
Equal-Distance Sampling ofSuperellipse ModelsMaurizio Pilu Robert B. FisherDepartment of Arti�cial IntelligenceThe University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QLSCOTLANDAbstractSuperellipses are parametric models that can be used for represent-ing two dimensional object parts or aspects of 3-D parts. Previouslylittle care was given to obtaining a precise sampling of the contour ofthese models. Equal-distance sampling of superellipse model contoursis however important for rendering and in cases in which a cost functionneeds to be estimated for data �tting or parameter estimation, such asin model-based optimisation. In this paper we present a new paramet-ric method for achieving equal-distance sampling of superellipse modelcontours that properly combines two simple �rst order models of thesampled points distance function. We also show how to extend themethod to deformable superellipses and superquadrics.1 IntroductionSuperellipses and their 3-D extension superquadrics were invented by Hein[3] and brought to the computer graphics and vision community mainly by Barr[1] and Pentland [4]. They can represent many closed 2-D and 3-D shapes (e.g.[6, 5, 7, 4] ) in a straightforward and natural way by using few parameters andmoreover simple deformation can be applied to extend their modelling capabilities.Pentland [5] and other leading vision researchers �rst introduced superquadricsas a model to coarsely represent parts of objects with a minimumdescription in theHu�mann coding sense (i.e. number of bits). Indeed one of the main advantagesof superquadrics is their compactness of representation. As well as superquadrics,superellipses can be used to model aspects of parts of 3-D objects, as shown inFigure 1.Superquadrics and superellipses, however, are mathematical objects of partic-ularly awkward nature because they are the result of strong non-linearities causedby fractional exponents, which cannot be analytically easily dealt with.In many works that use superquadrics, it can be noticed that superquadricsare not sampled in a regular way when rendering and computing cost or Error ofFit (EOF) functions (such as in [8]),
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Figure 1: Two examples of modelling aspects of parts by deformable superellipsesIn some applications, such as in Model-based Optimisation, we need to com-pute cost functions across superquadric surfaces or superellipse contours (eitherdeformed or undeformed) and the irregular sampling causes some regions to havean higher weight on the �nal cost, evidently producing wrong results with realdata.Franklin and Barr [2] partially solved this problem by using an explicit non-parametric method. This greatly improved precision and speed but still has 20-30% error in the sampling distance and could not deal with sampling deformedsuperellipses. They were against parametric sampling because its complexity andslowness.This paper presents a solution to the problem of providing a reasonably fastand reliable parametric method for obtaining a given constant sampling distancealong the whole contour of arbitrary superellipses and we will also show how toextend the method to deformed models.By using the spherical product [1] , the method can also be trivially extendedto superquadrics.2 Superellipses and DeformationsA superellipse can be described by the 2-D vector:x(�) = � a1cos(�)�a2sin(�)� � (1)�� � � � �where a1 and a2 are the two semiaxis and 0 � � � 1 is the roundness parameter.By eliminating �, its implicit equation can be easily obtained:� xa1�2=� + � ya2�2=� = 1 (2)



British Machine Vision ConferenceEither simple or complicated deformations can be applied to the basic superel-lipses shapes. The two most common deformations are linear tapering and circularbending along the principal axis of the superellipse.By simple geometric considerations (see, e.g., [8] for the details) and indicatingby capital letters the coordinates of the transformed shape, a tapering deformationalong the y-axis transforming a point [x y]T is de�ned as:� X = fx(y)xY = y (3). If fx(y) is linear the tapering will also be linear. By setting fx(y) = Txa2y + 1,with �1 � Tx � 1, we have linear tapering ranging from increasing cross-section(Tx > 0), decreasing cross-section (Tx < 0) and constant section (Tx = 0).In the same way, a circular bending deformation along the y-axis is given by� X = x+ sign(c) � (py2 + r2 � r)Y = sin() � r (4)where: R = a2=cr = R� jxj = atan(y=r)and �1 � Tx � 1 is the normalized bending parameter. A combination of defor-mations should be carried out by �rst doing the deformations that are more shapepreserving (see e.g. [8]). In our case, with just two deformations used, the rightorder is tapering �rst and bending afterwards.3 Linear Sampling and Explicit MethodIn this section we show the result of sampling the model using plain linear increaseof the � parameter and the explicit method proposed by Franklin and Barr in [2].In Figure 2 (top) we see a linearly sampling superellipse parameter and agraph expressing the distance of successive samples. It can be easily seen that thismethod, though fast and simple, can only have very limited applications: pointsare very evenly spaced and mostly gathered near the corners.Figure 2 (bottom) shows instead the sampling proposed by Franklin and Barrin which one of the coordinates is assigned and the other is computed by solvingequation 2 for the former. The outcome of this sampling is considerably betterthan one with the previous method but, as it can be seen from the graph of thedistance, it still gives more than 30% error. (The spike is due to a mismatchbetween the two halves of the quadrant at the junction.) Moreover, this methodrely on a straight approximation of the two sides of the superellipse quadrant andtherefore cannot deal with any kind of deformation, which would only worsen thedistance spread along the contour.
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hFigure 2: Example of Linear Sampling (top) and Explicit Method (bottom) withrespective sampling distances4 Optimal Parametric SamplingIn order to avoid the high discrepancy of sampling distance on the superellipsecontour, we can employ a simple �rst-order di�erential model which will allowsampling to be done according to local curvature properties.4.1 First modelConsider the parametric equation of a superellipse (1). We can approximate thearclength between two close points x(�) and x(� +��(�)) by the segment linkingthe two points: D(�)2 = jx(� +��(�)) � x(�)j2Assuming relatively small ��(�), the right hand side of this equation can be ap-proximated to �rst order by:D(�)2 = � @@� (a1cos(�)�)��(�)�2 + � @@� (a2sin(�)�)��(�)�2
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hFigure 3: Actual distance for small �By expanding and solving this equation for �� we obtain:��(�) = D(�)� s cos(�)2sin(�)2a21(cos(�)�)2sin(�)4 + a22(sin(�)�)2cos(�)4 (5)If we want to have an equal distance sampling for any � we must set D(�)to a constant K that represents the approximate arclength between two sampledpoints; D(�) could also been adaptively changed for di�erent kind of samplings orto cope with deformations.The two dual updating algorithms for � should then be as simple as:�i = �i�1 +��(�i) �0 = 0 ; i 2 f1::Ng j �N < �=2 (6)�i = �i�1 ���(�i) �0 = �=2 ; i 2 f1::Ng j �N > 0 ; (7)the former going up step by step from 0 to �=2 and the latter from �=2 downto 0. Unfortunately the strong non-linearities of the superellipses cause this ap-proximation to be wrong for � close to 0 and �=2, and even the sampling schemes(6) and (7), apparently equivalent, have slightly di�erent behaviour. In fact thesampling distance increases as � increases due to the �rst order (linear) approxi-mation we have used: in regions of increasing curvature the computed derivativeoverestimates the rate of change in � needed to obtain a certain arclength whereasin regions of decreasing curvature the exact opposite happens. As a result thereal arclength is much lower that it should be in some regions and much higherin others. Figure 3 highlights this e�ect for very small � (in which the rate ofchange in the curvature tends to in�nity) in the case of sampling scheme (6) (onthe left) and (7) (on the right). (It should be noticed that the second case (right)is equivalent to sampling with scheme (6) used near �=2.) In the �rst case � goesto zero very quickly whereas in the second it tends to in�nity but once ���� goesbelow zero, its behaviour inverts and becomes similar to the one in the �rst case.
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Figure 4: New approximation for small � (left) and a comparison to the previousmethod for larger � (right)4.2 SingularitiesTo avoid problems at the singularities, we found that the following simple modelyields a very good approximation to the equal-distance sampling near the singu-larities � = 0 and � = �=2.In the case with � ! 0, equation (5) can be approximated as:x(�) = � a1a2�� �and hence the distance between two points in this case is therefore:D(�) = y(� +��(�)) � y(�) = a2(� +��(�))� � a2��By solving for ��(�) we obtain:��(�) = �D(�)a2 � ���1� � � (8)Analogously, for � ! �=2 we have:��(�) = �D(�)a1 � (�=2� �)��1� � (�=2� �) (9)with D(�) set to a constant K if we want equal-distance sampling.Figure 4 shows how this new model behaves for very small �s; again we have� = 0:1, a1 = 20, a2 = 20. A quick comparison with Figure 3 shows that the actualdistance with this new samplingmodel is practically constant with �, which is whatwe wanted to achieve. For larger values of �, as expected, this approximation doesnot hold any longer and some small errors are introduced. It should be noticed,however, that here we have used a low value of roundness (� = 0:1) and this is whythe small-� approximation holds even for relatively large values of �. For rounder
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Figure 5: Swapping of axes (left) and �nal sampling resultshape this approximation will hold for smaller and smaller values of � but, at thesame time, the distance Equation (6) will become more and more suitable becausethe non-linearities becomes less strong.4.3 Combination of the Two ModelsLet Model A be the model of Section 4.1 and Model B be the one of Section 4.2which is to be used near the singularities � = 0 and � = �=2.We switch between the two models after � and �=2 � � go below a certainthreshold � . Experimentally, we have found that a good value of � is 10�2, whichgives relatively smooth change in the actual sampling distance both for very smalland large �.When (9) is used, however, there is a problem caused by the subtraction (�=2��) since the numerical precision necessary to use (9) for small values of � is veryhigh. We solved this problem by swapping the x and y axis in the superellipseequation (1) in order to have the condition � ! 0 in place of � ! �=2; a1 willbe then used instead of a2 in order to have exactly the same shape, as shown inFigure 5 (left).Figure 5 (right) shows the result of this sampling method (� = 0:1), where thesmall circles indicates the swapping points between Model A and Model B; notethat in this example the position of these two circles represent a distance in theparameter space � of just � = 10�2 radians!)Figure 6 gives another full example in which �, ��, the actual distance D(�)and the sampled superellipse are given for � = 0:2, a1 = 20, a2 = 20. Thediscontinuities at A and B are due to the swap from model A and model B andthe steep spike at C is caused by an unavoidable mismatch of the two halves ofsampling joined together as shown in Figure 5. In both example it can be seenhow good is the sampling, with an error in the actual distance as low as 5% on
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Figure 7: Example of sampling a deformed superellipse: explicit method (top) andproposed parametric method (bottom)� x(�) = (Txsin(�)� + 1)a1cos(�)�y(�) = a2sin(�)�As in Section 4.1, we can express the sampling distance D(�) as a function of��(�) and by solving for the latter we have:��(�) = D(�)s�@x(�)@� �2 +�@y(�)@� �2Near the singularities we need to employ a di�erent model and we used thesame as Section 4.2 but with a modi�ed sampled distance K' instead of K to takeinto account what the distance will be after the deformation. By considering thetapering geometry and assuming that near the singularities the shape is practicallystraight, we have: ( � ! 0 : K0 =Katan�a1Txa2 �� ! �=2 : K0 = K 1Tx+1



British Machine Vision ConferenceFigure 7 (bottom) shows the result of this sampling method in the same caseas before along with the actual sampling distance; from the latter graph it can beseen that the improvement has been signi�cant in all the [0::�=2] range.6 DiscussionSuperellipses are useful parametric models for representing two dimensional objectparts or aspects of 3-D parts.In this work we have presented a parametric method that is able to achieveequal-distance sampling of superellipse models contours and that can also copewith deformations, whereas previous methods were unprecise and usable only withundeformed models. The method can also be simply extended to superquadricsusing a spherical product of two superellipses.We are currently investigating using deformable superellipses as primitives forinterpreting static 2-D images of natural 3-D objects under the new framework ofModel-based Optimisation, in which data segmentation and �tting is done in singleuni�ed process. In this context, a proper cumulative cost function is computedalong the contour instances and a precise sampling allows all contour parts to havethe same weights in �nal result, improving accuracy and stability of the solutions.References[1] A. Barr. Superquadrics and angle preserving transformations. IEEE ComputerGraphics Applications, 1:1{20, 1981.[2] W. Franklin and A. Barr. Faster calculation of superquadric shapes. IEEEComputer Graphics and Applications, July 1981.[3] M. Gardiner. The superellipse: a curve that lies between the ellipse and therectangle. Scienti�c American, Sept. 1965.[4] A. Pentland. Perceptual organization and the representation of natural form.Arti�cial Intelligence, 28:293{331, 1986.[5] A. Pentland and S. Scarlo�. Closed-form solutions for physically based shapemodelling and recognition. IEEE PAMI, 13(7), July 1991.[6] M. Pilu and R. Fisher. Representation of 3-D part aspects by deformable su-perellipses. Technical report, Department of Arti�cial Intelligence, Universityof Edinburgh, 1995. In Preparation.[7] N. Raja and A. Jain. Recognizing geons from superquadrics �tted to rangedata. Image and Vision Computing, 12(3):179{189, Apr. 1992.[8] K. Wu and M. Levine. Recovering of parametric geons from multiview rangedata. In IEEE Conference on Computer Vision and Pattern Recognition, Seat-tle, WA, 1994.


