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IntroductionAutomatic extraction of CAD descriptions for reverse engineering, rather than for simple copy milling,demands models that are ultimately intended for human manipulation. This in turn implies the needfor accurate inference of geometric and topological information, expressed in terms of componentfeatures and their interconnections. Such a description is conceptually at a higher level than that ofapproximating raw data with spline patches2;3 for example.Previous research into such \feature-based" reverse engineering has been limited either to interactivesystems4;?, which are not suitable when acquisition of many models (for legacy inventory modelling forexample) is required. The noninteractive systems that have been described5 are generally limited topolyhedra, which permits the reverse engineering of only a narrow class of objects.The problem of feature segmentation is widely recognized in the �eld of computer vision, whereextracted features are used to perform symbolic matching between images. This paper applies com-puter vision techniques to the automatic inference of geometric and topological structure for reverseengineering. We describe a system which automatically builds CAD models of objects which arebounded by arbitrary piecewise quadric surfaces, signi�cantly expanding the range of applicability ofthe feature-based technique.Our previous work6 segments an image based on the signs of mean and Gaussian curvatures,producing a qualitative description of arbitrary curved surfaces suitable for object recognition. ForCAD reconstruction, however, it has a number of inadequacies:� The surface patches have no parametric description. While reconstruction up to a Euclideantransformation is theoretically possible from the curvatures, this is not a practical CAD repre-sentation.� The patch boundaries are ragged due to the inherent ampli�cation of errors in the extraction ofsecond derivatives for curvature calculation.� No topological information is provided.The input data to the new algorithm are a 212D range image which has been coarsely segmented asdescribed above, and the output is a B-rep model in Fisher's Suggestive Modelling System7 language.In the paper we briey review previous approaches to range-data segmentation, and then describeour algorithm providing examples of its operation on a number of mechanical parts.Survey of Range Image SegmentationIn this section we briey survey strategies for range image segmentation, and indicate their rele-vance to the problem of CAD model acquisition. The surface models used range over planes8;9, spe-ci�c quadrics (for example cylinders, spheres and cones)10;11;23;12;13, general quadrics14;8, algebraicsurfaces15, superquadrics16;17, and splines.2;3 The published algorithms generally fall into three cate-gories:Split-and-merge algorithms18;8;19;20;21;22;13 divide the image into many small regions, and then it-eratively merge regions that are statistically likely to represent the same surface primitive. Mergingstops when no two regions are su�ciently similar. Thresholding the similarity measure provides aneasy way to determine the number of regions and scale of segmentation.Algorithms based on clustering23;24;25 estimate surface parameters on small patches and accumulatethe parameters in a histogram. Large peaks in the histogram correspond to instances of the surface inthe data. Flynn23 and Han24 both look at clusters of surface normals: Flynn uses the eigenvectors ofthe local normal covariance matrix to discriminate between planar, cylindrical and spherical patches;Han further histograms cross products of pairs of normals to test for and determine cylinder axes.Clustering techniques, like the Hough transform26, are generally limited to surface types with a smallnumber of free parameters.Region growing1;27;28 is a surface �tting technique which �ts to each of several small \seed" regions amathematical surface and then extends these surfaces to encompass pixels adjacent to the seed region.Besl and Jain's much-cited paper1 describes a technique based on polynomial surfaces of orders up to2



Di�usion-smooth range image x(i; j), preserving discontinuitiesCalculate curvature images H(i; j) and K(i; j).Morphologically smooth curvature images, producing ~H(i; j) and ~K(i; j).Create label image L(i; j) from connected components analysis of ~H ~K(i; j).Create seed regions fRigni=1 from L(i; j).for each seed region Ri,repeatCalculate sample covariance matrix of region points to decide surface order.Robustly �t an algebraic surface Si(x) = 0 to the points of RiReplace Ri with the largest overlapping connected region of pointswhich are within a threshold � of Si, and are closer to Sithan to any other Sj .until Ri does not change.endCreate 2-D adjacency graph from label image L(i; j)Create 3-D Region-Sheet (RS) graphProcess RS graph into produce B-rep Region-Sheet-Curve-Vertex graph.Optionally postprocess to replace general quadrics with speci�cs.Figure 1: Algorithm overviewfour. These systems work relatively well on simple industrial parts with sharp orientation and evencurvature discontinuities but prove inadequate on more freeform surfaces.The AlgorithmOur system is an improvement on the method of Besl and Jain1, with postprocessing stages to recoverthe topological information and to convert the segmentation output to a B-rep model. Figure 1 givesan overview of the procedure, which comprises the following steps:Curvature Classi�cation.To summarize Trucco6, we estimate principal curvatures at each pixel after spike noise removal andboundary-preserving smoothing have been applied to the raw data. From the principal curvatures �1and �2, we calculate the Gaussian (K) and mean (H) curvatures from:K = �1�2 H = �1 + �22From the signs of these curvatures, we can classify each image pixel into locally planar, cylindrical,spherical, or hyperbolic. A connected components analysis of this image then produces a set of regionsof constant curvature class. Figure 2 illustrates the output of this stage.Morphological Hysteresis ThresholdingIn the current system the noisy curvature-sign images are morphologically smoothed using a newhysteresis-like inclusion criterion. Each curvature value is classi�ed as Negative, Zero, Positive orUnknown based on the values of \inner" and \outer" thresholds. The inner threshold determines therange of values called Zero. The outer threshold determines the inner limit of the ranges of the Negativeand Positive values. (Figure 3 provides a graphical depiction of these thresholds) Between these valuesthe pixel is labelled as Unknown. These H and K sign maps are then morphologically dilated29 using a3
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Pos Cyl(b)Figure 2: (a) Raw range data (b) Curvature classi�cation. The greylevels on the right label pixels aslocally falling into one of three classes, based on the sign of the mean curvature, H , (on this object theGaussian curvature is zero everywhere other than at edges).
Function Value

Negative PositiveZeroUnlabelled UnlabelledFigure 3: Ranges for hysteresis thresholding.3�3 cross (\ " shaped) structuring element to propagate the known labels into the Unknown regions.Figure 4 illustrates the e�ectiveness of this technique on an image where the curvature thresholdshave been set arti�cially low. The image on the left is a synthetic range image rendered using anarti�cial Lambertian lighting model to illustrate the noise level of the image. The central imageshows the result of thresholding the mean curvature with an \inside" threshold of approximately themedian curvature value observed in the planar region, and an \outside" threshold of approximately theminimum value in the ellipsoidal region.Connected Components AnalysisIn the last of the preprocessing stages, connected components analysis of the label images groups pixelswhich are 4-connected and share the same labels. This process produces a set of initial seed regionsfRigni=1, where a region is de�ned as a set of connected pixels fxikgmik=1 and an associated label.Region growing: Initial passAfter the seed regions have been identi�ed, the region growing stage re�nes the coarse segmentation inorder to ensure intersection boundary consistency. Region growing is performed through an iterativeexpand/�t/contract cycle after the initial surface �tting.4



Shaded (a) (b)Figure 4: Morphological Hysteresis Thresholding. The object on the left has been processed withincorrect threshold values. (a) Mean curvature image with each pixel classi�ed as Negative, Zero,Positive or Unknown. (b) Mean curvature image after application of morphological hysteresis.Surface �ttingFor each region in the initial segmentation above a minimal size a least squares surface �tting isperformed, associating with each region Ri an algebraic surface Si(x) = 0. To perform the �tting,we use Taubin's generalized eigenvector �t15 (gevfit), which minimizes the approximate mean squaredistance �2 = Pmk=1 F (xk)2Pmk=1 krxF (xk)k2to the surface de�ned by F (x) = 0.The choice of �tting algorithm was a result of comprehensive tests on several 2D conic �ttingalgorithms30 which found gevfit to provide the best tradeo� between speed and accuracy. Whilethe same evaluation has not been formed in 3D, the very simple analogy between quadrics and conicsallows us to be con�dent that the results will extend to higher dimensions.Here we limit the types of surfaces to quadrics and planes, due to problems of instability when�tting higher-order surfaces. The decision about which type of surface to �t is made by examiningthe sample covariance matrix of the region points and �tting a plane if the ratio of its two smallesteigenvalues exceeds a preset threshold. Otherwise, a quadric surface is �tted.ExpansionNext, each region in turn is grown. For expansion, a pixel is added to the current region if it meets thefollowing requirements:1. it is 2-D adjacent (de�ned as 4-connectivity on the label image) to the current region,2. the corresponding 3-D point p is within a minimum perpendicular distance � of the currentsurface. The minimum distance for quadrics is readily calculated if coordinates are transformedyso that the quadric is xTDx = 1for diagonal D. Then the x closest to p satis�esx+ �Dx = p(I + �D)x = pyThis transformation cannot be performed for paraboloids and certain degenerate quadrics, but a similar analysis canbe easily applied if the paraboloid is transformed to the form z = ax2 + by2.5



So that � is a solution of pT (I + �D)�TD(I + �D)�1p = 1, ord1p21(1� d1�)2 + d2p22(1� d2�)2 + d3p23(1� d3�)2 = 1Which, on multiplication by kI � �Dk2F gives a 6th degree polynomial in �. Choosing the rootwhich minimizes the distance yields the closest point.3. the point is closer to the current surface than to any other surface for which it may have beenlabelled during the growing of a previous region,4. the surface normal at the pixel (estimated by least-squares �tting af a plane to a 5 � 5 windowabout the pixel) is within an angular threshold � of the current surface normal at that position,5. the estimated pixel normal is in better agreement with the current surface than with any othersurface for which it may be labelled.Choice of minimum perpendicular distance threshold �The choice of threshold � depends on the accuracy of the range sensor, and is chosen such that about95% of range points are expected to lie within � of their true surface. The value may be estimated byimaging a surface of known geometry, such as a sphere or a plane, performing a robust least-squares�t, and calculating the 95th percentile residual value. Using the range data gathered by our in-houselaser striper, values of � = 0.6mm and � = 80� were used, while for other experiments31 values of 1mmand 4mm were required.ContractionThe boundary of the current region is extended in this manner as far as possible. Then the surfaceis re�tted to this new data set. Finally, a contraction of the region boundary is performed. Eachpixel is tested using the previous criteria against the new surface estimate. If it is not best accountedfor by the new surface, the pixel is returned to the region from which it was originally taken. Thisexpand/contract cycle is iterated until the region boundary stabilizes, or until a maximum iterationlimit is reached.Intersection boundary consistencyAfter a single pass has been made through the surfaces, the majority of pixels have been labelled.However, the intersection boundaries between surfaces may be very ragged, as there is often a signi�cantoverlap between regions because pixels on the boundary will be within � of both the adjoining surfaces.The criterion above that assigns the label of the closest surface to border pixels often fails to give aclean intersection boundary due to the e�ects of noise in the data, as demonstrated in Figure 5.To resolve this problem, the second and subsequent passes add a novel compatibility criterion whichattempts to ensure that the boundaries of adjacent regions are consistent with the regions' intersectioncurve. The new criterion is applied only at ambiguous pixels (those that are within the distancethreshold � of more than one region), and replaces the \closest point" constraint with one that labelsan ambiguous pixel based on its being on the same side of a decision surface as the region for which itwill be labelled.In the case of planes, this surface is another plane passing through the line of intersection betweenthe current plane and the plane corresponding to the current labelling of the pixel. This dividing planeis also chosen to bisect the volume of space between the two planes in question. Thus, for two planesn1x = d1n2x = d2the equation of the decision plane is simply(n1 � n2)x = d1 � d26
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Region 1 Region 2

‘‘True’’ surfaces

Decision SurfaceFigure 5: An example showing where assigning pixels to their closest region fails. The thick slopedlines represent two true planes, while the jagged dotted line represents the noisy image of the planes.The closest region criterion will classify the circled pixels into the wrong regions. Applying the decisionsurface criterion to the pixels in the grey area (where points are within � of both regions) will correctlyclassify all but the grey circled pixel, which is outside the threshold range for its \correct" region.Figure 5 illustrates the concept in one dimension, and shows how this decision surface criterion willproduce more consistent labellings in a simple case. The �gure also demonstrates that the criterionwill fail when a pixel is su�ciently far from its \correct" plane that it falls outside the threshold bands.In this case the connected components labelling will discover this isolated pixel and reject it as beingtoo small to be a single region, but in general if the initial phase produces a labelling that is grosslywrong, this criterion will not be able to correct the error.The same technique may be applied to curved surface intersections by considering the intersectionsof the local tangent planes, because the decision surface is calculated separately for each pixel, and isbased on the local surface normal.Topology extraction: Building the B-rep modelHaving performed the segmentation step, production of the B-rep consists of extracting 3D adja-cency and surface intersection curves and output of the SMS format model.The topological information in which we are interested comprises the adjacency graph of the scene,
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Pixel

External
PixelFigure 7: Example dual-lattice edgel. Theedgel is de�ned by the position of its midpoint,which in turn de�nes its orientation | a frac-tional X and integral Y imply the edgel is ver-tical. With each edgel we associate an internaland external pixel.
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abFigure 8: Example of vertex identi�cation.The solid black edgel sequence is the exteriorboundary of region A, with edges labelled withthe indexes of their adjoining regions. Thethree-way vertex is simply indicated by the la-belling change from \ab" to \ac" as the bound-ary is tracked.where two patches are deemed adjacent if their �nite intersection is a space curve lying on the sensedsurfaces. This de�nition therefore incorporates the identi�cation of intersection curves into the adja-cency determination process.To assist in this process, we do have a certain amount of topological information available ini-tially. The segmented 212D range image gives us a 2-D adjacency map, and we can make the followingobservation:If two 3-D region boundaries are within � of each other, they will be 2-D adjacent in thelabel map, because each boundary point is within � of both surfaces.This allows us to extract 2D adjacency during the execution of a dual-lattice boundary tracker, and tomark as 3D-adjacent boundary points which are within � of both the internal and external surfaces.The B-rep model structureThe speci�c B-rep which our system generates is that de�ned in Fisher's Suggestive Modelling System.7The SMS de�nes surfaces in terms of shape, extent and position32 where the shape parameters (such asthe 3 radii of an ellipsoid) determine the parametric or implicit surface in a canonical position. Surfaceextent is de�ned by a collection of space curves which lie on the surface and by a point de�ning theinterior of the surface. This limits surfaces to being singly connected components, so that a surfacerepresentation comprises one external sheet, and zero or more \hole" sheets. Each sheet may in turnbe de�ned by an assembly of space curves. Figure 6 illustrates the structure of a simple model.Boundary trackingThe segmentation process gives us collections of regions whose boundaries are implicit in the labelmap. By tracking around the pixels using a dual lattice boundary tracker we can build a list ofboundary edgels around each region. Each edgel contains (in addition to its position and orientation)the label of the external pixel and the distance from the external pixel to the region's surface, as shownin Figure 7.Using the external distance information, 3-D adjacency can be determined at each edgel as observedabove. Clearly this scheme will erroneously report adjacencies along chamfers of radius less than � .However, as � has been chosen to reect the level of noise in the range data, such chamfers are outsidethe resolution of the system in any case (see Figure 9).8
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Figure 9: A chamfer that is outside the resolution of our system. Such structures will generally bemodelled as two intersecting planes, ignoring the chamfer.Having identi�ed pixel adjacencies, we can segment the region boundaries into sequences of edgelswhich share the same internal/external region labels. This gives us a Region-Sheet-Curve decompositionwhere the curves are still represented as raw sequences of edgels. For example region Q in Figure 6will be represented as having one sheet, comprising two curves: the 3D adjacency curve between P andQ (labelled QP), and the non-adjacency curve corresponding to Q's occluding contour (labelled QW)indicating the boundary between Q and the World.Surface intersection: Curves and verticesWe can now replace sequences which denote 3D adjacency between surface patches (curve PQ in theexample) with the intersection curves of the adjoining patches.zOn transitions between sections (where region A changes from being adjacent to region B to regionC for example | see Figure 8), we know that there must be a vertex found by the intersection of thethree surfaces and can therefore de�ne it thus.Curve description and hole extractionFinally, in the current case where not all of the object is observed, some boundary segments will beadjacent to the World. Currently these segments are simply approximated by lines and conic sectionsusing a segmentation algorithm based on the run-distribution test.33 Note that this frequently appliesnear surface holes, so that this process produces a description of the circular rim of the hole even inthe absence of range data from the cylindrical inner surface.As holes are generally considered an important feature, the system speci�cally attempts to modelinternal boundaries as a single circle by the following process:1. A plane is least-squares �tted to the points fxigni=1 by extracting the centroid and shortesteigenvector of their sample covariance matrix.2. If the residuals after this �t exceed � , the process is terminated.3. The points are transformed to lie in the X-Y plane, where they are expressed as f(xi; yi)gni=1.4. A circle is least-squares �tted using gevfit and the linear parameterization a1 + a2xi + a3yi +a4(x2i + y2i ) = 0, producing a center (cx; cy) and estimated radius R.5. The boundary is tracked again, and the sample radii Ri = k(xi; yi)� (cx; cy)k are extracted.6. Application of the run distribution test to fRigni=1 determines whether or not the boundary is acircle.In the case when a modelled intersection curve reaches such background curves, we link themtogether using a line segment which connects the last point on the background curve to its closestpoint on the intersection curve.zThis paper does not discuss the mathematics of the surface intersections, as the key interest is in the identi�cation ofthe �nite extent of the intersection. 9



Specialization of quadric surfacesTo be useful in CAD systems, it is often preferable to deal with speci�c quadric surfaces such ascones, cylinders and spheres rather than with the general 10-parameter form. Our system includesan optional postprocessing stage that applies some simple heuristics to determine whether a genericquadric instance is that of a speci�c subclass. The process transforms the quadric xTAx+Bx+C = 0into its central form by extracting the eigensystem of A:RTDR = Arotating the coordinate system: A0  RTARB0  RTBC 0  Ctranslating B to the origin: (note that if D is noninvertible, the tests are not performed)t  �12D�1B0A00  A0C 00  C 0 + 12t �B0B00  B0 + 2A0tand �nally extracting the shape parameters:Rx = sgn(A0011)qjA0011jRy = sgn(A0022)qjA0022jRz = sgn(A0033)qjA0033jK = C 00The following tests are applied to the shape parameters in order to identify speci�c subclasses:1. if Rx and Ry have the same sign and jRzj exceeds a threshold R1, the surface is a cylinder.2. if jKj is less than a threshold �c, the surface is a cone.3. if Rx, Ry and Rz have the same sign and their absolute values are under R1, the surface is anellipsoid.In the cases where a speci�c subclass has been determined, a nonlinear least squares algorithm34 isapplied to �t the appropriate model, which replaces the general quadric description.Experimental resultsWe have implemented the above system in C++ and tested it on range data gathered by the laserstriper in our laboratory.35 In addition, the same algorithm restricted to polyhedra has been tested byHoover et. al.31 in their comparison of range segmentation systems.Figures 10, 11 and 12 show the operation of the system on three objects which are bounded byplanes and quadric surfaces. The �gures show the raw range data and the renderings of the �nal modelsin the SMS object viewer. 10



(a) (b)Figure 10: British Aerospace Widget: (a) Raw range data (b) Automatically acquired model.
(a) (b)Figure 11: Manufactured part: (a) Raw range data (b) Automatically acquired model

(a) (b)Figure 12: Optical Stand: (a) Raw range data (b) Automatically acquired model11



Figure 13: Hole accuracy: Test object. The object is sampled at 1mm intervals in X and Y. The truehole radius is 7.5mm, with a separation of 40mm.
7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9

0

1

2

3

4

5

6

Figure 14: Hole accuracy: Radii. The graph shows the distribution of radii for the 15 holes. Medianerror is 0.16mm, mean error is 0.32mm.
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Figure 15: Hole accuracy: Separation. The graph shows the distribution of hole separations. Medianerror is 0.19mm, mean is 0.20mm. 12



Object True Measured ErrorWidget 45.00 44.93 0.07Manufactured 60.00 59.88 0.12Optical Stand 40.00 39.06 0.94Optical Stand 50.00 49.61 0.39Optical Stand 90.00 90.34 0.34Table 1: True versus estimated cylinder radii on sampled objects. All measurements are in mm.Object Metric True Meas. ErrorWidget PP 90.00 90.10 0.10Widget PP 90.00 80.85 0.15Widget PP 26.57 26.74 0.17Manuf. PP 120.00 119.95 0.05Manuf. PA 90.00 90.04 0.04Manuf. PA 90.00 89.91 0.09OptStand PP 90.00 90.50 0.50OptStand PP 90.00 90.07 0.07Table 2: True versus estimated angles. The PP measures are between surface normals of the largestplanes on the sampled objects. The PA measures are between plane normals and cylinder axes. Allmeasurements are in degrees.AccuracyIn order to evaluate the accuracy of the hole extraction stage, we commissioned the object shown inFigure 13 to be built. Taking an image of the object, with X and Y sampling of 1mm, and approximatingeach of the holes in the plane by a circle, we compare the distribution of returned radii against the truevalue of 7.5mm. Figures 14 and 15 show the error histograms for the radius and separation estimates.Note that while the model error is on the order of 0.1mm, an order of magnitude less than thesampling rate, there are three holes where surface reectance problems give a radius error of 1mm. Weare investigating the use of combined intensity and range data to solve this problem while retainingthe basic accuracy.Additional accuracy measurements have been less rigorously studied, but Table reftbl:angles showsthe true versus measured angles between plane normals and between normals and cylinder axes for theillustrated objects. Table 1 shows true versus estimated cylinder radius for the objects. The accuracydepends largely on the size of the surface patch and the quality of the range data, but the results onthe images from our laboratory (the Widget and Manufactured parts) indicate that angular errors ofapproximately 0:1� are representative.DiscussionOur current implementation of the system uses planar and quadric surfaces, and calculates intersectionsonly for the plane-quadric case. However, both the segmentation and intersection detection dependonly on the ability to measure distance from a point to a surface, and so may be readily applied to othersurface types. The key to the intersection calculations is primarily in the image processing operationsthat are applied to the data rather than in the calculations required to perform the intersectionsthemselves. 13



ContributionsThe contributions of this research are in the extension of automatic feature-based reverse-engineeringsystems to curved surfaces, and in the incorporation of topological constraints into the segmentationprocess directly. The survey of Hoover et. al.31 found the planar version of this algorithm to produce themost accurate structural results (in terms of pixels correctly labelled) with the second fastest runningtime, of the systems tested.23;36;31. We believe that this is largely attributable to the incorporation oftopological constraints.In comparison with other quadric-based segmentation systems, it is di�cult to o�er quantitativecomparisons as few authors include quantitative results. In addition, because quantitative measuressuch as angles and hole radii are very dependent on the quality of the range data, they do not distinguishthe qualitative di�erences in accuracy of labellings and topology extraction.ConclusionsWe have presented a system that applies techniques used in computer vision to the problem of CADmodel acquisition for reverse engineering. This system does not require operator intervention and istherefore suitable for large projects where many models are to be acquired, such as in legacy inventorymodelling. The system produces models which are very close in structure to those produced by ahuman operator given the same task, and as such are useful in environments where the models are tobe further edited after acquisition.Future work� We are currently extending the system to operate on full 3D data from view merging. This willallow a more accurate identi�cation of surface adjacency as the problems of self-occlusion will begreatly reduced.� The system is being extended to output models in AutoCad DXF format so that they can bedirectly imported into this standard CAD system.� Extension of the range of surface types allowed to include NURBS surfaces is being investigated,again with the objective of widening the range of applicability of the system.� Incorporation of intensity information into the edge detection process.� Incorporation of more domain knowledge to the acquisition system, so that for example planesof \approximately" 90� are converted to right angle joins by the system.REFERENCES1 P. J. Besl and R. C. Jain. Segmentation through variable-order surface �tting. IEEE T-PAMI,10(2):167{192, March 1988.2 M. Potmesil. Generating models of solid objects by matching 3D surface segments. In Proceed-ings, IJCAI. Karlsruhe, Germany, pp 1089-1093, August 1983.3 B. W. York, A. R. Hanson, and E. M. Riseman. 3D object recognition and matching withB-splines and surface patches. In Proceedings, IJCAI, pages 648{651, 1981.4 J. C. Owen, P. P. J. Sloan, and W. B. Thompson. Interactive feature-based reverse engineeringof mechanical parts. In Proceedings, Image Understanding Workshop, pages 1115{1124, 1994.5 H.-Y. Shum, K. Ikeuchi, and R. Reddy. Virtual reality modelling from a sequence of rangeimages. In Proceedings, DARPA Image Understanding Workshop, 1995.6 E. Trucco and R. B. Fisher. Experiments in curvature-based segmentation of range data. IEEET-PAMI, 17(2):177{182, 1995. 14
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