
Free-form Surface Matching for SurfaceInspectionEdvaldo M. Bispo and Robert B. FisherDept. of Arti�cial Intelligence, University of Edinburgh1 IntroductionDespite their great accuracy, coordinate measuring machines (CMM) forthe inspection of mechanical parts have some drawbacks related to theirlow speed, which make it impossible to measure many points on the surfaceof the objects. Another di�culty is in programming the CMMs which maketheir use very cumbersome. We are investigating the use of dense rangedata acquired using laser stripers for the inspection of mechanical parts.Most laser stripers do not produce as accurate measurements as CMMs butare much faster and consequently are able to measure many more pointson the surface of the object. This makes possible a better evaluation ofshape. We concentrate on the inspection of free-form surfaces, which areparticularly interesting because few inspection processes can inspect thesurface shape across the whole surface.The main idea behind our research is the comparison between the threedimensional geometric information present in the range image and descrip-tions or models of ideal parts stored previously by the system.Given a part to be inspected and a corresponding model of the partstored in the model data base, the �rst step towards inspecting the part isthe acquisition of data corresponding to the part which in our case meansthe acquisition of a range image of it. Before any comparison between dataand model can take place, it is necessary to align the model with the rangedata of the part. We use a modi�ed version of Besl's ICP (iterative closestpoint) algorithm [10] that uses a priori knowledge of an approximation ofthe right registration to make the method more robust to outliers and avoidthe problem of convergence to local minima.After registration, we can explicitly compare the complete measuredsurface to the model and inspect the part. Because the manufacturing andmeasurement processes are never perfect, it is necessary to take account ofthe part's tolerances, i.e. the dimensions of the part should be within thetolerance values explicitly determined in the model.In this paper we start by a brief description of the kind of shape modelwe used in our experiments and how we acquired these models in Section1



2 Surface Matching for Inspection3. In Section 4 we comment on the registration of our spline models withrange data. The inspection of the surface's pro�le after registration is dis-cussed on Section 5. The detection of periodic deformation on the surfacesis discussed in Section 6. Final comments and conclusions are presented inSection 7.2 Model shapesBecause we were particular interested in the inspection of sculptured sur-faces (e.g. turbine blades), we decided to use B-splines for modelling thenominal shape of the objects being inspected. In all the experiments de-scribed in this paper we used as model shape uniformB-splines. The modelsused here were obtained by �tting B-splines to range data; however, in realapplications the surface spline descriptions would be obtained from a CADmodel of the part.Figures (3) and (4) show the spline models built for the test objects 1and 2 shown in Figures (1) and (2). The average distance between modeland data points in both cases was on the order of tenths of millimeters(with image noise standard deviation equal to 0.15 mm). As one wouldexpect the bigger errors happened near the discontinuities of the image.This fact explains the better results obtained with the test object number2 which has fewer discontinuities than the test object number 1.
Figure 1. Range image of Test object number 13 Registering free-form surfacesGiven a range image of a free-form surface, which describes the shape ofthis surface in the sensor coordinate system, and a model of the same sur-face in a di�erent coordinate system, the problem of registering model anddata consists of �nding the rigid transformation (rotation and translation)that aligns or superposes both.Some of the �rst research into matching free-form surfaces was doneby Faugeras and Hebert [6]. They presented a matching algorithm able



Bispo and Fisher 3Figure 2. Range image of Test object number 2to successfully match a Renault auto part, but their algorithm had thedrawback of depending on the existence of planar regions in the object be-ing matched. Potmesil [14] developed a system for modelling the completesurface of a object from di�erent range images. The di�erent range imageswere matched through heuristic search in the 6-D space of the translationand rotation. Chen and Medioni [11] also developed an algorithm for reg-istering overlapping range images of an object. They assumed an a prioriknowledge of an estimated pose aligning the di�erent range images andapproximate one of the surfaces being matched using its tangent planes.Besl and McKay proposed the ICP (Iterative Closest Point algorithm) [10]for registering free-form surfaces using only the 3-D points on the surfaceof the object. Zhang [18] proposed an algorithm very similar to the ICP inwhich an a priori approximation of the registration is assumed to be knownand is used to accelerate the convergence of the algorithm and make it morerobust to outliers. Recently Stein [17] advocated the use geometric hashingtogether with an IT (Interpretation Tree) [9] for recognizing and aligningobjects in range and gray level images.We assume that the object being registered does not present any salientfeatures (e.g. planar regions) that could help guide the registration pro-cess and concentrate solely on the use of the 3-D points for obtaining theregistration. We also assume the a priori knowledge of an approximationof the pose aligning model and data and investigate the use of algorithmssuch as the ICP for improving the accuracy of the registration.The �nal accuracy that can be obtained using only 3-D points on thedata and model surface depends critically on the calculation of the posealigning sets of corresponding 3-D points on the surfaces of model and data.Therefore we start by evaluating the accuracies that can be achieved usingsets of corresponding 3-D points in Section 3.1. In Section 3.2 we discussthe ICP algorithm in detail and present some extensions for improving therobustness of the algorithm.



4 Surface Matching for Inspection
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)Figure 3. Uniform B-spline model of Test object number 1. Average distancebetween model and data is 0.4 mm. Uniform grid of 50X50 knots.3.1 Registering two sets of corresponding 3-D pointsConsider a set of data pointsD = fdigNi=1 and a set of corresponding modelpoints M = fmigNi=1 such that D and M are related by a rigid transfor-mation corresponding to a translation T and a rotation R as de�ned inequation (3.1). di = Rmi + T+ wi (3.1)E[wi] = [0 0 0]t (3.2)E[wi � wi t ] = 24 �i2 0 00 �i2 00 0 �i2 35 (3.3)where wi is white noise modelling the sensor errors and E[�] is the expec-tation operator.The problem of �nding T and R that minimizes the mean square dis-tance EM between D and M (equation (3.4)) is a well known problem towhich there are several proposed solutions [4, 5, 6]. Under the the criterionof accuracy in �nding the right values of R and T all these methods are
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)Figure 4. Uniform B-spline model of Test object number 2. Average distancebetween model and data is 0.08 mm. Uniform grid of 50X50 knots.equivalent, and we will concentrate our attention on Horn's algorithm [5].EM = DM2 = NXi=1 kdi �Rmi � Tk2 (3.4)In order to investigate the degradation in the accuracy of the algorithmwith increasing noise �i we extracted 3-D points from the spline modelsof test objects 1 and 2 and use them as model points. The data pointswere generated by applying a known rotation and translation to the modelpoints and corrupting the result with noise. The experiment was run fordi�erent values of rotation and translation and di�erent levels of noise �i .To each value of noise level 200 samples were considered.As one could expect the results did not depend on the speci�c values ofrotation and translation. Also, the �nal value of the mean square distance(EM ) found by Horn's algorithm tended asymptotically toE[wi t �wi ] = 3 � �2as the number of matched points increase. Figures (5) and (6) show thevariation of DM (eq. 3.4) and the error of the translation estimate (T̂)for the test object number 1. These graphs show the maximum accuracythat can be achieved for a given level of noise, which corresponds to thecombined e�ects of sensor and modelling errors, and number of matched



6 Surface Matching for Inspectionpoints. The graphs also show that the error in the estimate of translationwill decrease almost inversely with the number of matched points, as shownin equation (3.5). It is important to remember that the graphs show thevery best accuracy that can be achieved, because other sources of errorssuch as sampling errors and mismatchings were not taken into account.The experiments with test object 2 produced very similar results.kT̂� Tk / �i=N (3.5)
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8 Surface Matching for InspectionICP is the problem of converging to a local minimum of EM that doesnot correspond to the right registration between model and data. Thisproblem may not be very signi�cant with objects that have a large radiusof convergence for the global minimum (e.g object test 1 to which the ICPwill always converge to the right answer as long as the model was rotatedless than 100 degrees around any axis), because it is only necessary to runthe ICP a few times using di�erent initial estimates of R and T. But thisfact is a very serious problem in the case of objects like the object test 2that has a very small radius of convergence due to the existence of otherlocal minima near the desired global minimum.A interesting aspect of the problem of the initial estimate is the in
uenceof the original translation estimate. As said in [10], when the data set is asubset of the model which covers a reasonable portion of the model, the ICPperformance is reasonably insensitive to the original estimate of translation.However the �nal accuracy of the registration found by the algorithm canchange considerably as illustrated in Figure 7 (a). The situation becomeseven worse when the data covers only a small part of the model as seen inFigure 7 (b).
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MODEL SURFACEFigure 7. Variation of translation error (kT̂�Tk) of ICP with the value ofthe initial estimate of translation - Test object 1. Initial estimates of translationvary between -2 and 2 times the dimensions of the object. Part (a) covers thecomplete model and part (b) uses data from a subset of the model.Another problem with the ICP is the fact that it cannot cope withsituations in which the data points are not a subset of the model points.This is a considerable limitation in applications such as model acquisitionand inspection in which this assumption does not hold. In order to makethe method more robust to outliers we altered the original algorithm andeliminated the pairs (di;m(k)i) that did not satisfy a few consistency tests.The �rst of these tests, essentially used by Zhang [18] though in a di�erentway, eliminates pairs of points (di;m(k)i) if the distance between di and



Bispo and Fisher 9m(k)i is bigger than three times the value of EM found so far. We alsoused two local geometric constraints for rejecting wrong pairs: the distancebetween points in the grid and the angles between the vectors joining pairsof points in the grid. Because of the surface sampling, a matching for adata point di is any model point mi such that, after the alignment betweenmodel and data, mi belongs to the portion of the data surface D that direpresents. We approximated this region associated with di by a cuboidcentered on di with the faces parallel to the planes xy, xz and yz of thesensor coordinate system and dimensions corresponding to the size of thesampling grid.The maximumvalues of distances and angles associated with the pointsdi were calculated considering the angles and distances between the cuboidsassociated with each of the data point. All the calculation of minima andmaxima was done o�ine. In execution, whenever the relative distancebetween pairs of data points or relative angles between triples of data pointswas inconsistent with their corresponding model points, the correspondingpair of data points and model points were rejected.These alterations make the method more robust to outliers but imposea couple drawbacks. All the tests proposed can only be used when thealgorithm starts from a reasonable estimate of R and T. Besides that, theconsistency tests make the algorithm lose its monotonicity in the presenceof outliers, i.e. the value of EM may increase sometimes. This happensbecause the tests may fail to eliminate all the outliers in some iterations.However, in our experiments with the modi�ed ICP, the algorithm alwaysended up converging.4 Surface pro�le measurementBecause manufacturing methods are incapable of producing parts with per-fect shapes and sizes, an essential point in the design of the mechanical partsis the determination of the part tolerances. Several di�erent approacheshave been proposed for combining the dimensioning and tolerancing stan-dards with solid modelling, see [12] for a detailed survey, but none of themwere completely successful mainly because of the informal de�nitions givenin the current standards. We intend to base our approach to the de�nitionof tolerances on the theory of geometrical tolerancing proposed by Requicha[15, 16].In essence, Requicha's theory says that :� an actual feature fM is within tolerance t if the measured feature fMlies inside a tolerance zone de�ned by o�setting the correspondingnominal feature fN by a positive distance dp and a negative distancedn such that: t = dp + jdnj (4.1)



10 Surface Matching for Inspection� each feature is given tolerance values which de�ne acceptable varia-tions in size, orientation and position.In this paper we use an adaptation of Requicha's theory, inspired on thework of Menq [7], to de�ne position tolerance zones for measuring thepro�le of sculptured surfaces. As in the ISO standard, we de�ne the pro�letolerance zone as the region limited by two surfaces enveloping a sphere ofdiameter t.The inspection of the surface pro�le consists then in:Registration : Model and range data are registered using the ICP algo-rithm.Calculation of residual image : Calculate the residual image r(x; y) cor-responding to the projection of the Euclidian distance between eachpoint (x; y) on the range image belonging to the surface being in-spected and its closest point in the model on the direction of thenormal of the model surface.Surface pro�le measurement : Process residual image to verify if thesurface is inside the tolerance zone.Once the size of the tolerance zone t is de�ned, the inspection process isvery simple and consists in verifying if all the residual values are within agiven threshold. The determination of the threshold value and its relationto the number of the points tested and the signi�cance of the result isdiscussed in [7].As an example, let us consider a case in which a random gaussian-distributed deformation of amplitude 0.1 mm is added to the center of therange image of the test object number 1. Figure 8 shows the detecteddeformed region after comparing the residual of the registration with thethreshold 0.05.5 Detecting periodic deformationsIn this section we will concentrate on the detection and measurement ofwaviness errors on sculptured surfaces. Waviness errors are caused funda-mentally by the scalloped or cusped surfaces left by spherical and ball-nosecutting. This means that waviness errors are periodic deformations createdby the cutting tools. Because periodic shape deformations produce peaksin the frequency space, we detect the periodic deformations by looking atthe module of the discrete Fourier transform (DFT) of the di�erence image�(x; y) obtained after the registration between model and data. The cal-culation of DFT is done in di�erent subwindows covering the whole imageand for each window the inspection process consists of:
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nz = 22340Figure 8. Region of range image out of position tolerance. The white pixels arethe unmodeled background, the black pixels are the modeled part that is withintolerances and the textured grey pixels are the detected out-of-tolerance region.Deformation detection : The DFT of the di�erence image in a windowcovering part of the original range image is thresholded. Peaks inthe frequency domain bigger than a threshold value (�1) indicate thepresence of deformation.Localization of deformation region : If a deformation is detected, theregion of the deformation is found by applying the inverse DFT to theselected peaks of the DFT of the di�erence image, and then keepingthe deformations whose absolute values are bigger than a thresholdvalue (�2).A fundamental step in the inspection process is the de�nition of thethreshold values (�1 and �2) and the size of the window in which the DFTis applied. These values depend on:� the kind of deformation we want to detect,� the minimum amplitude and size of deformation we want to be ableto detect,� the statistical model of the noise in the original range image,� the statistical model of the random error of the manufacturing pro-cess,� the maximum acceptable probability of false alarm (Pf ),� the maximum acceptable probability of not detecting a given defor-mation (Pn) and� the registration errors.



12 Surface Matching for InspectionIt is important to notice that an important limitation in the detectionability is the spatial frequency of the deformation. In order to avoid aliasingproblems, the spatial period of the deformation should be bigger than 2pixels.If we ignore the registration errors and assume that the random errorin the manufacturing process is much smaller than the noise in the rangeimage, the residual between model and data after registration can be writ-ten as in equations (5.1) to (5.6). In these equations f(x; y) correspond tothe periodic deformation we want to detect and �(x; y) to the noise in therange image. �(x; y) = f(x; y) + �(x; y) (5.1)E[�(x; y)] = 0 (5.2)E[�(x; y) � �(x; y)] = �2 (5.3)E[�(x; y) � �(x0; y0)] = 0 (x 6= x0 or y 6= y0) (5.4)x = f0; 1; :::;N � 1g (5.5)y = f0; 1; :::;N � 1g (5.6)where : N is the size of the window considered.The DFT of �(x; y), that we will call R(u; v), is given by:R(u; v) = 1N � x=N�1Xx=0 y=N�1Xy=0 �(x; y) �WNx�u+y�v (5.7)WN = e�2���jN (5.8)u = f0; 1; :::; N � 1g (5.9)v = f0; 1; :::; N � 1g (5.10)In the next sections we establish the relation between the detectionthreshold values �1 and the minimum size and amplitude of deformationdetectable with the probability of false detection (Pf ) and the probabilityof not detecting a deformation (Pn). We also discuss the determination ofthe location threshold value �2.5.1 Probability of false alarmIn this case we are interested in the probability of the module of R(u; v) tobe bigger than our threshold value �1, when there is not any deformationin the di�erence image, i.e. :�(x; y) = �(x; y) (5.11)



Bispo and Fisher 13R(u; v) = Re(u; v) + j � Im(u; v) (5.12)Re(u; v) = 1N � x=N�1Xx=0 y=N�1Xy=0 �(x; y) � cos(j � �(x � u+ y � v)N ) (5.13)Im(u; v) = 1N � x=N�1Xx=0 y=N�1Xy=0 �(x; y) � sin(�j � �(x � u+ y � v)N )(5.14)Because each �(x; y) is a gaussian distributed random variable, Re(u; v)and Im(u; v) are also gaussian distributed and, for N odd :E[Re(u; v)] = 0 (5.15)E[Re(u; v)2] = � 1 u=0 and v=0�22 otherwise (5.16)E[Im(u; v)] = 0 (5.17)E[Im(u; v)2] = � 0 u=0 and v=0�22 otherwise (5.18)E[Im(u; v) �R(u; v)] = 0 (5.19)(5.20)The probability of false alarm Pf can be found by integrating the jointdistribution of Re(u; v) and Im(u; v) in a disk of radius �1:Pf = 1� 1� � �2 � Z �1��1 Z p�12�x2�p�12�x2 e�(x2+y2)�2 dxdy (5.21)Therefore, for u 6= 0 and v 6= 0 :Pf = e�( �1� )2 (5.22)5.2 Probability of not detecting a deformationIn this case we want to �nd the probability of the module of R(u; v) beingsmaller than our threshold when we have a deformation f(x; y). As inthe previous section, Re(u; v) and Im(u; v) are gaussian variables with thesame variances given in the equations (5.16, 5.18, 5.19). However, if F (u; v)is the DFT of f(x; y), the means of Re(u; v) and Im(u; v) are now:E[Re(u; v)] = mR (5.23)E[Im(u; v)] = mI (5.24)F (u; v) = mR + j �mI (5.25)kF (u; v)k = M =pmR2 +mI2 (5.26)



14 Surface Matching for InspectionAs before, the probability of not detecting a deformation can be foundby integrating the joint distribution of Re(u; v) and Im(u; v) in a disc ofradius �1, which results in :Pn = 1� � Z 1+�� �M1��� �M x � e�x2 � arccos (1� �2) �M2 + x2 � �22 � x � � �M dx(5.27)�1 = � �M 0 < � < 1 (5.28)5.3 Window size and minimum amplitude of deformationEquation (5.22) allow us to calculate the threshold value �1 given the de-sired probability of false alarm and the noise level in the original rangeimage. After �1 is determined, using equation (5.27) we can determine thevalue of kF (u; v)k =M that will have probability Pn of not being detected.The value ofM is related to kind of deformation we want to detect, thesize (area) occupied by the deformation and its maximum amplitude. Inthis paper we will consider periodic deformations corresponding to ridges,as shown in Figure 9. We chose this kind of deformation because it corre-sponds to a reasonable model of one kind of deformation produced duringthe milling process for manufacturing of sculptured surfaces. For this kindof deformation Figure 10 shows the relation between the value of M andthe area of the deformation in pixels (Nd2) when the maximum amplitudeof the deformation is 0.1 mm. This graph was obtained by calculating theDFT of a synthetic deformation of amplitude 0.1 mm for di�erent sizes ofwindow Nd and di�erent values of deformation parameters (see Figure 9).The graph show the minimumvalue ofM obtained for each size of window.
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MODULEFigure 10. Minimum module of DFT for periodic ridge deformation as functionof Nd. Inclination varying from 0 to 90 degrees. Amplitude equal to 0.1 mm.Width varying from 3 to 10 pixels.the inverse DFT to the selected peaks of the DFT of the residual in theobservation window and then thresholding the results of the inverse DFT.We now address the question of correctly locating true deformationpoints and not detecting random noise points.The threshold value (�2) used during the localization process is relatedto the probability of a point not belonging to the deformation being de-tected (P1) and also to the probability of a point belonging to the defor-mation not being detected (P2). In order to relate �2 to P1 and P2 let usconsider the reconstructed residual produced by the inverse DFT (r̂(x; y)):�̂(x; y) = 1N � u=N�1Xu=0 v=N�1Xv=0 K(u; v) � (F (u; v) + N (u; v)) �WN�x�u�y�v(5.29)�̂(x; y) = f̂(x; y) + �̂(x; y) (5.30)f̂ (x; y) = 1N � u=N�1Xu=0 v=N�1Xv=0 K(u; v) � F (u; v) �WN�x�u�y�v (5.31)�̂(x; y) = 1N � u=N�1Xu=0 v=N�1Xv=0 K(u; v) �N (u; v) �WN�x�u�y�v (5.32)K(u; v) = � 1 kF (u; v) + N (u; v)k � �10 otherwise (5.33)(5.34)As we can see in equation (5.29) the reconstructed residual is composedof two parts : a reconstruction of the deformation (f̂ (x; y)) and a recon-struction of the original noise in the residual (�̂(x; y)). Because �̂(x; y) is alinear combination of gaussian variables, �̂(x; y) is also a gaussian variableand:



16 Surface Matching for InspectionE[�̂(x; y)] = 0 (5.35)E[�̂(x; y) � �̂(x; y)] = �2N2 �KON = ��̂2 (5.36)KON = u=N�1Xu=0 v=N�1Xv=0 K(u; v) (5.37)From all these, we can conclude that the probabilities P2 and P1 for agiven point (x; y), such that f̂ (x; y) = �, is given by:P1 = 1� 1p2 � � � ��̂ Z �2��2 e�x2��̂2 dx (5.38)P2 = 1p2 � � � ��̂ Z �2����2�� e�x2��̂2 dx (5.39)Typically, the value of KON will never be bigger than 30, therefore areasonable upper limit to the standard deviation of �̂(x; y) (��̂) is:��̂ = 6 �N (5.40)6 An inspection exampleAs an example, if we consider a original range image with noise standarddeviation � = 0:1mm and we want Pf = Pn = 0:0001 then from equations(5.22) and (5.27) we obtain : �1 = 0:31 and M = 0:55. If we considerdeformations as de�ned in Figure 9 with amplitude 0.1 mm the graphin Figure 10 says that the minimum deformation should cover a squareof 50 pixels on a side in the range image. Because we do not know theexact position of the deformation, during the inspection procedure we usedobservation windows of 100 pixels, in such way that successive windowshave half of their area in common.From equation (5.40) the standard deviation of �̂(x; y) is equal 0:006mm.Therefore if we use �2 = 0:05, from equation (5.38) we obtainP1 � 2:2e�16.Also, the probability of not detecting a deformation varies from P2 = P1till P2 � 1. In this case, assuming that the amplitude of the deformationis uniformly distributed. Thus, the expected value of P2 is 0.5. Thesenumbers mean that practically none of the points not belonging to the de-formation will be detected and approximately 50% of the points belongingto the deformation will be detected.



Bispo and Fisher 17Figure 11 shows the residual after registration between the test objectnumber 1 model and a range image of the test object when a ridge de-formation of amplitude 0.1 mm is arti�cially added to the data. Figure12 shows the selected peaks of the DFT of the residual in a observationwindow over the deformed region. Finally, Figure (13) shows the deformedregion detected by the inspection process in the residual using �1 = 0:31and �2 = 0:05.
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MODULE OF DFT OF RESIDUEFigure 12. Module DFT of residual in an observation window over the defor-mation 7 CONCLUSIONSWe discussed the problem of inspecting free-form surfaces and presentedsome results concerning the use of B-spline models of free-form surfaces forthe purposes of registration and inspection. Despite some initial promisingresults there are still many issues to be further investigated: evaluatingthe robustness to outliers of the modi�ed version of the ICP, investigatingfurther the monotonicity of the modi�ed ICP algorithm, studying the use of
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