
Part Segmentation from 2D EdgeImages by the MDL CriterionM. Pilu R.B. FisherDepartment of Arti�cial IntelligenceThe University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QLSCOTLANDAbstractIn the context of part segmentation from 2D edge images, this paperpresents some interesting results with a novel method that addressesthe problem of �ltering a redundant set of part hypotheses that retainsonly those that are likely to correspond to actual parts. In the proposedmethod, supporting evidence for hypotheses are put in competitionin a Minimum Description-Length (MDL) framework to select parthypotheses that most economically represent supporting edges in the\language" of generic parts.1 IntroductionThe recovery of generic solid parts is a hard fundamental step towards the real-ization of general-purpose vision systems.A wealth of previous works has been proposed in the past to perform partsegmentations that, with a couple of exceptions, always used silhouette-like data,such as symmetry axes or skeleton techniques, contour-based techniques, and manymore.However, in a primitive-based framework suggested by Pentland [6] the pro-cedure of producing the �nal interpretation of an image in terms of generic partmodels can be recast into a robust estimation framework where we \�t" each ofthose models to the right data regardless of extraneous disturbances originatingfrom all sorts of noise, cluttering and right distinct elements in the image. Forinstance, in the noisy tree edge image of Figure 1-A, we would like to �nd the twomodels (dashed in the �gure) representing the trunk and the foliage.The key to many robust estimation methods is the notion of support region,which de�nes the data deemed to be originated by a single process, i.e. an objectpart in our case. Although many works make an implicit use of support regions,three roughly concomitant seminal works proposed the explicit use of support re-gions in computer vision, namely by Pednault [5], Leclerc [3] and Pentland [6]. Theintroduction of the concept of support regions in computer vision allows multipleprocesses to be naturally dealt with; support regions can also be disconnected andhence, in principle, occlusions could be handled in a rather natural way.
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The unifying idea behind all these works is that a number of concurrent hy-potheses are weighted against each other, and accepted or rejected in order toproduce an \economic" representation of the image based on the Occam's razor(simplicity) criterion. For this purpose, they all make use of information theo-retical arguments under the umbrella of the Minimum Description-Length (MDL)framework [9, 3].Thus far, MDL-based methods have been very promisingly used in the contextof surface segmentation, as in [1], and to achieve part segmentation from rangedata [4]; In both these two works, the MDL principle was used for selecting thebest representation out of a large set of competing hypotheses produced by earlier�tting stages.Following the same strategy, in this paper we present some interesting resultswith a novel method that addresses the problem of �ltering a redundant set of parthypotheses from single unsegmented edge images that retains only the hypothesesthat are likely to correspond to actual parts. In this context, the method is pushedto the limits in that it has to cope with incomplete data, coarse models and multipleobjects.Although good results have been obtained, some principled limitations havebeen discovered that have not been mentioned in previous MDL works and anaccount of them is given in Section 6.2 OverviewThe method presented in this paper is part of a larger work [7] addressing thegrouping, segmentation and recognition of generic solid parts from two-dimensionaledge images.The computational approach for generating part hypotheses that is proposedin [7] is called part-based grouping and consists of four distinct stages, which arevery succinctly summarised in the following.In the �rst stage codons, contour portions of similar curvature, are extractedfrom the raw edge image; codons are considered as indivisible image features be-cause they have the desirable property of belonging either to single parts or joints.In the second stage, small seed groups (currently pairs) of codons are selected thatnormally give enough structural information for a part hypotheses to be created.The third stage consists in initialising and pre-shaping the generic part models{ purposely trained PDM as presented in [8] (in this proceedings) { to all theseed groups and then performing a full �tting to a large neighbourhood of thepre-shaped model. At this point we have a set of part models { such as the one inFig. 1-B { which hopefully contains (possibly duplicated) actual parts hypothesesalong with meaningless hypotheses.This paper deals with the fourth, signi�cant �nal stage of global �ltering all thegenerated hypotheses in order to produce a correct part segmentation of the edgeimage. For doing so, supporting evidence of hypotheses are put in competitionin a Minimum Description-Length framework to select part hypotheses that mosteconomically represent supporting edges in the \language" of generic parts. The�ltering is actually performed by the maximisation of a boolean quadratic objective
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CFigure 1: A: Example of segmentation by part primitives. B: Typical initial setof part hypotheses. C: Illustration of supporting codons and supported contourpixels of a generic part model.function by a genetic algorithm; in the next section we describe the rationale, theimplementation and the optimisation of this MDL-based cost function.3 Filtering hypotheses by MDL of supportsThe method presented in this section is inspired by a recently developed segmenta-tion technique based on the Minimum Description-Length (MDL) criterion whichis used in [4] and [1] to segment range data into 3D patches (albeit other applica-tions are proposed); here, its basic principles are for the �rst time applied to thesegmentation of geometric primitives from real unsegmented 2D edge images.Let us �rst introduce the notation that is going to be used to describe the MDLbased cost function whose maximisation yields an MDL description of the imageedges in term of the generic part models.E: the edge image; E has the same form of the original image I and (i; j) 2 E is1 if an edge has been detected at (i; j) 2 I and 0 otherwise;C: the set of N codons C = fC1; C2; : : : ; CNg, which are the indivisible entitiesby which the original edge image E is expressed at this stage; each Ci is aconnected chain of edge points (i; j).B: the set of background (non-edge) pixels; it is B � E and E = B + C;H: the initial set ofM generic primitive model hypothesesH = fH1;H2; : : : ;HMgproduced as in [7]; Fig. 1-B gives an example of a such a set;X : a set of h model hypotheses X � HRi: the set of supporting codons Ri = fC1; C2; : : : ; Ckg of a model hypothesisHi 2 H. Supporting codons are found by thresholding a proper distancenorm to the model contour (see Fig. 1-C);RX : the set of support regions R = fR1;R2; : : : ;Rhg of a set X of h modelhypotheses X � H;
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Bi: the set of unsupported pixels covered by the contour of a model Hi (dashedportions of model contour as illustrated in Fig. 1-C;BX : the set of unsupported pixels that are covered by the contours of the set ofhypotheses X . It is BX = SHi2X Bi;Mi: the set of supported pixels of the hypothesis Hi symbolically denoted byMi = Ri a Hi1 and illustrated in Fig. 1-C;MX : the set of supported pixels of the set of hypotheses X �H, that isMX = R a Xor, equivalently, MX = SHi2XMi;Mi;j: the set of pixels of the hypothesisHi (or equivalentlyHj) that are supportedby the shared codons, that is Mi;j = (Ri \ Rj) a Hi;�2(Mi; Cj): the error of �t function which expresses the displacement between thesupported pixels Mi of a hypothesis Hi and one of its supporting codonsCj 2 Ri. By indicating with d(hk; Ci) the geometric distance of a model pixelhk 2 Mi, to a codon Cj , the error of �t function is de�ned as �2(Mi; Cj) =Phk2Mi d(hk ; Cj)2;�2(MX ;RX ): the error of �t function which expresses the displacement betweenthe supported pixels MX of set of models X �H and its supporting codonsRX . �2(MX ;RX ) =PMi2MX PCj2Ri �2(Mi; Cj).Let us now explicitly formulate the problem in MDL terms.Let us indicate by L(�) a generic function that gives the number of bits neededto represent a certain entity. Since the edge image E can be decomposed intotwo distinct elements, namely the background and the codons, the number of bitsneeded to represent it can be written as:L(E) = L(C) + L(B)When we interpret part of the edge image E by a set of models X , the encodinglength changes to that indicated by L(EjX ):L(EjX ) = L(E)� L(MX ) + L(BX ) + L(�2(MX ;RX )) + L(X ) (1)where �L(MX ) is a negative term representing the saving due to support regionsbeing now described by supported portions MX of the set of models X , L(BX )represents the additional cost of having to encode unsupported background por-tions of the contour model, L(�2(MX ;RX )) expresses the additional number ofbits needed to encode the displacement between support regions and supportedmodel contours and, �nally, L(X ) (called model overhead) expresses the additionalcost of having to encode the parameters of the models.In the MDL framework, the minimal subset of models Ĥ of H that most eco-nomically represents the image is given by:1The symbolic notation y a x introduced here indicates the elements of y that are related orrepresented by x. In model matching, for instance, x could be a model and y image featuresand y a x indicates the set of image features y that match model x. Mnemonically, it can beinterpreted as \projection".
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Ĥ = arg minX�H fL(EjX )gBy using the de�nition given in Eqn. (1) and by noticing that the term L(E)is constant, the above minimisation becomes:Ĥ = arg maxX�H�L(MX )� L(BX )� L(�2(X ;RX ))� L(X )	 (2)The maximiser expression in braces, which we call S(EjX ), is normally termedas \bit saving", because in fact it represents the decrease of encoding length dueto the use of models.Let us now suppose we can determine four constant K1, K2, K3 and K4 suchthat K1 is the average number of bits necessary to encode each supported pixelof a model contour, K2 is the average number of bits necessary to encode eachunsupported pixel of a model contour, K3 is a constant such that when multipliedby �2(X ; C) gives the average encoding length for representing the residuals and,�nally, K4 is the average number of bits for specifying the parameters of a model.Then, following the philosophy of [4], we can rewrite the bit saving S(EjX ) asfollows: S(EjX ) = K1 � jMX j �K2 � jBX j �K3 ��2(MX ;RX )� XHi2X K4 (3)where j � j indicates the number of image pixels represented by MX and BX ,respectively. It is fundamental that savings due to supports and overheads causedby the residuals are not accounted for more than once when portions of contourare shared by the same models in the �nal description [6].The inclusion of the term K2 � jBX j gives favour to models which have highercontour covering and constitute a fundamental variation with respect to the MDLcost functions used in [1] and [4]. Without this term, models could be selectedregardless of the amount of unsupported contour portions.A practical method for the minimisation of a similar cost function was proposedby Pentland [6] and here we follow his footsteps.If we presume that in the �nal solution the only kind of model overlappingtaken into account is pairwise2 [6], the maximisation in Eqn. (2) can be opera-tively achieved by transforming Eqn. (3) into a more compact matrix form, whichis derived from [4]. This pairwise overlapping assumption is a fairly sensible choicethat helps keep the computational cost down, eases optimisation and is also jus-ti�ed by the fact that three or more parts are very seldom jointly together in thesame region.Under this assumption, the maximisation can be rewritten as:m̂ = argmaxm �mTQm	 (4)where Q is the hypotheses correlation matrix, which will be de�ned next, andm = [m1 m2 � � � mM ]T is the hypotheses presence vector in which each element2Di�erently from [6], overlapping here refers to sharing codons.
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mi is \1" or \0" if the model Hi is present or absent, respectively, in the �nalimage description; any given m selects a subset X of the whole set of hypothesesH. Each diagonal element qi;i expresses the length of encoding the supportingregion Ri of a hypothesis Hi by Hi itself:qi;i = K1jMij �K2jBij �K3�2(Mi;Ri)�K4; (5)An o�-diagonal element qi;j deal with interaction between two competing (pos-sibly partially overlapping) hypotheses Hi and Hj and ensure that saving andresidual overhead due to shared supports are accounted for only once:qj;i = qi;j = 12 ��K1 � jMi;j j + K3 � �2(Mi;j ;Ri \ Rj)	 (6)Intuitively, with this de�nition mTQm is large when the smallest number ofmodels best describe the image and do not have too many unsupported contourportions.Equation (4) is, technically speaking, a Quadratic Boolean Optimisation Prob-lem, as the solution space can be represented as corners of an M -dimensional hy-percube. In [4], [1] and [6] this optimisation problem was tackled by using di�erentgreedy strategies, which we have found unsuitable to our minimisation because ofwe do not have, in general, good hypotheses. Since our intention was to investigatethe real properties and limitations of the proposed segmentation method in theoptimal case, a simple genetic algorithm was implemented to perform the booleanoptimisation. More details on the optimisation stage can be found in [7].4 On the determination of the constantsThe MDL principle states that the choice of the constants K1, K2, K3 and K4should be theoretically guided by prior probability distributions of edges, gaps,residual and model parameters.In [7] it is shown that if pm1 is the probability that a pixel on a model contouris supported (matching a feature) and if pb1 is the probability of detecting an edgeat a certain image pixel, and �2 is the variance of the model/codon displacements,reasonable values of K1, K2, K3 are given byK1 � log2(pm1)� log2(pb1)K2 � �( log2(1�pm1) + log2(1�pb1) )K3 � log2 �+ 12 log2 2�e�2For instance, for the sensible values of pm1 = 0:8 and pb1 = 0:05 we obtainK1=4 and K2=2:3, which are amazingly close to what the experiments (Sec. 5)indicated as an optimal combination. In the case ofK3, the experiments show thatthe above equation slightly over estimates the value found to be optimal in theexperiments (� = 1 : : : 3), probably because the model/codon noise distribution isnot Gaussian.The value of K4 represents the number of bits necessary to encode the modelparameters. A good range value of K4 has been experimentally found to be from40 to 80.
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5 Experimental ResultsFigure 2 shown four examples of the MDL �ltering method using the same set ofparameters K1, K2, K3 and K4.In each experiment, the original edge image, the initial set of part hypothesesand the �nal �ltered set are shown on the left, centre and right �gures, respectively.It can be seen that the initial sets includes many poor hypotheses and multipleambiguous interpretations of the edge data. In all the examples, the MDL methodproposed here managed to �lter down this redundant set and yield the correct partsegmentation: the surviving part hypotheses are the minimal set of part modelsthat most economically represent the edge image in the \language" of genericparts, in the very spirit of the MDL principle.In [7], many more experiments (not included here for reasons of space) are giventhat show that the method is fairly stable to variations in K1, K2, K3 and K4 butsome problems have been identi�ed and are reported in the following section.6 DiscussionFrom recent literature it appeared that the MDL hypothesis competition methodwould be able to handle in principle several middle-level segmentation problems.However, some problems have surfaced from experiments with di�erent valuesof the constants K1, K2, K3 and K4 (as extensively discussed [7]), and in ouropinion the considerations that follow bear a certain signi�cance. Most of theseproblems can be attributed to the well known �gure-ground ambiguity in edgeimages but some issues are more speci�c to the MDL method.Figure 3 shows how, within the proposed framework, three parallel lines cangive rise to an ambiguity in terms of their interpretation by part models. Thissituation arises often in images with multiple objects and it is even accentuatedwhen parts of the lines are missing because of occlusion or poor edge detection.In [7] it is shown that by changing the constants K1, K2 and K4, the highestvalues of the bit saving S could be obtained in diverse situations. Cases B andC are theoretically equivalent [7] for the ideal situation shown in Fig. 3. CaseD is slightly favoured over B and C (less non-supported contour portions) butunbalanced lengths and some cluttering could arbitrarily favour either. Case Acould be favoured if the length of the segments is small and therefore the savingdue to the description of the edge by the models cannot compensate for the modeloverhead itself (e.g., see the �nal segment of the index in the hand test image).Case E is very unlikely to happen because is too costly to encode.Although the MDL method is in principle very stable, situations like the abovecan lead to some instabilities, as shown in [7]; ambiguities and instability of thiskind have not been previously noted in related literature. The tuning the parame-ters on a simple test example in order to favour a particular solution would clearlybe useless because in real conditions even a small percentage of missing contourwould turn the balance towards alternative solutions.Finally, there is the problem of scale. Although it has been advocated else-where [5, 4] that one of the main advantages of MDL is its scale-independence,practically we have found that bigger model hypotheses are slightly favoured over
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Num. Hypotheses:  34 K1=3.6    K2=2.5    K3=0.1    K4=40.0

Num. Hypotheses:  39 K1=3.6    K2=2.5    K3=0.1    K4=40.0

Num. Hypotheses:  35 K1=3.6    K2=2.5    K3=0.1    K4=40.0

Num. Hypotheses:  44 K1=3.6    K2=2.5    K3=0.1    K4=40.0

Figure 2: Four hypothesis �ltering examples. Left: original edge image; Centre:redundant set of hypotheses; Right: selected hypotheses. The top two examplesare from synthetic image representing a tree and a composite image of a beer bottle,a hammer and a round object beneath. The two other examples are from of a realgrey-level image of a hand (128x128) and a screwdriver, marker and wooden stick(256x256) processed by an implementation of a Canny edge detector. See text formore details.
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EFigure 3: Taxonomy of possible MDL �ltering results for the case of three parallellines. A: only the bigger hypothesis is selected, which normally corresponds tothe actual part outline. B, C: the bigger one plus either of the small ones are se-lected. D: both small hypotheses are selected. E: all three hypotheses are selected.Ambiguities often arise for cases B, C and D.small ones (such as the last segment of the index �nger in the hand example)because they lead to higher savings in bits. These scale problems have actuallybeen considered assets in works such as [4] and [1] because bigger models weresupposed to more economically describe the surface being segmented under theirGaussian-noise assumption. A simplistic solution could be to tie K4 to the modelscale but this not only would contradict one of the main assumptions of the MDLmethod but has no theoretical support; further work has to be done in this regard.7 Conclusion and future workIn this paper, a principled approach is described that allows an initial set of parthypotheses produced from ordinary edge images to be �ltered down to a few onesthat have a high likelihood of corresponding to actual parts of objects. The methodis inspired by recent work in surface segmentation by the Minimum Description-Length principle [4, 1].A number of relevant contributions can be identi�ed. First above all, thesegmentation strategy proposed in [4] and [1] (that was shown to produce goodresults in 3D surface segmentation) is for the �rst time used here to perform partsegmentation from ordinary unsegmented edge images. Together with the part-based grouping method in [7], the �ltering method proposed here constitutes oneof the handful of methods for part segmentation from unsegmented edge imagesto be found in the literature. Another contribution regards the use of a geneticalgorithm to maximise the quadratic boolean cost function in Eqn. (4). In otherworks, this maximization was performed by greedy methods, which have beenfound impractical when the quality of the initial hypotheses is poor. Finally, sometheoretical aspects of the MDL method have been investigated and discussed, e.g.the problem of ambiguities described in Sec. 6 which had not been pointed out inprevious work. These problems are inherent to the use of sole edge information butcould also arise whenever the data is incomplete, cluttered or the �tting residualsare simply too high and no noise model is available.
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However, the work could improved upon in several aspects. Codons have beenused as atomic entities both for generating part hypotheses and for �nding ad-ditional image support, expressed in fact in terms of codons. This assumption,although yielding good results, is rather simplistic and perhaps image supportshould be directly found in the raw edge or gradient image, which would easesome problems in determining support regions. Another signi�cant improvementcould come from the integration of more information (such as regions, colour anddepth) under the MDL framework. Thus far, no work has been done on mergingdi�erent kinds of information under an MDL framework but this could be justincidental, since a clear derivation could be made from a Bayesian frame of mind.Such an integration could resolve some ambiguities, as shown for a simple casein [7]. Finally, an intriguing possibility would be to explore the use of a multi-population genetic algorithm in which equally high-scoring alternative solutionscould be left to evolve, up to migrations, in parallel; a similar possibility was alsoinvestigated in [2].Acknowledgements: Maurizio Pilu was partially sponsored by SGS-THOMSON Mi-croelectronics. The authors whish to thank A.W. Fitzgibbon for useful discussions andfor providing an genetic algorithm in-house implementation.References[1] T. Darrell and A. Pentland. Cooperative robust estimation using layers of support.IEEE Transaction on Pattern Analysis and Machine Intelligence, 17(5):474{487, May1995.[2] A. Hill and C. Taylor. Model-based image interpretation using genetic algorithms.Image and Vision Computing, 10(5):295{300, June 1992.[3] Y. Leclerc. Constructing simple stable description for image partitioning. Interna-tional Journal of Computer Vision, 3:73{102, 1989.[4] A. Leonardis, A. Gupta, and R. Bajcsy. Segmentation of range images as the searchfor geometric paramatric models. International Journal of Computer Vision, 14:253{277, 1995.[5] E. Pednault. Some experiments in applying inductive inference principles to surfacereconstruction. In Proceedings of the International Joint Conference on Arti�cialIntelligence, pages 1603{1609, Detroit, MI, Aug. 1989.[6] A. Pentland. Automatic extraction of deformable part models. International Journalof Computer Vision, (4):107{126, 1990.[7] M. Pilu. Part-based Grouping and Recogntion: A Model-Guided Approach. PhDThesis, Department of Arti�cial Intelligence, University of Edinburgh, Scotland, 1996.Forthcoming.[8] M. Pilu, A. Fitzgibbon, and R. Fisher. Training PDM on models: The case ofdeformable superellipses. In Proceedings of the British Machine Vision Conference,Edinburgh, Sept. 1996. This volume.[9] J. Rissnanen. A universal prior for integers and estimation by minimum descriptionlength. The Annals of Statistics, 2:416{431, 1983.


