
Class-based recognition of 3D Objectsrepresented by volumetric primitivesD��bio L. Borges and Robert B. FisherDept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL (United Kingdom)fdibio, rbfg@aifh.ed.ac.ukAbstractThis paper presents a novel approach to recognizing 3D complex ob-jects that have similar geometric structure but belong to di�erent sub-classes. Test scenes are acquired by a laser striper as range images, andthe objects are modelled using a composite volumetric representationof superquadrics and geons. Matching is decomposed into two stages:�rst, an indexing scheme designed to make e�ective use of the symbolickeys of the representation is implemented in order to direct the searchto the models containing the parts identi�ed; second, a method is pro-posed where the hypotheses picked from the index are searched usingan Interpretation Tree algorithm combined with a quality measure toevaluate the bindings and the �nal valid hypotheses based on Possibil-ity Theory, or Theory of Fuzzy Sets. The valid hypotheses ranked bythe matching process are then passed to the pose estimation module.1 IntroductionThis paper is concerned with a matching approach developed for model-basedrecognition. The approach is feature based, and it receives its input data froma segmentation [3] and classi�cation modules (see Figure 1 (a)). After matching,localization and veri�cation are performed in a complete recognition process [2].This paper focuses on the matching process developed for recognition. Both quan-titative and qualitative information about the data are explored: �rst by means ofan indexing of the model library, based on the qualitative features; and second bya constrained search using the quantitative features of the superellipsoid represen-tation. The constrained search algorithm presents a novel measure of qualitativesimilarity, which allows ranking of the surviving hypotheses in a way suitable forevaluating class-based recognition of complex 3D objects.Two important issues in the design of the matching process for recognitionare e�ciency and robustness. The �rst is concerned with �nding the matches asquickly as possible, avoiding misleading paths sooner rather than later, and thesecond is concerned with error or uncertainty management where false and inexactmatchings are to be dealt with. One way to address e�ciency is by splitting thesearch optimization problem into two related ones: 1) minimization of the searchspace and 2) minimization of the portion to be explored in the search. In our
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approach we use volumetric primitives (deformable superquadrics and geons) torepresent the objects and this has the e�ect of reducing drastically the searchspace, since the number of features is directly related to the size of the search.To minimize the fraction of the search space explored in the matching process,one general strategy would be to group in a meaningful way the objects in thedatabase, so common characteristics shared by subsets of the objects would be�rst identi�ed and then trigger the search in subsets of the database.For a matching process to be able to deal with objects with similar but notidentical geometric properties, and with features that may have a small range ofvalues, a mechanism to rank or to measure the quality of the matching is moreappropriate than usual binary (i.e. matches/fails) measures. In this case inexactmatchings have to be considered, and often a categorization of the valid hypothesesis also desirable.Figure 1 (b) shows a functional diagram of the matching process developed inthis work in order to achieve recognition. The approach is structured to favoure�ciency and robustness, and works particularly well in the domain of this work.
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(a) (b)Figure 1: (a) Functional diagram of the complete recognition approach; (b) Thematching approach presented here.2 Parametric Forms and Symbolic FeaturesA problem in 3D model-based recognition is to �nd a rich and suitable represen-tation for describing the classes of objects which the system aims to recognize.In our opinion there is no general representation that can describe e�ciently alltypes of shapes. Having said that, there are criteria[7] upon which we could judgeexisting and newly proposed representations for 3D recognition. In general, 3Dvolumetric primitives perform better than other commonly used representations



British Machine Vision Conference
such as surfaces, contours, and points in practical design issues like primitive com-plexity, model complexity, search complexity, reliance on veri�cation, and model
exibility. To describe a wide range of complex articulated 3D shapes for the pur-
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s−s−ta b−s−taFigure 2: The set of twelve (12) geons modelled using the attributes of axis shape,cross-section edge, and cross-section size.pose of recognition we use two volumetric representations which complement eachother's properties: superquadrics [8] and geons[1]. Superquadrics are attractivefor use in Computer Vision mainly because of their representational power, andthe small number of parameters necessary to de�ne them. However, it has beenargued [6] that one of their drawbacks is the di�culty in achieving shape discrim-ination, or the lack of good indexing properties by their parameters. To addressthis problem we derive a classi�cation of volumetric shapes (a subset of geons, seeFigure 2) and form a composite representation, superquadrics and geons. Thisresults in a powerful representation for object recognition since we will have therepresentational capacity of the superquadrics and the indexing basis providedby the geons. All the models used in this work were created manually using theTHINGWORLD [8] modelling system, to shape and position the superquadrics,and then their descriptions were edited and placed in the database of models.The geometric models are hierarchical assemblies of volumetric features. Themodel primitives are superquadrics, parameterized and described by: �1; �2 param-eters of the superquadric; ax; ay; az, superquadric axis lengths, tx; ty x,y taperingdeformation; and rad bend radius of bending deformation.A model structure hierarchy is formed by placing the primitives relative toeach other, relative to a global coordinate system, specifying the transformationby X , Y , and Z for translation, and R, S, and T for the rotation components.Movable joints are speci�ed by labelling a part allowed to move, and a distancelimit (measured as an euclidean distance between the mass centres of the connectedparts) which speci�es the maximum relative movement. Additional informationin the model is primitive adjacency, indicating which parts are adjacent to eachother, and labels for the geon classes the primitives belong to.
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3 Finding and Ranking CorrespondencesWhen a hypothesis is generated it is based on evidence extracted from the imageand from the knowledge built into the system. A binary evaluation of this hypothe-sis, being either true or false only, ignores the fact that, because of noise, occlusion,failures or deviations in the segmentation, and geometric similarity rather thanidentity between the objects, a match is never exact in a real situation. A quali-tative measure of similarity in the matching process provides a more robust andrealistic evaluation of the hypotheses generated, since it can order the hypotheseswithin the range of 0 - 100% true. Fast information integration capabilities arealso required in deriving this measure. We derive such a measure from PossibilityTheory, or Theory of Fuzzy Sets [9].One suitable way to organize the search is to pose the problem as a constrainedsearch of a tree of interpretations, known as the Interpretation Tree approach. TheInterpretation Tree approach can be seen as an instance of the hypothesize-and-test paradigm in Arti�cial Intelligence. At each level down the tree, going fromthe root to the leaf nodes, a di�erent feature is tested against the model, thusbuilding up the feasible matchings between data and model. Other researchershave used the Interpretation Tree in Computer Vision, most notably [5, 4].A veri�cation stage including the pose estimation of the model is done aftervalid interpretations of the data are found and ranked. A variation of the Inter-pretation Tree approach estimates the transformation (rotation and translation)between data and model while building the interpretation [5, 4]. This is a powerfulconstraint, in particular when using features like edges and surfaces which generatethousands of possible bindings to be searched. Because we use volumetric primi-tives, and we use an indexing scheme to organize the models and narrow down theinitial hypotheses, we deal with a small number of possible interpretations (tens orhundreds). The surviving hypotheses are therefore ranked by the fuzzy evaluationprocess and passed to the pose estimation module which introduces a new methodto calculate poses of articulated objects represented by volumetric primitives. Theapproach presented here is e�cient and it is specially suited for our problem ofrecognizing similar complex objects.3.1 Geometric Constraints and Design FeaturesThe e�cacy of the Interpretation Tree approach as a recognition algorithm isbased on the use of geometric constraints to prune the branches of the tree whichlead to invalid hypotheses. These constraints are forced by unary and binary predi-cates, which are applied sequentially to every hypothesis generated as the matchinggrows by adding new bindings. If a predicate is not satis�ed the interpretation isdiscarded, and the subtree is pruned.Unlike the usual Interpretation Tree, which uses a bivalued predicate for eval-uating the geometric constraints in the search, we developed a Fuzzy Predicatewith �ve (5) fuzzy sets indicating possible evaluations of the evidence. This allowsus to deal with uncertainty in the matching in a more robust way, and also tohave a ranking of surviving hypotheses, which proves to be a distinctive measurein matching objects with similar geometric properties.
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In the remainder of this section we describe the unary and binary fuzzy predi-cates, and the special design features of our Interpretation Tree algorithm respec-tively. The details of the fuzzy predicate evaluation, together with the qualitymeasure of similarity are given in Section 3.2.In our approach we use four di�erent fuzzy unary predicates:1. The Volume Predicate - comparing (using �()) the estimated volume andthe maximum volume prescribed in the model.2. The Geon Type Predicate - comparing (using �()) the similarity betweenthe modelled and extracted types.3. The Shape Intrinsic Parameter Predicate - compares (using �()) the�ve shape parameters of the deformable superquadric that identify the geon(�1; �2; tx; ty; rad bend).4. The Part Scale Predicate - compares (using �()) the ratio between thelongest axis, and the shortest axis (i.e. from the a1, a2, a3) of the twovolumetric primitives.We use three binary predicates:1. The Adjacency Predicate - evaluates (using �()) feature adjacency foreach model and data feature pairing.2. The Distance Predicate - compares (using �()) the Euclidean distancebetween each pair of associations made to see if they agree within a speci�edtolerance. The distance is measured between the mass centres of each vol-umetric part. In the case where the part is articulated the tolerance givenis higher in order to comply with the allowed range of distance between thetwo parts.3. The Parts Proportion Predicate - evaluates (using �()) the proportionbetween the biggest and smallest parts of the model and data to providediscriminative information in the case of similar objects.In order to allow for spurious data, perhaps from bad segmentation or �tting,we provide the Interpretation Tree with NULL associations, which gives the ca-pacity, during the search, to ignore any data primitive Di not found in the model.Data primitives Di are ordered starting from the biggest parts until the smallestbefore being passed to be searched. This improves the e�ciency of the search.3.2 Evaluating Similarity in a Match by a Fuzzy MeasureFeature values extracted from image data, such as parameters of the deformablesuperquadrics �tted in the segmentation procedure, are evidence for a match-ing procedure and as such there are variations in the degree of uncertainty forthese features. When evaluating a geometric constraint for (data primitive, modelprimitive) binding, usually a tolerance is prescribed for each predicate test andthe matching result indicates only the acceptance or not (i.e. true or false) of thatbinding. In this work we aim to recognize complex 3D objects that are similar
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in their geometric properties and are organized into classes. This brings to thematch evaluation the task of measuring di�erent degrees of similarity, hence theneed for a quality measure of similarity.The matching algorithm, including the evaluations of the fuzzy predicates andthe �nal degree of similarity, is divided into the following steps:1. Compute normalized distances between the pair of corresponding featureswhile analyzing the current binding (Mi; Dj), using:�(fmq ; fdq) = k1:0� (fmq � fdq)=fmqk 1 � q � n (1)where n is the number of features involved amongst all predicates, in thiscase n = 11 (7 predicates, but the third unary predicate provides actually 5feature evaluations).2. Evaluate the degree of membership of each distance feature �F producingfuzzy inputs. The membership functions are de�ned in Figure 3 (a). For eachfeature evaluation computed using �(), a degree of membership � (between0.0 and 1.0) and a linguistic label L = (VERY FALSE, FALSE, ACCEPT-ABLY TRUE, TRUE, VERY TRUE) are associated to that feature match-ing. This can be written as the following fuzzy relationship R1 : �F � L,�R1([�f1; �f2; :::; �f11]; [l1; l2; :::; l5]) = minimumi[�lf (�fi)] (2)where [�f1; �f2; :::; �f11] 2 �F , and [l1; l2; :::; l5] 2 L.3. The actual fuzzy predicates are thresholded to indicate acceptable matchings(the ones that satisfy the constraints). The acceptable values are ACCEPT-ABLY TRUE, TRUE, and VERY TRUE.4. Accepted pairings are given a fuzzy degree of similarity, which is computed asfollows. Weights are given according to the values shown in Table 1 to expressthe relevance of each feature matched and its degree of membership. Thevalues were determined empirically, re
ecting our experience with the testson the importance of each feature. A membership function R2 : L�Sim setis de�ned as:�R2[lf1; lf2; :::; lf11; Sim set] = [P11i=1 wf [i]� wt[j]]maximumj(P11i=1 wf [i]� wt[j]) (3)where, j 2 [1; 2; 3; 4; 5] (i.e. 5 fuzzy sets), and Sim set is chosen to be thesame set as in Figure 3 (b).5. The quality measure of similarity is computed by combining the fuzzy rela-tionships R1 and R2 by a composition rule of Fuzzy Sets [9]:�R1 �R2([�f1; �f2; :::; �f11]; Sim set) =maximuml minimum[�R1([�f ]; [l]); �R2(lf ; Sim set)] (4)
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wf1 wf2 wf3 wf4 wf5 wf6 wf7 wf8 wf9 wf10 wf112.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0 3.0 3.0wt1 wt2 wt3 wt4 wt52.0 1.5 1.0 0.5 0.2Table 1: Weights expressing the relevance of each feature (wfi) and each fuzzy set(linguistic term) (wtj) in the similarity evaluation.6. Steps 1 to 5 are repeated until all the data parts are evaluated. The survivinghypotheses are then ranked as follows. The tree evaluation produces npfuzzy quality measures, one for each part, and a global similarity measure iscomputed by evaluating a membership function R3 : L � Sim set, de�nedas:�R3[lpart1 ; :::; lpartnp ; Sim set] = [Pnpi=1 wpart[i] � wt[j]]maximumj(Pnpi=1 wpart[i]� wt[j]) (5)with Sim set as in Figure 3 (b), and the weights for the parts wpart[i] areset as equal to 1 for all the np parts.
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EVALUATED COMPOSITE MEASURE(a) (b)Figure 3: (a) Membership functions; (b) Similarity Sets.4 Experiments and ResultsThis section presents results on matching complex 3D objects from range dataagainst a model library of 16 objects. The model library is indexed by the geonparts of the objects. The direct input to the matching procedure is an array ofmeasurements with the quantitative features of the superquadrics (15 features),and the qualitative feature identifying the geon category for each volumetric partsuccessfully segmented in the range image. Results are shown for six di�erentobjects: a wooden \doll", and plastic miniatures of two \horses", a \cow", a \gi-ra�e", and a \kangaroo". The second object \horse" was scanned in four di�erent
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viewing positions for testing stability. Figure 4 shows the original range images ofthe objects, and Figure 5 shows the results with the matched models overlayed onthe original 3D data.

(a) (b) (c) (d) (e)
(f) (g) (h) (i)Figure 4: Range images of objects tested for recognition. (a) \doll"; (b) \horse(�rst)"; (c) \cow"; (d) \gira�e"; (e) \kangaroo"; (f)(g)(h)(i) \horse (in four dif-ferent viewing positions)".Table 2 shows that all objects were successfully recognized and ranked di�er-ently according to the fuzzy measure of similarity. Of particular signi�cance arethe facts that: 1) most of the objects tested have e�ectively identical quadrupedstructure yet the correct models are identi�ed, and 2) the other models rankedfor each image are those models that are closest to the data in terms of shapeparameters. Thus, we can see good performance on class and subclass identi�ca-tion. Recognition was unsuccessful in four other images of another quadruped {a pig { largely because the leg parts were too small to be extracted reliably [2].The data primitives (Dn) are ordered according to size, from the largest part tothe smallest, and the model primitives are ordered in the sequence the parts aredescribed in the model, when passed to Interpretation. Preliminary pairings arechosen by applying the Geon Type Predicate, and pruning occurs with the evalu-ation of all the unary and binary fuzzy predicates. The search complexity for thecorrect model is typically on the order of 100-200 nodes investigated.
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(a) (b) (c) (d) (e)
(f) (g) (h) (i)Figure 5: Recognized objects with models overlayed on 3D data in �nal estimatedposition. (a) \doll"; (b) \horse (�rst)"; (c) \cow"; (d) \gira�e"; (e) \kangaroo";(f)(g)(h)(i) \horse (in four di�erent viewing positions)".5 ConclusionsThis paper has presented an e�cient and robust method to perform matching of3D objects from range image data. There has not been much work in recognitionof 3D articulated objects using part primitives. Previous works have addressedmainly description and symbolic identi�cation in simple cases. The matchingtechnique presented in this paper has many di�erent features addressing issuesof part-based representation, inexact matching, library indexing, and constraintbased search. Of particular signi�cance is the fact that the recognition processwas capable of both recognizing and discriminating between models with the samestructure but di�erent shapes (as well as ranking the candidate models in a sensibleorder relative to the true shape.)The method divides the problem into two stages: an indexing stage and aconstrained search stage with fuzzy degrees of similarity. The indexing stage selectsa subset of the model library to be fully searched based on the output of the geonclassi�er. The models are indexed in the library by grouping them on the commonpart primitives (geons) they share. This organization allows for robustness inrecognition since a meaningful and reliable classi�cation relates these parts to theirparameters. This indexing scheme has also the property of sublinear growth withthe size of the library, and so it does not compromise its performance when newmodels are added in the database. A quality measure of similarity is introducedin a constrained interpretation tree based search algorithm providing a robust



British Machine Vision Conference
Object Model F.M.S. Labeldoll m1 { { { 0.89 { { { V.T. { { {horse (first) m7 m2 m14 { 0.82 0.61 0.54 { T. T. A.T. {cow m2 m7 m14 m13 0.92 0.61 0.48 0.41 T. T. A.T. A.T.giraffe m10 m6 { { 0.94 0.41 { { V.T. A.T. { {kangaroo m16 { { { 0.74 { { { T. { { {horse (v.1) m7 m2 m14 { 0.58 0.50 0.45 { A.T. A.T. A.T. {horse (v.2) m7 m2 m14 { 0.70 0.62 0.58 { T. A.T. A.T. {horse (v.3) m7 m2 m14 { 0.68 0.61 0.52 { T. A.T. A.T. {horse (v.4) m7 m2 m14 { 0.50 0.42 0.40 { A.T. A.T. A.T. {Table 2: Results showing the matched objects. All hypotheses higher than AC-CEPTABLY TRUE (A.T.) are shown. T. = TRUE, V.T. = VERY TRUE, andF.M.S. = Fuzzy Measure of Similarity. Models mentioned are: m1(doll), m2(cow),m6(nessie), m7(horse), m10(gira�e), m13(hippo), m14(bear), and m16(kangaroo).and e�cient mechanism to rank and compare inexact matchings. The qualitymeasure is built by using the Theory of Fuzzy Sets [9], �rst by evaluating featurebindings (D;M) (Data primitives, Model primitives) with fuzzy predicates, andderiving a fuzzy degree of similarity which ranks the valid hypotheses reached inthe constrained search. Results are given for a variety of complex 3D shapes, andidenti�cation and ranking are successfully achieved.References[1] I. Biederman. Recognition-by-components: A theory of human image under-standing. Psychological Review, 94:115{147, 1987.[2] D.L. Borges. Recognizing Three-Dimensional Objects using Parameterized Vol-umetric Models. PhD Thesis, Dept. Arti�cial Intelligence, University of Edin-burgh, 1995.[3] D.L. Borges and R.B. Fisher. Segmentation of 3D articulated objects by dy-namic grouping of discontinuities. In J. Illingworth, editor, Proc. British Ma-chine Vision Conf. 93, Guildford, pages 279{288. BMVA Press, 1993.[4] O.D. Faugeras and M. Hebert. The representation, recognition, and locatingof 3-D objects. I.J. Robotics Res., 5(3):27{52, 1986.[5] W.E.L. Grimson and T. Lozano-Perez. Model-based recognition and localiza-tion from sparse range or tactile data. I.J. Robotics Res., 3(3):3{35, 1984.[6] R. Jain and A.K. Jain. Report on range image understanding workshop, eastlansing, michigan, march 88. Machine Vision and Applications, 2:45{60, 1989.[7] D. Marr. Vision. W.H. Freeman, 1982.[8] A. Pentland and S. Sclaro�. Closed-form solutions for physically based shapemodeling and recognition. IEEE Trans. P.A.M.I., 13(7):715{729, 1991.[9] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets andSystems, 1(1):3{28, 1978.


