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1 IntroductionGeons [3] are generic solid primitives de�ned by qualitative properties of axis and cross-section of generalised cylinders [4] that are invariant under change of view-point.In this paper a new method is presented for �tting qualitative 3D volumetric partsmodels to real 2D images that treats geons1 as single entities to be extracted from images.This is done by matching parametrically deformable contour models (PDCM) of geons toedge images in the framework of Model-Based Optimisation (MBO), in which an objectivefunction expressing the global likelihood (goodness) of �t is maximised. The cost functionaccounts for both matched and unmatched contour portions and is formulated in Bayesianterms.The potential advantages of such a global approach lie in imposing overall consistency onthe image which lead to robustness to cluttering and opens possibilities of direct �gure-ground segmentation in the spirit of [30] or the method presented in [41].Similar approaches to generic part recognition that used deformable superquadrics asgeneric shape models have been investigated for the 3D case (range data input) in popularwork such as [49] and also in [54], [30] and [5]; only in [35] the method was extended tothe 2D case as a front-end of the OPTICA system [12].To date, however, one of the main problems faced by global �tting approaches is theirsensitivity to the initial state of the models, which often compromises the quality of thesolution. In previous work [42], we used a loosely-constrained optimisation approach whichworked well only when the initial model was topologically equivalent to the geon instancebeing �tted. Here, this de�ciency is greatly reduced by using an aspect-based hypothesisgeneration-and-testing strategy inspired by [14]. The multidimensional parameter spacede�ning the geon PDCM is partitioned into eight topology-equivalent classes that we callParametrically Deformable Aspects (PDA); the set of eight PDA can be seen as a singledeformable model endowed with global topology information. By doing so, the optimisationcan independently focus in regions of the parameter space that correspond to models withthe same topology, thereby reducing the chances of getting stuck in local minima causedby di�erent interpretations of image features. A simple experimental control strategysuggested by [14] is employed that, by starting from coarse 2D part hypotheses producedas (but not only) in [41], does:(1) initialises all eight PDA at a representative position for each PDA;(2) performs the �tting independently for each PDA thus initialised;(3) chooses the one that achieves the best score.We will see taht the happy marriage between parametric deformable contour modelsand the concept of topologically di�erent aspects e�ciently represents geons and yieldsmore robustness in the optimisation process we use, which is Simulated Annealing.The results we achieved from 2D images are very much comparable with the one ob-tained by using 3D range data (e.g. by [49]), although depth and orientation cannot beobviously recovered from 2D images.1The parts will be still called geons, although they are are a subset of the ones de�ned in [3]2



2 Review of Previous Related WorkIn this section, some previous research in model-based optimisation and the use of aspectsin recognition are reviewed.2.1 Model-Based OptimisationIn the context of Computer Vision, Model-Based Optimisation (MBO) aims at �ndingthe best �t of a model by minimising an objective function (or maximising a likelihoodfunction) that can incorporate both high and low level knowledge about the image, objectmodel and goodness of �t. Within this framework, the use of whole boundary models {such as the one used here { is the most natural and e�ective because [50]: i) the wholestructure is imposed to the problem and the task is simpli�ed; ii) gaps are naturally �lledand iii) overall consistency is more likely to result.MBO can be performed in parameter space or in image space and with arbitrary models,�xed templates or deformable models.Optimisation in image space is done through �tting each composing element (point,lines, etc) of the model more or less separately to the image. Typical models that havebeen used within this paradigm are �xed templates [14], arbitrary models like snakes [24],bead chains [10], Markov boundaries [17] and parametric shapes like Point DistributionModels (PDM) [8, 41]. As we shall see later, this method allows the model to better trackobject irregularities but, besides problems of stability, it is often di�cult to incorporatehigh-level knowledge about the overall object shape to guide the �tting process. In mostworks using this type of models, the high-level knowledge is inspired by physical analogies(such as the smoothness constraint [24]) but very promising results have been achieved byusing PDM [8] or �nite element models [39], where global information is encoded in themodes of variation.On the other hand, MBO in parameter space is performed by adaptively changing theparameters of the model and checking the goodness of �t in the image; it implies the useof parametric (deformable) models whose shape variability can be expressed in a compactform by few signi�cant parameters; within this paradigm �t works by Lowe [34], Yuille [55],Staib and Duncan [50] and a wealth of others. Fixed templates have also been used but thatis a sort of degenerate case in which the only controlling parameters are the one de�ningthe pose of the object. Although the use of parametric models o�ers the advantage ofcompactness of representation and easy classi�cation, often the optimisation in parameterspace turns out to be a hard problem (see, e.g., [34]), also because the parameter space isoften not as \tight" as for arbitrary models.As far as the optimisation algorithm goes, that is, the \tactic" for �nding the best�t in terms of con�guration or parameter values, several methods have been proposedand experimented with but none have provided a reliable and su�ciently general method.Cost functions are often strongly non-linear and present many possibly narrow and shallowlocal minima that make fast convergence even to a sub-optimal minimum hard. The initialcondition, that is, the values of the model parameters before the optimisation starts, often3



play a crucial role and, where this is not done manually, several heuristic have been timidlyproposed (as in [34] and [17]). Commonly used methods include Levenberg-Marquandt(used for instance in [34] and [5]), Simulated Annealing (i.e. in [54]) and hill-climbing incombination with continuation or multi-scale techniques [50].2.2 Use of AspectsThe concept of aspects was �rst formulated in [27] and a new object representation, calledthe aspect graph, was proposed. An aspect graph is essentially a \...complete enumerationof topologically distinct views of an object, along with a de�nition of the region (cell) ofviewpoint space from which such a view is seen" [14].A number of algorithms have been proposed to compute the aspect graphs of polyhedral[51], algebraic surfaces [43] suggestive models [16] or solid of revolution [13], often byapproximating the exact solution by tessellating the Gaussian view-sphere. However, thepractical use of aspect graphs for recognition has been hindered by the lack of practicalimplementations and therefore they have been mainly used for feature prediction, that infor checking how a feature combines with others. Relevant works that used such an aspectgraph-based recognition strategy are, for instance, [12], [6] and [22].A major conceptual extension of the use of aspect graphs has been proposed in [14]where the distinct-topology property of aspects is used to constrain an iterative �ttingmethod within a single view-cell, thereby dramatically improving convergence quality andspeed.In most aspect-based works, including [14], CAD models were used because of thedi�culty of constructing aspect graphs for general smoothed objects. One of the majorcontribution of this paper is to show that the use of an aspect based strategy is verybene�cial also for the �tting of generic deformable models, such as superquadrics, in whicha \topology-blind" strategy often yields poor results.3 Parametrically Deformable Contour Models of GeonsGeons are volumetric shapes that are de�ned by qualitative features and are hence subjectto high intra-class variability. Within our framework of Model-Based Optimisation, therecognition of geons from 2-D images needs to have a model that can describe in a compactway their appearance in 2D images and, being geon models computed inside the innermostloop of the optimisation process, this must be done as speedily as possible.Recent works that dealt with the recognition of geons from 3-D range data (e.g. [49], [5],[54], [44]) have associated geons to globally deformable superquadric model [1]. There aremainly two advantages in using superquadric models. Firstly, the distinguishing featurescharacterising geons can be expressed by single parameters such as bending, roundness,swelling and tapering and, secondly, they can represent very compactly a variety of shapes[38]. 4



Here, the use of superquadrics in extended as done in [35] to the 2D case by approxi-mating the contour of the image projection of geons (as opposed to their spatial occupancy)by the apparent contour (outline plus interior edges) of globally deformable superquadricsonce they have been properly deformed, roto-translated and projected onto the image [49].Unfortunately, computing the apparent contour of deformed superquadrics and in gen-eral for smooth surfaces is not a trivial job. As classic works in aspect computation show[13, 40], if an exact closed-form solution is sought, huge systems of equations need to besolved and time-expensive search in high-dimensional hyper-spaces has to be carried out.For these reasons, we did not endeavour along this avenue, which has been followed by the(however excellent) work by [35], where the superquadric contour was found by numericalmethods at a high computational expense.A few words must be said about this use of deformable superquadrics. Although theyare a good model for representing 3-D shapes, they are extremely clumsy mathematicaltoys. Their deformations [49] have more of an engineering hack and is their error of �tfunction has no closed form. If used to compute contours as done in [35], superquadrics'clumsiness is certainly too much a burden for the compactness of representation they cangive in exchange.For our purposes, there is no need to have a precise knowledge of the projected de-formable superquadrics contour for the following reasons:� Contour details such as cusps cannot be reliably detected in real images and if re-covered, they would be useful only for structural analysis of the contour such as in[2], which have been proved inapplicable in real cases;� Very few, if any, actual geons can be properly described by globally deformablesuperquadrics: they are an arbitrary approximation in the �rst place, and a di�erentapproximation does no harm!� If precise implies expensive, the above reason is even strongerTherefore, a new, more straightforward approach has been followed, that is, to builda Parametrically Deformable Contour Model (henceforth PDCM) that simulates the de-formable superquadric contour { thence without going through the explicit constructionthe superquadric { in a much more e�cient, though approximate way; this constitutes asigni�cant e�ciency improvement to the model building method used by [35].The geon PDCM has been designed following the pragmatic spirit of [55], [7], or [15],where models are designed with recognition in mind, rather than being inherited fromcomputer graphics or the mathematics literature, as in the case of superquadrics. Forinstance, in [15] a parametric 3D wire-frame model of a car was purposely built that wasable to represent the essential shape of several vehicles classes through its parameters; the2D projection was trivially obtained from the 3D model and the �tting was performedusing the technique presented in [9] and also used in this work. The approach is ratherpragmatic but, if \theoretical" support is sought, it �ts in the philosophy of [53], whichadvocated that vision has to be driven by structure.5



The model, that is going to be described in the following, is suitable for qualitativegeon PDCM and simulates the contour of projected deformable superquadrics in a verye�cient way: starting from a cylinder centred on the z axis with superelliptical cross-section (Fig. 1-left), we apply deformations and rotations and �nd the contour by trivialgeometric considerations. In the following the construction of the model is detailed.The initial superelliptical cylinder S of height 2 � az and semi-axes ax and ay can beexpressed as S = 264 x(�)y(�)z 375 = 264 axcos(�)�aysin(�)�z 375 �� � � � ��az � z � az (1)where 0 � � � 1 controls the degree of squareness of the cross-section from a rectangle for�! 0 to an ellipse for �! 1.Any curve lying on this cylinder can be variously deformed but for our purpose ofrepresenting geons we are particularly interested in three kinds of deformations: tapering,bending and swelling along the principal axis. Below the mathematical de�nition of thesedeformations is given. The tapering and bending deformations have been derived from [49]but the latter has been slightly modi�ed by normalising the bending control parameterto az and allowing bending on both sides which has also improved the stability of itsestimation. The swelling deformation, however, has been introduced here to represent the\expanding and contracting" sweeping rule of geons [3].Let us indicate by x, y, z and X, Y, Z the vector of shape points before and after thedeformations, respectively.A linear tapering deformation along the z axis is given byTaper(S; Kx; Ky) = 8>><>>: X = (Kxaz z+ 1)xY = (Kyaz z+ 1)yZ = zwhere �1 � Kx � 1 and �1 � Ky � 1 express the amount of tapering in the x-z and x-zplane, respectively; henceforth we shall assume Ky = Kx.A circular bending deformation in the y-z plane is obtained by (see [49] for details):
Bend(S; c) = 8>><>>: X = x+ sign(c)(R0 � r)Y = yZ = sin()(��1 �R0) with 8>>>>>>>><>>>>>>>>:

r = sign(c) cos(�)px2 + y2� = arctan yxR0 = ��1 � cos()(��1 � r) = z=��1��1 = azjcj ;where �1 � c � 1 is the bending control parameter, which, when zero, yields no bending(for c = 0 the deformation is not applied). 6



Finally a circular swelling deformation along the z axis is given by:Swell(S; s) = 8>><>>: X = x+ sign(x)(R00 cos�� (R00 � �))Y = y + sign(y)(R00 cos�� (R00 � �))Z = R00 sin� with 8>><>>: � = axsR00 = (a2z � �2)=(2�)� = arctan z(R0��)where s is the swelling control parameter (zero for no swelling).Following the suggestion made by [49], the above deformations are applied in the fol-lowing order: �rst tapering, then swelling and �nally bending.Once deformed, the shape is roto-translated to simulate the change in viewpoint byapplying in sequence pan (about z) and tilt (about x) rotations, orthographic projection(Proj) and �nally rotation about the optical axis y and translation in the image plane(by Px and Pz). The whole chain of transformations of the initial 3D shape S to its fullprojection onto the image plane z-x S0 is:S0 = " x0z0 # = Trasl(Px; Pz ; Roty(�opt; P roj(Rotx(�tilt; Rotz(�pan;Bend(c; Swell(s; Taper(Kx;Kx;S)))))))) (2)Now we are ready to describe the construction of PDCM of geons. The knottiestproblem is to determine the occluding contour. For doing this, the following approximationhas been employed.The transformation chain in Eqn. (2) is applied to the two bases of the superellipticalcylinder and take the four outermost points P10a, P10b and P20a, P20b (small circles in Fig.1-right-B) and �nd the two corresponding points in the original undeformed superellipses(small circles in Fig. 1-right-A). These two pair of points are linked by two 3D straightlines L1 and L2, as shown in Fig. 1-right-A and are then deformed according to Eqn. (2)and the resulting L10 and L20 (Fig. 1-right-B) will then be used as the two sides of theoccluding contour.By checking the projection on the image plane to the normals na and nb to the superel-liptical ends, it is possible to determine whether each of the two ends are visible or not:if visible, the whole superellipse contour will be added to the geon PDCM; otherwise onlyits outermost part between P10a (P10b) and P20a (P20b) will be included in the �nal PDCM.In the case the geon has square cross-section (small �, say less than 0.5 in the superel-liptical cross-section model) the central edge is determined by joining the two corners P3aand P3b (Fig. 1-right-C) from the undeformed superelliptical bases occurring at � = �=4in Eqn. (1) by a 3D straight line and then deforming it by Eqn. (2); the resulting 2Dcurve is shown in Fig. 1-right-D.The PDCM described above is controlled by 12 parameters, namely ax, ay, az, �, Kx, s,c, �pan, �tilt, �opt, Px, and Pz. All these controlling parameters immediately relate to thoseof a globally deformable superquadric, therefore they have a 3D meaning as we will see inthe experiments, in particular in Sec. 7.2 and 7.3, where deformable superquadrics will beshown. 7
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Figure 2: Example of geon contour models generated by the proposed method. The param-eters controlling the PDCM shape are the same as the ones that would produce a similarcontour projection from a globally deformable superquadric.4 Aspect Partitioning of PDCMIn the previous subsection, a PDCM has been presented which represents the variablecontour of geons through its parameters. This section describes how the PDCM parameterspace is partitioned in \cells" that correspond to topologically distinct PDCM aspects.First, the de�nition of topological equivalence for geon PDCMs is given, and that willbe used to generate distinct aspects. Let us take the model described in the previoussection and give it an orientation corresponding to the direction of the positive z axis ofthe original undeformed superelliptical cylinder.Now, let us impose a labelling scheme on some features of the geon PDCM. Let U =fcurved; squaredg be two properties of the cross section, and Vtop = fvisible=nonvisiblegand Vbottom = fvisible=non visibleg two properties of the two geon ends which indicatewhether they are visible or not, the ends being the top and bottom superellipses in Fig.1-left.The Cartesian product U � Vtop � Vbottom induces 8 PDCM classes. Of the twelvePDCM parameters, only four change the PDCM class, namely �, which a�ects the cross-section roundness, and c (bending), �tilt and �pan, which a�ect the visibility of the twoends. Cross-section dimensions, length, tapering and swelling do not change the topologyas it has been de�ned . For the topology theory connoisseurs, these equivalence classes9



Aspect#1 Aspect#2 Aspect#3 Aspect#4

Aspect#5 Aspect#6 Aspect#7 Aspect#8Figure 3: Distinct PDCM topologies and their enumeration. The features de�ning thetopology are the visibility of top and bottom ends and the central rim.partition the 4D parameter space S = f�; c; �tilt; �pang into eight dense simply-connectedopen subspaces of S, thus creating eight di�erent topologies in the parameters space; eachof these topologies correspond to a stable view of the PDCM that preserve the labellingwe have imposed; these topologies are known as aspects [27] of the PDCM, of which someexamples are shown at the top-left of Fig. 3 along with the enumeration that will be usedhenceforth.As said in the previous subsection, the property U = fcurved; squaredg is determinedby simply setting a threshold � 2 0:3 :: 0:6 for �, hence dividing S in two symmetric 3Dsub-spaces S 0 and S 00.The separation from one topology to another in S 0 (S 00) are singularities that are calledvisual events surfaces [27]. By analysing the expressions of the two normals to the ends asfunctions of c, �tilt and �pan, a closed-form for those surfaces has been determined as thezero set of the functions A and B de�ned as follows:8><>: A = cos(�tilt) sin(�pan) sin(�)� sin(�tilt) cos(�)B = cos(�tilt) sin(�pan) sin(�) + sin(�tilt) cos(�)� = arctan(c)The plot in Fig. 4 shows these surfaces. The region within which each aspect is de�nedis given by the inequalities in the table of Fig. 4.In principle it should be possible to consider also aspects without one or both ends tomodel parts that are joined to other parts at their ends. All the discussion so far and whatfollows can be trivially extended to include these other aspects.10



Aspect#1: � > � A > 0 B > 0Aspect#2: � > � A < 0 B < 0Aspect#3: � > � A > 0 B < 0Aspect#4: � > � A < 0 B > 0Aspect#5: � � � A > 0 B > 0Aspect#6: � � � A < 0 B < 0Aspect#7: � � � A > 0 B < 0Aspect#8: � � � A < 0 B > 0
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Figure 4: Aspect de�nition (left table, see text for the de�nitions) and plot of the visualevent surfaces in the bending/pan/tilt parameter subspace (bottom-hull: Aspect#1/5;top-hull: Aspect#2/6; right-part: Aspect#3/7; left-part: Aspect#4/8). The gap betweenthe hulls is a rendering aw.5 Matching a Single AspectOur Model-Based Optimisation approach to geon detection involves the minimisation ofan objective (or cost) function that expresses the quality of the image-model match andother constraints that will be discussed later.There are many conceptually di�erent ways of designing an objective function suitablefor a certain application but they mainly fall in these three categories: Energy Minimisation(EM), Maximum A Posteriori (MAP) or Minimum Description Length (MDL). It has beenshown that given a certain problem and a certain �tting quality assessment criterion, theyare conceptually equivalent (i.e. in [56, 28]). Practically, however, the nature of thecriterion makes the use of a particular method easier. In this work, a MAP philosophy hasbeen followed, but the ideas behind it could be restated in MDL terms.Let Mi = M(xi) be a geon PDCM instance built as in Sec. 3 expressed in terms ofpixels by a set of (i; j) image pixel coordinates and of which we would like the determinethe likelihood of �t, and letxi = [ax ay az � Kx s c �pan �tilt �opt Px Pz]T (3)be the vector of the PDCM parameters. Furthermore, let I be the original image and Ethe binary edge image, which can be produced by a standard Canny edge detector; E hasthe same shape as I and (i; j) 2 E is 1 if an edge has been detected at (i; j) 2 I and 0otherwise. 11



The a posteriori likelihood of a PDCM matching the image can be expressed in termof a priori probabilities by Bayes rule:P (Mi j E) = P (E j Mi) P (Mi)PNhj=1 P (E j Mj) P (Mj) (4)where Nh is the total number of hypotheses produced by the optimisation procedure.The model that best �ts the image is the one for which P (Mj j E) is maximum, that is:Mbest = M(xbest) = maxi fP (Mi j E)gor, by inverting the sign and expressing probability in term of logarithms:Mbest = M(xbest) = mini f� log(P (Mi j E))g (5)Since the denominator of Eqn. (4) is constant over all hypotheses, the minimisationneed only be concerned with the numerator. In the two following sections we describe howwe de�ned the model-conditional image and prior probabilities.5.1 Model-Conditional Image ProbabilityIn Eqn. (4) P (E j Mi) expresses the conditional probability of having particular imageevidence in the presence of the model. Although many ways of de�ning this probabilityare possible, we express this probability in terms of how many image edgels \match" thePDCM contour.Let Em(Mi) = f(k; l) : j (i; j)� (k; l) j� d ; (i; j) 2 Migbe the d-neighbourhood of the model contour Mi and Eb(Mi) = E � Em(Mi) the rest ofthe edge image which is not covered by it; henceforth we drop theMi arguments whereverthere cannot be ambiguities.By assuming that the presence/absence of an edge in Eb and Em can be consideredindependent (this is valid in general) and with di�erent distributions, P (E j Mi) can beexpressed as: P (E j Mi) = P (Eb j Mi) � P (Em j Mi): (6)Eb and Em can be considered, to a �rst approximation, as realizations of binary ergodicprocesses, for which the probability of single local outcomes are all the same, namely pb1and pm1, respectively. The value of pb1 is given by the ratio between edge locations and thenumber of pixels in the image (typical values: 0.02-0.06) and pm1 ranges from 0.6 to 0.9,depending on the neighbourhood dimension d and how good the edge detection is expectedto be. This ergodicity assumption is simplistic; a Markovian model that would take intoaccount relationships between neighbouring pixels would perhaps be a more accurate modelbut this is left for future work. 12



Let Nb0, Nb1, Nm0 and Nm1 be the number of locations (i; j) that are \1" (edge) or \0"(non-edge) in Eb and Em, respectively; the probability that a certain number of elementsin Eb and Em is \1" or \0" follows a binomial distribution but, since we are interested in aparticular realization of the process that is the image itself, the two probabilities in Eqn.(6) can be expressed as: P (Eb j Mi) = pbNb11 (1� pb1)Nb0P (Em j Mi) = pmNm11 (1� pm1)Nm0By taking the logarithm of both sides, we obtain:log(P (Eb j Mi)) = Nb1 log(pb1) +Nb0 log(1� pb1))log(P (Em j Mi)) = Nm1 log(pm1) +Nm0 log(1� pm1))which in turn, by letting N1 4= (Nb1 + Nm1) be the overall number of pixels in the imagethat are edge, are expanded to:log(P (Eb j Mi)) = [N1 log(pb1) +N1 log(1� pb1)]�(Nm1 log(pb1) +Nm0 log(1� pb1)) (7)log(P (Em j Mi)) = Nm1 log(pm1) +Nm0 log(1� pm1):Then by taking the logarithm of both sides of Eqn. (6) and expanding we obtain:log(P (E j Mi)) = log(P (Eb j Mi)) + log(P (Em j Mi)) =K + [Nm1 log(pm1) +Nm0 log(1� pm1)]� [Nm1 log(pb1) +Nm0 log(1� pb1)] ; (8)where K is the constant term in square brackets in Eqn. (7) and therefore it will bedropped in the MAP estimation.In an information theoretical framework this equation has a precise meaning. The term� log(P (E j Mi)) is the overall number of bits necessary to express the whole edge image Eand � log(P (Em j Mi)) and � log(P (Eb j Mi)) are the number of bits needed to representthe information in the model neighbourhood (Em) and in the background (Eb) under theergodicity assumption. The minimisation in Eqn. 5 can then be re-interpreted as the searchfor the most economical description in term of the edge evidence and the model, bringingall into a MDL framework [37][28]. A more formal proof of the MDL/MAP equivalencecan be found in [47] and in the context of computer vision in [19, 28]. This informationtheoretical avenue was followed in [18] but with the fundamental di�erence that there the apriori pm was computed by looking at the number of pixels matching the current instanceof the model, therefore making the mistake of using the same data set for both trainingand estimation; some experiments that we carried out by using their objective functiongave unusual high likelihood for bad �ts as well, which was somehow expected from whathas been just said. 13
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Figure 5: Example of model-conditional image probability � log(P (E j Mi)) for pm1 = 0:7,pe1 = 0:06. See text for details.Fig. 5 shows an example behaviour of � log(P (E j Mi)) (not considering K) forpm1 = 0:7, pe1 = 0:06 and the total number of model points Nm = Nm1 + Nm0 rangingfrom 100 to 300; the small step has been added in order to show the points at which theabsence or presence of the model Mi is equally likely (P (E j Mi) = 0:5): beyond thisline the probability increases with the overall model dimension Nm, that is a preference isgiven to bigger models.5.2 Model Prior Probability: A HeuristicWithin a Bayesian framework it is necessary to express the occurrence probability of eachinstance of the model, called themodel a priori probability. In most research this probabilityis neglected (i.e. is considered uniform) but, through experimentation, it has been foundthat by introducing a heuristic on the prior probabilities, the overall quality of the �ttingcan be improved.The reasons for introducing a model prior probability are essentially three: i) someparameter con�guration are unlikely to occur (such as a bent and swollen object); ii) cer-tain con�gurations of parameters arise from a weird viewpoint that would make detectionimpossible; and iii) it biases the �tting to more perceptually likely shapes. These con-siderations are both practical and also correspond to sensible assumptions to reduce thequantitative shape ambiguities caused by the projection.A sensible heuristic has been de�ned to express these loose constraints. The probabilityof each aspect is expressed by overlapping (multiplying) marginal densities of parametervalues or combinations of them, tacitly assuming independence amongst them. The pa-rameters we took into considerations are the dimension parameters ax, ay and az, swelling,bending and the pan rotation; the others are given a uniform probability. Below we show14
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Figure 6: Heuristic model prior probabilities: de�nitions and plot for each contributingterm. The de�nitions and details are given in the text. These probabilities constitute anheuristic that bias the �tting to perceptually more plausible volumetric shapes correspond-ing to similar 2D contour projections.how we de�ned the probability density functions.� c and �pan In the case of Aspects #3, #4, #7 and #8 when �pan is close to ��=2,(that is we have frontal view of the only visible ends) bending cannot be detectedfrom the occluding contour and therefore we need to strongly assume straightness ofaxis, i.e. the only thing we can perceive in these situations. Without this constraintthe model could bend forward an arbitrary amount and yielding essentially the sameoccluding contour. To model this constraint we set up an unnormalised p.d.f. likethe one Fig. 6-A, where K 0 is an additive constant (controlling the desired minimumvalue of the p.d.f.) and �c;�tilt = 0:5. In �tting Aspects #1, #2, #5 and #6, thebending is essential for the visibility or invisibility of both ends and this constraintis not used.� ax and ay The projection onto the image plane of a 3D object changes its shape,but our perceptual system is slightly biased to assume more compact cross-sectionsrather than weird rotation angles [33]. We therefore model the joint p.d.f. as givenin Fig. 6-B, which is a constant-height ridge running along the ax = ay line. Thevalue of �ax;ay is fairly large because this constraint need not be severe (�ax;ay = 20in Fig. 6-B). This constraint assumes that the objects in the scene are not too atand should be dropped if that is the case.� az The PDA length could take any value but, since it de�nes the length ofallegedly elongated parts like geons, it should be biased to be bigger than the cross-section dimensions by a constant factor � . A non-normalised p.d.f. as the one givenin Fig. 6-C has been set to model this constraint; the �gure shown it for � = 1:5 and�az = 20. 15



� c and s High swelling and bending are incompatible. In statistical terms we canexpress this constraint by a (non-normalised) p.d.f. like the one shown in Fig. 6-Dand arising from a Gaussian distribution over the product c � s. The plot in Fig. 6-Dis given for �c;s = 0:3.Now that we have all the non-normalised probabilities and given the assumption of priorindependence between parameters, we just multiply them together to obtain the (non-normalised) a priori p.d.f. of the model:log(P (Mi)) = H + log(P (az j ax; ay)) + log(P (c; s)) +log(P (ax; ay)) + log(P (c; �pan)): (9)The normalisation constant H is unnecessary because it does not a�ect the MAP estimate.This heuristic has improved the perceptual goodness of the recovered shapes but therewould be other possible ways of de�ning the model prior probability, which could alsoincorporate more detailed speci�c domain-dependent knowledge about the scene structure.5.3 MAP Estimation ProcedureThe MAP estimation obtained by the minimisation of� log(P (Mi j E)) = � log(P (E j Mi))� log(P (Mi)); (10)where the two terms are given by Equations (9) and (8), is rather di�cult to achieve, sinceit is extremely irregular and presents many shallow and/or narrow minima.As an example, Figure 7 shows some graphs of the objective function value taken atthree orthogonal planar regions of the parameter space (in particular about the initialestimate of the handset upper-piece example of Figure 10): although the three surfaces arerather rugged, three pronounced valleys stand out that correspond to good values of theobjective function. In the middle �gure, however, two valleys beyond the ripples mightjeopardise the �tting procedure.By trying to minimise Eqn. (10) alone, it was also found that sometimes the optimi-sation got stuck in local minima because of the step-like nature of the model-conditionalprobability of Eqn. (8) (remember we used a binary \belonging to the model" criteria).For overcoming this problem, a small smoothing term has been added to the right sideof Eqn.10; this term represents the average minimal distance between contour model andimage edge points (by using a minimal distance transform computed o�-line) and it doesnot a�ect the MAP estimate but just helps convergence in cases where image and modelare much displaced and the numerical computation of the gradient become meaninglessdue to the low number of edge points falling inside the model neighbourhood. This termcan then be seen as \telling the optimisation where to go" in absence of other information.In early stages of the work, a Levenberg-Marquandt method with added random per-turbations was used, following [5] and other works, but this method led to di�cult con-vergence. The choice fell then to Simulated Annealing (see Appendix A) for a summary16
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Figure 7: Three graphs of the objective function value taken at three orthogonal planarregions of the parameter space about the initial estimate of the handset upper-piece exam-ple of Figure 10: although the three surfaces are rather rugged, three pronounced valleysstand out that correspond to good values of the objective function.of the method), which is a powerful optimisation tool that e�ciently combines gradientdescent and controlled random perturbations to perform the minimisation of non-convexfunctions. The actual implentation is a publicly available version of Simulated Annealing,called Adaptive Simulated Annealing (ASA) [23]. The set-up of the ASA algorithm willbe extensively discussed in the next section.6 Experimental SystemIn this section outlines the simple experimental system, schematically depicted in Fig. 8,that has been used to carry out the experiments.Starting (for instance) from the set of hypotheses produced by the method described in[41], for each hypotheses each of the eight PDA are initialised at a representative positionand independently �tted to the image. The PDA that obtains the best scores is consideredthe best �t to the image.The approach relies on two fundamental assumptions [14]:1. The MAP estimate that started with the \correct" hypothesis will converge to thecorrect interpretation of the image;2. The quality of the �t (score) of this correct interpretation must be higher than anyother.No theoretical proof of convergence and uniqueness of the method is possible since theproblem is strongly non-linear and too complex to be analysed as stated also by [14], whererigid models were used. The experiments of the next section will, however, empirically showthat the proposed method reasonably complies with these two goals.In the following three subsections, the PDA initialisation and the optimisation set-upof the experimental system is described. 17
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squareness (�) bending (c) �tilt �paninit min max init min max init min max init min maxAspect#1: 0.75 0.51 0.99 -0.5 -1 0 0 -�=4 �=4 ��=2 �� 0Aspect#2: 0.75 0.51 0.99 0.5 0 1 0 -�=4 �=4 ��=2 �� 0Aspect#3: 0.75 0.51 0.99 0 -1 1 ��=8 ��=4 0 ��=2 �� 0Aspect#4: 0.75 0.51 0.99 0 -1 1 �=8 0 �=4 ��=2 �� 0Aspect#5: 0.25 0.05 0.49 -0.5 -1 0 0 -�=4 �=4 ��=2 �� 0Aspect#6: 0.25 0.05 0.49 0.5 0 1 0 -�=4 �=4 ��=2 �� 0Aspect#7: 0.25 0.05 0.49 0 -1 1 ��=8 ��=4 0 ��=2 �� 0Aspect#8: 0.25 0.05 0.49 0 -1 1 �=8 0 �=4 ��=2 �� 0Table 1: Initialisation and bounds for the aspect topology-controlling parameters. See textfor details.more or less equidistant from the visual event surfaces and therefore are placed in a fairlycentral position within each aspect cell. This choice is a sensible heuristic that reduces thedistance between the initial point and any possible true �nal estimate 2. Table 1 (alongthe \init" columns) shows these values for each aspect topology. The other parameters,bending, swelling and tapering, were all set to zero.6.3 Optimisation Set-UpThe optimisation of strongly non-linear functions is \typically a non-typical problem" [45]and therefore no canned optimiser can be used. As pointed out in [23], the set-up ofthe ASA algorithm is a bit tricky, since no theoretical guide exists, but once the rightcon�guration has been found, the method becomes reasonably robust. Having said that,here we describe the essential set-up of the ASA optimiser.One of the key decisions when using a constrained optimisation algorithm is the choiceof the parameter bounds; the ASA algorithm requires hyper-rectangular bounds de�nedby a minimum and a maximum for each parameter.Within our aspect-based control strategy, we basically have two sets of parameters,those controlling the PDCM aspect topology (�, c, �tilt and �pan) and those that do notchange it (ax, ay, az, Kx, s, Px Pz and �opt).Section 3 gave a closed-form expression of the visual event surfaces bounding di�erentaspect topologies. In order to make the ASA optimiser to \stay within" a certain aspecttopology, we do two things: (1) give it a 4D search bounds (given in Table 1) that enclosethe true aspect cell; and (2) invalidate states (through a speci�c ASA option) that falloutside the chosen aspect cell by checking the constraints given in the table in Fig. 4.In most of the experiments we carried out, the ratio between invalid and valid generated2The choice of these values can be regarded also as giving maximal disambiguation distance betweenvisual events [25]. 19



states was always less the 5%.Besides the parameters constraining the aspect topology, the others need bounds too.Bounds for the tapering and swelling deformations are set to their full range (Sec. 3); inthe case of position, sizes and orientations, bounds are set as tolerances with respect to theinitial values P x, P z, az, ax = ay and �opt. The following table summarises these bounds(N is the resolution of the image):ax ay az Kx s �opt Px PzMin ax � 40% ay � 40% az � 40% -1.0 0.0 �opt � �=8 P x � N10% P z � N10%Max ax + 40% ay + 40% az + 40% 1.0 1.0 �opt + �=8 P x + N10% P z + N10%In order to improve convergence, we need also to specify the deltas for computingthe partial pseudo-derivatives of the cost function, which are chosen such that for eachparameter, a perturbation equal to its respective delta should produce detectable changesin the image at a given resolution. For 128x128 images, the values of �ax,�ay ,�az , ��,�Kx, �s, �c, ��pan, ��tilt, ��opt, �Px and �Pz are set to 1.0, 1.0, 1.0, 0.05, 0.2, 0.05, 0.05,0.01, 0.01, 0.01, 1.0 and 1.0, respectively.The annealing schedule plays an important role. We have experimentally found thatsub-optimal schedules are also related to the aspect topology we are trying to �t, probablybecause of the di�erent kind and number of features. For good convergence the Tempera-ture Ratio Scale parameter [23] has been set to 10�12 for Aspect#1 : : :Aspect#4 and to10�10 for Aspect#5 : : :Aspect#8. Finally the number of iterations has been set to 2000,which we found to be a good trade-o� between speed (about 5s for each optimization runon a SPARC 10) and good convergence; moreover, for the experiments carried out with128x128 images, we set pb1, pm1 and d (see Sec. 5.1) to 0.07, 0.85 and 1, respectively.7 Experimental ResultsIn this section, three set of experiments are discussed.In the �rst set, several �tting experiments of geon PDCM are shown for both syntheticand real images with the purpose of verifying the validity of the cost function and theoptimization. The second set aims at assessing the validity of the two premises to the useof aspects given in Section 6. In the �nal set of experiments, three �tting experimentsto the familiar handset test image are given along with interpretation of the results; inparticular, an example of what can happen when the aspect-based strategy in not used isalso supplied.7.1 Testing the MAP �ttingIn this subsection a number of single �tting experiments are shown that help assess thevalidity of the cost funciton and the optimization method for �tting the PDCM proposed20



in this paper. Here the aspect-based strategy is not used but, but in some experimentssome of the topology-de�nining parameters have been constrained, as we shall see later.The experiments presented here can in turn be divided in two sets, which are describedin the following. In both experiments, the initialization is performed manually and isintentionally set to be poor to test for worst cases.FIRST SETThe set of 18 �tting experiments shown Fig. 9 was designed to assess convergence andviability of the cost function and the optimization procedure. Six geon-like objects werecreated with some plasticine and an image of them was then taken with a resolution of512x512 pixels. A Canny edge detector was applied and the resulting cluttered edge imageis shown in Image C (left) of Fig. 9. This image has been intentionally used without anypost-processing { like cleaning and linking { because we wanted to test the convergence inhard conditions.Afterwards, two synthetic images mimicking the original one created, one with roundishprimitives (Image A of Fig. 9) and the other one with squared cross-sections (Image B ofFig. 9). The initial PDAs are shown in the left column Fig. 9 overlapped to the respectiveedge images; the initializations for these two synthetic images are rather crude but theright topologic aspects have been imposed to each example.The manual initializations are the same across the three images except for the roundnessparameter, which has been set to \squared cross-section" in image B. The correspondingresults of the �tting can be seen in the right column. The neighbourhood dimension wasset to 7 (that is d = 3) and the other parameters are the same as given in Sec. 6.3; eachestimate was produced in about 25 seconds on a networked SPARC 10 machine.� Image A (Top of Fig. 9) The results here are essentially good but in the case ofObject 6 the sign of the bending is wrong. All the geon distinquishing features havebeen correctly detected, as can be visually seen.� Image B (Centre of Fig. 9) In this case the results are better than the one inImage A because the presence of the additional interior edge gives \more information"to the �tting.� Image C (Bottom of Fig. 9) As expected, the results here are not particularlyexciting but they can be considered positive, given the intentionally poor edge imagequality we have used. Here, the roundness parameter � was set free to check whethera change in the aspect topology would occour. The results for object 2,3 and 5 arevery good. The �t of Object 1 is essentially correct (apart from slight tapering), butthe spurious edge due to a high shading gradient caused the object to be interpretedas a bent prism. Object 4 too has been �t rather poorly (because the high noise)but the essential orientation, bending and tapering have been recovered. In the caseof Object 6 the presence of shadows and poor image contrast has been fatal andthe �tting is a complete failure, with a �nal result that, although obtaining a higherscore, looks poorer that the initial estimate.21
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Figure 9: First set of experiments. The purpose is to assess validity of the objectivefuncton and the optimization; the aspect-based strategy is not used here. A descriptionof the eighteen �tting experiments is given in the text. Although only one initializationfor each is shown here, many others have been tried that, however, kept the same initialtopology as the ones shown. 22



Handset Image Banana&MugTop Piece Handle Bottom Piece Banana CupTapering (Kx) 0.09 0.08 0.21 -0.02 -Swell (s) 0.08 0.28 0.42 0.47 -Bending (c) -0.12 0.25 0.15 0.35 -Squareness (�) 0.84 0.26 0.69 0.45 -Table 2: Final Parameter estimation. The recovered parameters allow a coarse descriptionof the shape: Top Piece: cylinder; Handle: slightly bent prism; Bottom Piece: Swollen andslighlty tapered cylinder; Banana: bent and swollen prism. See text for details.SECOND SETThis set of experiments has been carried out with real images of isolated objects, ahandset, a mug and a banana. The examples in Fig. 10 are 128x128 gray-level images; theneighbourhood dimension was set to 3 (that is d = 1) and the optimization set-up was thesame as for the �rst set of experiments;This time, the initialization was performed by manually selecting out rectangular re-gions of the image (top of Fig. 10), thresholding to extract the silhouette and �nally bycomputing the principal moments that gave coarse estimates of position, axes lengths andorientation; the result are the initializations shown at the top of Fig. 10.� Handset The top-left of Fig. 10 shows the original handset image with the initialmodels instances and their major axes overlapped on it. The two end parts (ear andmouth piece) have a rather poor initial estimate because of their low eccentricityand the shadows cast on the background. On the other hand, the central part iswell de�ned and hence a good initial estimate is achieved; at this point there is noknowledge about the squareness of this part. The centre-left �gure shows the edgeimage. It can be noticed that there is some cluttering, like that caused by circularridges at the mouth piece. The bottom-left �gure shows the results obtained afterapplying the optimisation to each one of the initial estimates. As it can be seen, theresults are rather good. Table 2 shows that the main geons' distinguishing featuresare captured, with the exception of the top part (ear piece) not being swollen asit should; in this case, however, even for a human it would be di�cult to tell theexact shape of such a short part just from that poor edge image. Another remarkworth making is that the length of the central part was correctly found despite therightmost edge that runs along the whole handset. Note that some research has beenrecently carried out [44, 5] in the classi�cation of geons from parameters such as thosethat de�ne our PDCM.� Banana The top-right of Fig. 10 shows the initial estimate of the banana shape.The combined e�ect of a shadow in the right-hand side of the banana and poorresolution has lead to the poor edge image shown in the centre-right image. Here,23
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Figure 10: Second set of experiments with semi-automatic initialization again withoutusing the aspect-based strategy (see text for details). The �tting to the handset geons andthe banana are reasonably good whereas mug one is a sheer disaster.24



the little incomplete square that somehow appears at the top and the double edgerunning along the right-hand side were interpreted as part of the shape, as shownin the �nal estimate in the bottom-right image. Table 2 shows that again all theessential features (apart from roundness, as just said) are grasped, such as curvature,swallowness and no tapering.� Mug This experiment is a complete failure. The big shadow, the highlight at thetop and poor resolution led to an edge image that is virtually uninterpretable by thehuman eye. The initial estimate shown at the top-right of Fig. 10 is mis-oriented inthe image plane by roughly �=4 and the estimation procedure produced a very poorresult. Only by giving a very good initial estimate, a better result was achieved.The experiments described above show that the proposed method works reasonablywell. The tests with clean images indicate that the optimization converges well. Resultswith real images show the the method performs well if a coarse initial estimate is given andthere is not too much noise or spurious edges. However, as in the mug example, more caremust be given at determining the initial estimate for one that is poor can yield dramaticallywrong results, especially for low-eccentricity objects and with high noise level.7.2 Testing the Aspect-based strategy: Synthetic ImageThis subsection presents one of the experiments set up for testing the aspect-based strategy,in particular the two premises given at the beginning of Section 6: when starting from thecorrect PDA, the �tting must both converge and give a better score than the ones obtainedfrom initialization with any of the wrong-topology aspects.Eight synthetic contours of geons (Obj#1 : : :Obj#8), each representing a di�erentapect topology (Aspect#1 : : :Aspect#8), have been placed in the same 128x128 image(Fig. 11-A) and a coarse initialization was given using estimates of just orientation, posi-tion, length and cross-section dimension; the initializations are represented by the crosses.Then, all eight distinct PDA were initialized by the method given in Section 6.1 and �ttedon each of the eight objects, with the same optimization set-up as the one given in Section6.3; the resulting scores were put in a confusion table (Fig. 11) whose lines represent thescores of �tting an object with all the aspects. These results validate the two main assump-tions of the aspect-based control strategy outlined at the beginning of Sec. 6: the boxedscores on the diagonal are the best ones for each geon, that is the correct aspect obtainedthe best score in all cases. Fig. 11-B show the superquadric representation using the verysame parameters results from the �tting of the best aspect. It is worth pointing out thatthe superquadrics are built using the very same parameters produced by the �tting andused for contructing the PDCM; these volumetric representations are then the ones thatonce projected onto the image plane would yield the �tted object contours.An interesting behavior also crops up from the analysis of the scores in the confusionmatrix. Let us take the case of Obj#8. The second best score corresponds to the oneobtained with Aspect#6, which has a visible bottom end, whereas the third best score25



Obj#1 Obj#2 Obj#3 Obj#4

Obj#5 Obj#6 Obj#7 Obj#8

A BAspect#1 Aspect#2 Aspect#3 Aspect#4 Aspect#5 Aspect#6 Aspect#7 Aspect#8Obj#1 -264.77 -210.16 -170.32 -238.72 -211.14 -121.30 -133.60 -123.24Obj#2 -242.49 -314.16 -252.11 -252.83 -167.71 -170.09 -106.96 -179.19Obj#3 -177.34 -142.54 -255.22 -193.46 -183.00 -116.05 -13.18 -161.31Obj#4 -236.55 -220.50 -187.26 -261.39 -177.06 -151.19 -166.85 -130.36Obj#5 -252.05 -291.04 -245.37 -284.76 -478.75 -171.62 -62.20 -161.26Obj#6 -290.78 -384.35 -346.86 -295.48 -392.26 -458.83 -362.63 -261.09Obj#7 -284.68 -192.94 -300.22 -135.86 -166.14 -245.18 -437.68 -230.28Obj#8 -249.61 -275.68 -211.26 -322.67 -270.43 -326.21 -241.54 -374.05Figure 11: Experiment with synthetic images of 8 di�erent aspect of geons and the con-fusion matrix representing the results of the �ttings. The boxed results are the highestscoring PDA for each �tting experiment and all correspond to the PDA with the sametopology as the respective test contours in �g. A. The superquadric corresponding to thesebest PDAs are displayed in �gure B: the 3D shapes are in well in agreement with the 3Dstructure that pops up from the contour images when we see them.
26



correspond to Aspect#4, which is the one that presents a visible bottom face but non-squared cross-section; evidently these features matched well the image and contributedto improve the overall score. Similar considerations can be made for other objects. Thisbehavior suggests a side-e�ect of this strategy, that is the ranking of aspect hypothesesaccording to \how well" they �t the instance of objects, at least insofar as synthetic imagesgo. With real images this phenomenon is much smoothed but is still present, as we shallsee for the other examples.7.3 Real Image: a HandsetIn this experiment, the now familiar 128x128 grey-level image of the handset is used (Fig.12-A). The corresponding edge image is reported here for convenience in Figure 12-B. Theinitializations are performed as outlined in Section 6.1 and come from selected hypothesesproduced by the part-based grouping and �ltering method presented in [41].Both end-pieces of the handset have almost no eccentricity and therefore it was notpossible to determine their natural major axis, which is an essential requirement of geonrepresentation. Which of the two axes was the major one was imposed by hand, but astraightforward automated strategy would just assume that for low-eccentricity blobs bothmajor-axis hypotheses should be tried out and the best be selected. This problems arefamiliar when the data has rotational symmetries but the models employed are oriented[31].As in the experiments with the synthetic image, Aspect#1 through Aspect#8 were �t-ted to the image for each of the initialization hypotheses, again with the same optimizationset-up as is Sec. 6; the scores for each �t are given in the table in Fig. 12. The best �ts,which correspond to the boxed scores, are displayed both as contours overlapped onto thereal image in 12-C and Fig. 12-D.The two correct aspects for the mouth and ear pieces got the highest score as auspicated,since their ends are well visible. The interpretation of the mid-part has turned out to bea bit ambiguous, with the two scores for Aspect#5 and Aspect#7 very close; this is dueto the invisibility of its ends and their overall low weight for such an elongated part. Thecorrect aspect scored the highest here but either would have acceptable, given that inthis case they are almost indistinguishable. It is worth remembering that we are lookingfor qualitative features of parts and what really matters is that the model with the rightfeatures is selected over other possible alternative ones, that is, the �tting quality need notbe absolute but relative.The aspect-based strategy avoids situations as the real case presented in Fig. 13, wherethe �tting results are shown that are obtained from the same position/axes initialization asabove but when all the parameters governing the aspect topology were left unconstrained(of course always within meaningful ranges). In the experiments of Section 7.1, the �ttingwas performed by giving a good initialization and good results were obtained; here, pan,tilt and squareness values are set to 0:0 and 0:5, respectively.Although the number of iterations was increased to compensate for the bigger search-space,the results obtained are rather poor. The top piece is completely mis-interpreted, as well27



A B

C DAsp. #1 Asp. #2 Asp. #3 Asp. #4 Asp. #5 Asp. #6 Asp. #7 Asp. #8Upper -216.78 -193.43 -150.51 -246.30 -171.89 -88.31 -158.49 -112.34Mid -226.07 -223.15 -223.18 -228.82 -386.32 -306.45 -382.91 -301.60Lower -213.79 -238.68 -74.19 -286.10 -171.95 -156.41 -160.54 -246.30Figure 12: Real-image experiment with the aspect-based control strategy. Here, the PDAhave been initialized automatically from some of the hypotheses produced by the part-based grouping and �ltering method presented in [41]. The �gure shown initialization (A),edge image (B), contour �ts (C) and their volumetric representation (D). The scores of thePDA �ttings are shown in the table. See text for more details.
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A BFigure 13: Handset �tting results without using the aspect-based strategy and from aninitialization where pan, tilt and squareness values are set to 0:0 and 0:5, respectively, andsize/position/orientation as the ones in Figure 12. The �tting in all three cases got stuckin deep local minima.as the mid-part, which was recognized as a cylinder. It can be noticed that in these twocases the �tted models (Fig. 13-left) match very well a considerable amount of the edges, aclear indication that very deep minima of the objective function were found there which theoptimizaton algorithm could not escape. The use of topologically distinct aspects has notonly the property of reducing the dimension of the search space but also of dramaticallyboiling down the presence and e�ect of undesirable minima within it.8 DiscussionIn this paper a novel approach to 3D qualitative part recovery from real 2D images has beenpresented. A new e�cient deformable model is �t to raw edge images in the frameworkof Model-Based Optimisation, with an objective function expressed in Bayesian terms andthe use of topologically distinct aspects has led to more reliability. The results we havepresented here show that this method is valid and open to further developments.In this section, the major contributions of the material presented in this paper arehighlighted, followed by some criticisms and the proposition of future work.8.1 ContributionThere are several contributions to vision research in this paper. All of them were recognizedby anonymous reviewers of a paper based on the paper and its early version that appearsin [42]. 29



� A new approximated but e�cient parametric model of deformable superquadric con-tour is presented in Section 3. Previously, when performing deformable superquadrics�tting to 2D images as in [35], a very clumsy method was used whereby the wholesuperquadric was built, deformed and its contour computed by �nding zero-crossingsof the surface normal component along the optical axis. Here, a leaner, simplegeometrical model has been pragmatically designed that approximates the contourof the deformable superquadric in a tiny fraction of the cost needed by the othermethod. The parameters keep a clear three-dimensional interpretation, as well as fordeformable superquadrics.� The �tting of the aforementioned parametrically deformable contour model is per-formed through model-based optimization where an objective function is minimizedthat, in information theoretical terms, essentially expresses the economy obtainedby representing groups of edgels in the image by the model contour. Although sim-ilar cost functions had been proposed in the past, the one presented here formallyaccounts for both matched and unmatched contour portions and the backgroundin formal Bayesian terms, whereas previous method (such as [19, 18]) did not doso. Through experimental results, it has been shown that this method copes with asigni�cant amount of cluttering.� Although its contribution has not yet well quanti�ed, the embedding into the modelprior probability of a bias towards more perceptually plausible 3D shapes { describedin Sec. 5.2 { is a rather clever idea, as remarked by F. Ferrie in a personal commu-nication.� The concept of using an aspects-based strategy to deformable contour model �ttinghas been introduced here for the �rst time. Previous work had used aspects onlyfor �tting CAD-based models, such as in [14]. The bene�ts of such a strategy arestraightforward: the optimization can independently focus on regions of the param-eter space that correspond to models with the same topology, thereby reducing thechances of getting stuck in local minima caused by di�erent interpretations of imagefeatures. Due to the simplicity of the geon model de�ned in this paper, a closed-formsolution for the aspect cell subdivision has been found.� The idea of recognizing generic primitives like geons from 2D images by �tting con-tour of superquadrics is not a new idea, but the only implementation known to theauthor is by [35]. However, there the �tting was performed to segmented data andoptimization was done in image space (see Sec. 2.1) in a multistage fashion withtwo ad hoc di�erent search strategies for cylindroids and prismoids { probably due tosevere �tting problems, also highlighted by the apparent syntheticity of the examplesshown in their paper. Here, this topological information has been brought to the foreby employing right di�erent models, which has allowed us to safely utilize a moregeneral optimization algorithm such as Simulated Annealing.30



8.2 Criticisms to the MethodThere are several issues that need to be addressed in future work to improve the proposedmethod. Here, we will �rst discuss criticisms made by anonymous reviews of a submissionbased on this paper; the overall opinion on the work was rather positive, but some acutecriticisms were made which are summarised and commented in the following. Some othercriticisms will be added later.The �rst criticism was that the method does not constitute a signi�cant advancementwith respect to the current state-of-the-art work by [35]. This criticism was mainly at-tributed to the manual initialisation phase that was then used { now taken over by theautomatic part-based grouping presented in [41]. In my opinion the criticism in unjusti-�ed. The method proposed in [35] assumes that faces and edges belonging to a single partare pre-segmented by the OPTICA [12] system, which also supplies information about theclass of object to be �tted; this allowed them to implement an ad hoc strategy for dealingwith the �tting of di�erent classes of models. The problem of �tting to unsegmented datawas not even taken into consideration, whereas here the �tting is done to unsegmenteddata and, in principle, the initialisation could come from methods other that the one pro-posed in [41]. Another important remark is that in [35] a clumsy method for determiningsuperquadric contours was used, whereas here a purposely designed model (Sec. 3) hasbeen built that allows much greater e�ciency.Di�erently from the OPTICA system equipped with the superquadric �tting machineryof [35], the scope of this thesis was not to build a generic-part segmentation recognitionsystem { quite beyond the state of current vision technology { but to explore the possibilityof using a global model-driven method to segment out generic parts from ordinary edgeimage. The imposition of structure on the solution by the parametrically deformableaspects of the geon �tting method presented in this paper is nothing but a natural extensionto the �l rouge of the line of thought of [41].Another criticism coming from another anonymous reviewer was that the �tting re-sults were not impressive; this is a rather unfair statement that probably was inspired byimprobable comparisons between the results given here and parallel works on part segmen-tation from (often pre-segmented) range data, such as [49, 54]. The absence of precisemodels, image cluttering and, again, the use of unsegmented 2D edge data, would neverallow a precise �tting, unless other information is used.The use of a neighbourhood \in/out" criterion in the design of the cost function ofSection 5 has allowed a formal expression in Bayesian terms of the goodness of �t but sometroubles can be encountered when the geon being �tted cannot be properly representedby the PDCM given in Section 3. This representation problem is common to all globaldeformable models �tting methods but it manifests itself more when censored error normsare employed, like [19] [11] [29] or the one presented in this paper.The possibility of using a di�erent, smoother error norm that would avoid these problemsis under investigation. Preliminary experiments showed that the results are much worsethan the one presented in this paper but it too early to draw conclusions.Finally, some doubts could arise regarding the model prior probability given in Sec.31



5.2. The de�nition might look arbitrary but it should be remembered that it was meantto have an heuristic character. In early stages of the work, this probability was uniformover the parameter space, as it is often done in these cases. When such a heuristic wasadded, the �tting results improved rather signi�cantly especially in regard to the recoveryof 3D shape and not only the matching of the contour; further systematic experiments areneeded to evaluate how these probabilities a�ect the �nal results but, given the stochasticnature of the optimiser (simulated annealing) a large amount of experiments are need toobjectively evaluate the e�ectiveness of such a heuristic. However, this activity was notdeemed relevant at this stage and is left to future work.8.3 Future WorkThe technique presented in this paper has opened some problems and interesting prospec-tives alike. Some issues that would need to be addressed in the near future are the following.First above all, in [41] codons [46] were presented as indivisible pieces of information.Here we are working on raw data, because after the hypotheses generation phase we haveonly an rough idea about which codons make up the actual part outline, let alone interioredges. In Section 5.1 we saw that edgels falling within a certain neighbourhood wereconsidered as matching the model but some e�ort could perhaps be spent in trying to usewhole codons as data to be matched. This modi�cation would probably prevent spuriouschunks of data locally matching the model contour to fool the goodness of �t evaluation,and would also yield a smoother objective functions, thereby easing optimisation. Somepreliminary results in this direction look promising.As said back in Section 2.1, the �tting is performed in parameter space. However,a very exciting prospect would be to use the point-to-point correspondence method bysingle value decomposition by [48] for �tting each aspect in image space, analogously toPDM �tting of the part-based grouping phase of [41]. For doing so, each PDA wouldneed to be redesigned as a point distribution model, as done in Chapter 3 of [41] forbuilding the generic-part PDM from superellipses. This technique might allow greaterrobustness, speed of convergence and tolerance to bad initialisation, due to the power ofthe SVD correspondence method that would globally �nd the best matches between PDAlandmarks of the aspects and the data, however cluttered it might be.Another exciting step to try is to account for interactions between parts. In Chapter4 of [41] we saw that by taking account of many competing interpretations of local evi-dence, it is possible to produce a minimal, hopefully correct, interpretation of the image.The same considerations could be done here. In the case of the handset test image, forinstance, the �tting could be performed concurrently for the three parts and penalty termscould be introduced for overlapping as in the support competition method prposed in [41].However, di�erently from that, in this case the �tting and hypotheses competition wouldbe performed at the same time and the workload would be huge.A natural extension, which would however present several theoretical problems, wouldbe to integrate other non-edge information in the �tting, speci�cally in the cost function,such as coarse depth and surface orientation information as it could be produced by a32



shape-from-shading method [21].9 AcknowledgementsThe �rst author is partially supported by SGS-THOMSON Microelctronics. AndrewFitzgibbon and David Eggert have contributed interesting suggestions.A Simulated AnnealingSimulated Annealing (SA) [26] is a powerful optimisation tool that e�ectively combinesgradient descent and controlled random perturbation to perform the minimisation of non-convex functions and it was developed from the Metropolis algorithm [36], which was orig-inally contrived to simulate the equilibrium state in statistical mechanics; the Metropolis'algorithm can be summarised as follows. Given a solid composed by interacting atoms,small random perturbations are added to the current state; a di�erential of energy �E iscomputed and if �E < 0 the new state is accepted as a valid one. Conversely is �E � 0the state is not rejected but it is given a probability e��E=kTa (Metropolis criterion) ,where k is the Boltzmann constant and Ta is the absolute temperature. By keep repeatingthis procedure for a large number of times the system eventually converges to a thermalequilibrium.More recently, in [26] an important modi�cation was proposed to the Metropolis' al-gorithm that consisted of running it with decreasing temperatures (called Boltzmann An-nealing) until a low enough temperature is reached. This improvement was inspired bythe physical annealing process of a solid and therefore the method was called simulatedannealing and the way the temperature is lowered called annealing schedule.Optimisation by SA was �rst introduced to the vision community in the seminal paperby Geman&Geman [20] and more recently used also in [32, 54] and other works.In this thesis, a recent publicly available implementation of SA has been used, calledAdaptive Simulated Annealing (ASA), developed by Ingber at Caltech [23]. As describedby Ingber, \the major di�erence between ASA and standard Boltzmann SA is that theergodic sampling takes place in a n+1 dimensional space, in term on n state variables andthe cost function".
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