fig. 5 shows that the estimated vectorsin each of the two algorithms are very close to the actual ones, however we ob-serve that the normal orientation error is reduced by more than 100 in the secondalgorithm. This fact shows that the estimated solution moves toward the actualone, and it is almost completely reached. So we can say the optimization techniquesatis�es the constraints while improving the localization to a high degree.6 Discussion and conclusionThe experiments presented in the previous section show that the incremental rep-resentation of constraints and parameter optimization search does produce shape�tting that satis�es the constraints with low error. The experiments also showthat the least-square error grows as the constraints are applied; however, what isimportant is reconstructing shapes that satisfy the given constraints, while alsobinding the remaining unconstrainted shape parameters using the range inform-ation. The magnitude of the actual least-square error, even relative to the least-square error of the unconstrained �t, is unimportant relative to the constraintsatisfaction. The amount of change in position of the constrained surfaces relativeto the original position is similarly very irrelevant.The option of adding the constraints incrementally has also been investigated.We have chosen to start from the previous optimal position when a new constraint
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Figure 5: Variation of the orientation error related to ( ~p2) along the four steps.is added and to keep the weight of the previous constraints at the �xed maximumvalue of �. The experiments con�rmed that a previous constraint is almost nota�ected when a new constraint is added.The optimization procedure used here produces solutions in a few minutes orless, which is suitable for CAD work.The work here assumed that the range measurements were already segmentedinto groups associated with features. This is a reasonable assumption, but how toachieve this in di�cult cases is an open problem.Finally, real parts usually have more than just the constrained developablesurfaces. The optimization procedure discussed above manipulates the constrainedsurface positions and shapes, but not the other surfaces. Consequently, a completesystem would need to consider how to move and transform the other connectedsurfaces as the constrained features move.AcknowledgementsThe work presented in this paper was funded by UK EPSRC grant GR /H86986.References[1] A.Blake, A.Zisserman Some properties of weak continuity constraints and the GNC al-gorithm. CVPR, pp.656-661, 1986.[2] K.L.Boyer, M.J.Mirza, G.Ganguly The Robust Sequential Estimator. IEEE Trans. PAMI,Vol.16, No.10, pp.987,1001 October 1994.[3] Y.Chen, G.Medioni Object Modeling by Registration of Multiple Range Image. Proc. IEEEInt. Conf. Robotics and Automation, Vol.2 pp.724-729, April, 1991.[4] J.De Geeter, H.V.Brussel, J.De Schutter, M. Decreton Recognising and Locating Objectswith an ultrason and infra-red sensor . Proc. IMACS, pp.587-592, Lille, France, 1996.[5] P.J.Flynn, A.K.Jain Surface Classi�cation: Hypothesizing and Parameter Estimation.Proc. IEEE Comp. Soc. CVPR, pp. 261-267. June 1988.[6] S.Kumar, S.Han, D.Goldgof, K.Boyer On Recovering Hyperquadrics from Range data.IEEE Trans. PAMI, Vol.17, No.11, pp.1079-1083 November 1995.[7] S.L.S. Jacoby, J.S Kowalik, J.T.Pizzo Iterative Methods for Nonlinear Optimization Prob-lems. Prentice-Hall,Inc. Englewood Cli�s, New Jersey, 1972.[8] J.Porrill Optimal Combination and Constraints for Geometrical Sensor data. InternationalJournal of Robotics Research, Vol.7, No.6, pp 66-78, 1988.[9] M.Soucy, D.Laurendo Surface Modeling from Dynamic Integration of Multiple RangeViews. Proc 11th Int. Conf. Pattern Recognition, pp.449-452, 1992.[10] H.Y.Shun, K.Ikeuchi, R.Reddy Principal Component Analysis with Missing Data and itsApplication to Polyhedral Object Modeling. IEEE Trans. PAMI, Vol.17, No.9, pp.855-867.[11] B.C.Vemuri, J.K Aggrawal. 3D Model Construction from Multiple Views Using Range andIntensity Data. Proc. CVPR, pp.435-437, 1986.


