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Abstract

This paper presents a novel approach to recognizing 3D complex ob-
jects that have similar geometric structure but belong to different sub-
classes. Test scenes are acquired by a laser striper as range images, and
the objects are modelled using a composite volumetric representation
of superquadrics and geons. Matching is decomposed into two stages:
first, an indexing scheme designed to make effective use of the symbolic
keys of the representation is implemented in order to direct the search
to the models containing the parts identified; second, a method is pro-
posed where the hypotheses picked from the index are searched using
an Interpretation Tree algorithm combined with a quality measure to
evaluate the bindings and the final valid hypotheses based on Possibil-
ity Theory, or Theory of Fuzzy Sets. The valid hypotheses ranked by
the matching process are then passed to the pose estimation module.

1 Introduction

This paper is concerned with a matching approach developed for model-based
recognition. The approach is feature based, and it receives its input data from
a segmentation [3] and classification modules (see Figure 1 (a)). After matching,
localization and verification are performed in a complete recognition process [2].
This paper focuses on the matching process developed for recognition. Both quan-
titative and qualitative information about the data are explored: first by means of
an indexing of the model library, based on the qualitative features; and second by
a constrained search using the quantitative features of the superellipsoid represen-
tation. The constrained search algorithm presents a novel measure of qualitative
similarity, which allows ranking of the surviving hypotheses in a way suitable for
evaluating class-based recognition of complex 3D objects.

Two important issues in the design of the matching process for recognition
are efficiency and robustness. The first is concerned with finding the matches as
quickly as possible, avoiding misleading paths sooner rather than later, and the
second is concerned with error or uncertainty management where false and inexact
matchings are to be dealt with. One way to address efficiency is by splitting the
search optimization problem into two related ones: 1) minimization of the search
space and 2) minimization of the portion to be explored in the search. In our
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approach we use volumetric primitives (deformable superquadrics and geons) to
represent the objects and this has the effect of reducing drastically the search
space, since the number of features is directly related to the size of the search.
To minimize the fraction of the search space explored in the matching process,
one general strategy would be to group in a meaningful way the objects in the
database, so common characteristics shared by subsets of the objects would be
first identified and then trigger the search in subsets of the database.

For a matching process to be able to deal with objects with similar but not
identical geometric properties, and with features that may have a small range of
values, a mechanism to rank or to measure the quality of the matching is more
appropriate than usual binary (i.e. matches/fails) measures. In this case inexact
matchings have to be considered, and often a categorization of the valid hypotheses
is also desirable.

Figure 1 (b) shows a functional diagram of the matching process developed in
this work in order to achieve recognition. The approach is structured to favour
efficiency and robustness, and works particularly well in the domain of this work.
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Figure 1: (a) Functional diagram of the complete recognition approach; (b) The
matching approach presented here.

2 Parametric Forms and Symbolic Features

A problem in 3D model-based recognition is to find a rich and suitable represen-
tation for describing the classes of objects which the system aims to recognize.
In our opinion there is no general representation that can describe efficiently all
types of shapes. Having said that, there are criteria[7] upon which we could judge
existing and newly proposed representations for 3D recognition. In general, 3D
volumetric primitives perform better than other commonly used representations
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such as surfaces, contours, and points in practical design issues like primitive com-
plexity, model complexity, search complexity, reliance on verification, and model
flexibility. To describe a wide range of complex articulated 3D shapes for the pur-
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Figure 2: The set of twelve (12) geons modelled using the attributes of axis shape,
cross-section edge, and cross-section size.

pose of recognition we use two volumetric representations which complement each
other’s properties: superquadrics [8] and geons[1]. Superquadrics are attractive
for use in Computer Vision mainly because of their representational power, and
the small number of parameters necessary to define them. However, it has been
argued [6] that one of their drawbacks is the difficulty in achieving shape discrim-
ination, or the lack of good indexing properties by their parameters. To address
this problem we derive a classification of volumetric shapes (a subset of geons, see
Figure 2) and form a composite representation, superquadrics and geons. This
results in a powerful representation for object recognition since we will have the
representational capacity of the superquadrics and the indexing basis provided
by the geons. All the models used in this work were created manually using the
THINGWORLD [8] modelling system, to shape and position the superquadrics,
and then their descriptions were edited and placed in the database of models.

The geometric models are hierarchical assemblies of volumetric features. The
model primitives are superquadrics, parameterized and described by: €1, €5 param-
eters of the superquadric; a;, a,, a., superquadric axis lengths, t,,t, x,y tapering
deformation; and rad_bend radius of bending deformation.

A model structure hierarchy is formed by placing the primitives relative to
each other, relative to a global coordinate system, specifying the transformation
by X, Y, and Z for translation, and R, S, and T for the rotation components.
Movable joints are specified by labelling a part allowed to move, and a distance
limit (measured as an euclidean distance between the mass centres of the connected
parts) which specifies the maximum relative movement. Additional information
in the model is primitive adjacency, indicating which parts are adjacent to each
other, and labels for the geon classes the primitives belong to.
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3 Finding and Ranking Correspondences

When a hypothesis is generated it is based on evidence extracted from the image
and from the knowledge built into the system. A binary evaluation of this hypothe-
sis, being either true or false only, ignores the fact that, because of noise, occlusion,
failures or deviations in the segmentation, and geometric similarity rather than
identity between the objects, a match is never exact in a real situation. A quali-
tative measure of similarity in the matching process provides a more robust and
realistic evaluation of the hypotheses generated, since it can order the hypotheses
within the range of 0 - 100% true. Fast information integration capabilities are
also required in deriving this measure. We derive such a measure from Possibility
Theory, or Theory of Fuzzy Sets [9].

One suitable way to organize the search is to pose the problem as a constrained
search of a tree of interpretations, known as the Interpretation Tree approach. The
Interpretation Tree approach can be seen as an instance of the hypothesize-and-
test paradigm in Artificial Intelligence. At each level down the tree, going from
the root to the leaf nodes, a different feature is tested against the model, thus
building up the feasible matchings between data and model. Other researchers
have used the Interpretation Tree in Computer Vision, most notably [5, 4].

A verification stage including the pose estimation of the model is done after
valid interpretations of the data are found and ranked. A variation of the Inter-
pretation Tree approach estimates the transformation (rotation and translation)
between data and model while building the interpretation [5, 4]. This is a powerful
constraint, in particular when using features like edges and surfaces which generate
thousands of possible bindings to be searched. Because we use volumetric primi-
tives, and we use an indexing scheme to organize the models and narrow down the
initial hypotheses, we deal with a small number of possible interpretations (tens or
hundreds). The surviving hypotheses are therefore ranked by the fuzzy evaluation
process and passed to the pose estimation module which introduces a new method
to calculate poses of articulated objects represented by volumetric primitives. The
approach presented here is efficient and it is specially suited for our problem of
recognizing similar complex objects.

3.1 Geometric Constraints and Design Features

The efficacy of the Interpretation Tree approach as a recognition algorithm is
based on the use of geometric constraints to prune the branches of the tree which
lead to invalid hypotheses. These constraints are forced by unary and binary predi-
cates, which are applied sequentially to every hypothesis generated as the matching
grows by adding new bindings. If a predicate is not satisfied the interpretation is
discarded, and the subtree is pruned.

Unlike the usual Interpretation Tree, which uses a bivalued predicate for eval-
uating the geometric constraints in the search, we developed a Fuzzy Predicate
with five (5) fuzzy sets indicating possible evaluations of the evidence. This allows
us to deal with uncertainty in the matching in a more robust way, and also to
have a ranking of surviving hypotheses, which proves to be a distinctive measure
in matching objects with similar geometric properties.
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In the remainder of this section we describe the unary and binary fuzzy predi-
cates, and the special design features of our Interpretation Tree algorithm respec-
tively. The details of the fuzzy predicate evaluation, together with the quality
measure of similarity are given in Section 3.2.

In our approach we use four different fuzzy unary predicates:

1. The Volume Predicate - comparing (using d()) the estimated volume and
the maximum volume prescribed in the model.

2. The Geon Type Predicate - comparing (using 6()) the similarity between
the modelled and extracted types.

3. The Shape Intrinsic Parameter Predicate - compares (using 4()) the
five shape parameters of the deformable superquadric that identify the geon
(€1, €2,t4, 1y, rad _bend).

4. The Part Scale Predicate - compares (using d()) the ratio between the
longest axis, and the shortest axis (i.e. from the a1, a2, a3) of the two
volumetric primitives.

We use three binary predicates:

1. The Adjacency Predicate - evaluates (using §()) feature adjacency for
each model and data feature pairing.

2. The Distance Predicate - compares (using 4()) the Euclidean distance
between each pair of associations made to see if they agree within a specified
tolerance. The distance is measured between the mass centres of each vol-
umetric part. In the case where the part is articulated the tolerance given
is higher in order to comply with the allowed range of distance between the
two parts.

3. The Parts Proportion Predicate - evaluates (using §()) the proportion
between the biggest and smallest parts of the model and data to provide
discriminative information in the case of similar objects.

In order to allow for spurious data, perhaps from bad segmentation or fitting,
we provide the Interpretation Tree with NULL associations, which gives the ca-
pacity, during the search, to ignore any data primitive D; not found in the model.
Data primitives D; are ordered starting from the biggest parts until the smallest
before being passed to be searched. This improves the efficiency of the search.

3.2 Evaluating Similarity in a Match by a Fuzzy Measure

Feature values extracted from image data, such as parameters of the deformable
superquadrics fitted in the segmentation procedure, are evidence for a match-
ing procedure and as such there are variations in the degree of uncertainty for
these features. When evaluating a geometric constraint for (data primitive, model
primitive) binding, usually a tolerance is prescribed for each predicate test and
the matching result indicates only the acceptance or not (i.e. true or false) of that
binding. In this work we aim to recognize complex 3D objects that are similar
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in their geometric properties and are organized into classes. This brings to the
match evaluation the task of measuring different degrees of similarity, hence the
need for a quality measure of similarity.

The matching algorithm, including the evaluations of the fuzzy predicates and
the final degree of similarity, is divided into the following steps:

1.

Compute normalized distances between the pair of corresponding features
while analyzing the current binding (M;, D;), using:

6(fmg, fdg) =11.0 = (fmg — fdg)/fmql  1<qg<n (1)

where n is the number of features involved amongst all predicates, in this
case n = 11 (7 predicates, but the third unary predicate provides actually 5
feature evaluations).

. Evaluate the degree of membership of each distance feature AF producing

fuzzy inputs. The membership functions are defined in Figure 3 (a). For each
feature evaluation computed using 6(), a degree of membership u (between
0.0 and 1.0) and a linguistic label £ = (VERY FALSE, FALSE, ACCEPT-
ABLY TRUE, TRUE, VERY TRUE) are associated to that feature match-
ing. This can be written as the following fuzzy relationship Ry : AF x L,

uRl([6f1,5f27 sy 6f11]; [l1,127 sy l5]) = mmzmumz[ulf(éfz)] (2)
where [5f176f27 ...76f11] € A}-, and [l1,127 ...7l5] e L.

The actual fuzzy predicates are thresholded to indicate acceptable matchings
(the ones that satisfy the constraints). The acceptable values are ACCEPT-
ABLY TRUE, TRUE, and VERY TRUE.

Accepted pairings are given a fuzzy degree of similarity, which is computed as
follows. Weights are given according to the values shown in Table 1 to express
the relevance of each feature matched and its degree of membership. The
values were determined empirically, reflecting our experience with the tests
on the importance of each feature. A membership function Ry : £ x Sim_set
is defined as:

[3oits wli) x wt[j]]

maazimumj(zlil w fi] x wt[j])

(3)

IURQ [lf17 lf27 sy lfll; Sim_set] =

where, j € [1,2,3,4,5] (i.e. 5 fuzzy sets), and Sim_set is chosen to be the
same set as in Figure 3 (b).

The quality measure of similarity is computed by combining the fuzzy rela-
tionships R; and R, by a composition rule of Fuzzy Sets [9]:
,uRl o RQ([6f1,5f27 sy 6f11], Sim_set) =
mazimum; minimum[pRi([0f],[1]), pR2(ly, Sim_set)] (4)

3
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| Wfl | Wf2 | Wf3 | Wf4 | Wf5 | WfG | Wf7 | ng | ng | Wf]_(] | Wfll |
[20 [ 1.0 [ 1.0 [ 1.0 [ 1.0 | 1.0 [ 1.0 | 2.0 | 3.0 [ 3.0 | 3.0 ]

|wt1|wt2|wt3|wt4|wt5|
[20 ] 15 [ 1.0 ] 05 [ 0.2 |

Table 1: Weights expressing the relevance of each feature (wf;) and each fuzzy set
(linguistic term) (wt;) in the similarity evaluation.

6. Steps 1 to 5 are repeated until all the data parts are evaluated. The surviving
hypotheses are then ranked as follows. The tree evaluation produces np
fuzzy quality measures, one for each part, and a global similarity measure is
computed by evaluating a membership function R3 : £ x Sim_set, defined
as:

>, wpart[i] x wt[4]]

(5)

Rallyurts s s Lyare.., Sim_set] = —— i _
HBsllparts s o lparta, , Sim-se] mazimum; (Y F, wparti] x wt[j])

with Sim_set as in Figure 3 (b), and the weights for the parts wpart[i] are
set as equal to 1 for all the np parts.
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Figure 3: (a) Membership functions; (b) Similarity Sets.

L L L L
0.0 02 % 04 ° 06 ° 08 ° 10 d

o
°

4 Experiments and Results

This section presents results on matching complex 3D objects from range data
against a model library of 16 objects. The model library is indexed by the geon
parts of the objects. The direct input to the matching procedure is an array of
measurements with the quantitative features of the superquadrics (15 features),
and the qualitative feature identifying the geon category for each volumetric part
successfully segmented in the range image. Results are shown for six different
objects: a wooden “doll”, and plastic miniatures of two “horses”, a “cow”, a “gi-
raffe”, and a “kangaroo”. The second object “horse” was scanned in four different
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viewing positions for testing stability. Figure 4 shows the original range images of
the objects, and Figure 5 shows the results with the matched models overlayed on
the original 3D data.

(a) (b) (c) (d)
(f) () (h)

Figure 4: Range images of objects tested for recognition. (a) “doll”; (b) “horse
(first)”; (c) “cow”; (d) “giraffe”; (e) “kangaroo”; (f)(g)(h)(i) “horse (in four dif-

ferent viewing positions)”.

(i)

Table 2 shows that all objects were successfully recognized and ranked differ-
ently according to the fuzzy measure of similarity. Of particular significance are
the facts that: 1) most of the objects tested have effectively identical quadruped
structure yet the correct models are identified, and 2) the other models ranked
for each image are those models that are closest to the data in terms of shape
parameters. Thus, we can see good performance on class and subclass identifica-
tion. Recognition was unsuccessful in four other images of another quadruped —
a pig — largely because the leg parts were too small to be extracted reliably [2].
The data primitives (D,,) are ordered according to size, from the largest part to
the smallest, and the model primitives are ordered in the sequence the parts are
described in the model, when passed to Interpretation. Preliminary pairings are
chosen by applying the Geon Type Predicate, and pruning occurs with the evalu-
ation of all the unary and binary fuzzy predicates. The search complexity for the
correct model is typically on the order of 100-200 nodes investigated.
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(f) (&) (h) (i)

Figure 5: Recognized objects with models overlayed on 3D data in final estimated
position. (a) “doll”; (b) “horse (first)”; (c) “cow”; (d) “giraffe”; (e) “kangaroo”;
(f)(g)(h)(i) “horse (in four different viewing positions)”.

5 Conclusions

This paper has presented an efficient and robust method to perform matching of
3D objects from range image data. There has not been much work in recognition
of 3D articulated objects using part primitives. Previous works have addressed
mainly description and symbolic identification in simple cases. The matching
technique presented in this paper has many different features addressing issues
of part-based representation, inexact matching, library indexing, and constraint
based search. Of particular significance is the fact that the recognition process
was capable of both recognizing and discriminating between models with the same
structure but different shapes (as well as ranking the candidate models in a sensible
order relative to the true shape.)

The method divides the problem into two stages: an indexing stage and a
constrained search stage with fuzzy degrees of similarity. The indexing stage selects
a subset of the model library to be fully searched based on the output of the geon
classifier. The models are indexed in the library by grouping them on the common
part primitives (geons) they share. This organization allows for robustness in
recognition since a meaningful and reliable classification relates these parts to their
parameters. This indexing scheme has also the property of sublinear growth with
the size of the library, and so it does not compromise its performance when new
models are added in the database. A quality measure of similarity is introduced
in a constrained interpretation tree based search algorithm providing a robust
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[ Object [ Model F.M.S. Label
doll m1 0.89 V.T.
horse (first) m7 m2 mid — 0.82 0.61 0.54 — T. AT. —
cow m2 m7 m14 m13 0.92 0.61 0.48 0.41 . T. A T. A T.
giraffe m10 m6 — — 0.94 0.41 — — V.T. AT. — —
kangaroo m16 0.74 T.
horse (v.1) m7 m2 mi14 0.58 0.50 0.45 A T. AT. A T.
horse (v.2) m7 m2 mid — 0.70 0.62 0.58 — T. AT. AT. —
horse (v.3) m7 m2 mi14 0.68 0.61 0.52 T. AT. A T.
horse (v.4) m7 m2 mid — 0.50 0.42 0.40 — AT. AT. AT. —

Table 2: Results showing the matched objects. All hypotheses higher than AC-
CEPTABLY TRUE (A.T.) are shown. T. = TRUE, V.T. = VERY TRUE, and
F.M.S. = Fuzzy Measure of Similarity. Models mentioned are: m1(doll), m2(cow),
m6(nessie), m7(horse), m10(giraffe), m13(hippo), m14(bear), and m16(kangaroo).

and efficient mechanism to rank and compare inexact matchings. The quality
measure is built by using the Theory of Fuzzy Sets [9], first by evaluating feature
bindings (D, M) (Data primitives, Model primitives) with fuzzy predicates, and
deriving a fuzzy degree of similarity which ranks the valid hypotheses reached in
the constrained search. Results are given for a variety of complex 3D shapes, and
identification and ranking are successfully achieved.
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