Free-form Surface Matching for Surface
Inspection

Edvaldo M. Bispo and Robert B. Fisher
Dept. of Artificial Intelligence, University of Edinburgh

1 Introduction

Despite their great accuracy, coordinate measuring machines (CMM) for
the inspection of mechanical parts have some drawbacks related to their
low speed, which make it impossible to measure many points on the surface
of the objects. Another difficulty is in programming the CMMs which make
their use very cumbersome. We are investigating the use of dense range
data acquired using laser stripers for the inspection of mechanical parts.
Most laser stripers do not produce as accurate measurements as CMMs but
are much faster and consequently are able to measure many more points
on the surface of the object. This makes possible a better evaluation of
shape. We concentrate on the inspection of free-form surfaces, which are
particularly interesting because few inspection processes can inspect the
surface shape across the whole surface.

The main idea behind our research is the comparison between the three
dimensional geometric information present in the range image and descrip-
tions or models of ideal parts stored previously by the system.

Given a part to be inspected and a corresponding model of the part
stored in the model data base, the first step towards inspecting the part is
the acquisition of data corresponding to the part which in our case means
the acquisition of a range image of it. Before any comparison between data
and model can take place, it is necessary to align the model with the range
data of the part. We use a modified version of Besl’s ICP (iterative closest
point) algorithm [10] that uses a priori knowledge of an approximation of
the right registration to make the method more robust to outliers and avoid
the problem of convergence to local minima.

After registration, we can explicitly compare the complete measured
surface to the model and inspect the part. Because the manufacturing and
measurement processes are never perfect, it is necessary to take account of
the part’s tolerances, i¢.e. the dimensions of the part should be within the
tolerance values explicitly determined in the model.

In this paper we start by a brief description of the kind of shape model
we used in our experiments and how we acquired these models in Section
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3. In Section 4 we comment on the registration of our spline models with
range data. The inspection of the surface’s profile after registration is dis-
cussed on Section 5. The detection of periodic deformation on the surfaces
is discussed in Section 6. Final comments and conclusions are presented in
Section 7.

2 Model shapes

Because we were particular interested in the inspection of sculptured sur-
faces (e.g. turbine blades), we decided to use B-splines for modelling the
nominal shape of the objects being inspected. In all the experiments de-
scribed in this paper we used as model shape uniform B-splines. The models
used here were obtained by fitting B-splines to range data; however, in real
applications the surface spline descriptions would be obtained from a CAD
model of the part.

Figures (3) and (4) show the spline models built for the test objects 1
and 2 shown in Figures (1) and (2). The average distance between model
and data points in both cases was on the order of tenths of millimeters
(with image noise standard deviation equal to 0.15 mm). As one would
expect the bigger errors happened near the discontinuities of the image.
This fact explains the better results obtained with the test object number
2 which has fewer discontinuities than the test object number 1.

Figure 1. Range image of Test object number 1

3 Registering free-form surfaces

Given a range image of a free-form surface, which describes the shape of
this surface in the sensor coordinate system, and a model of the same sur-
face in a different coordinate system, the problem of registering model and
data consists of finding the rigid transformation (rotation and translation)
that aligns or superposes both.

Some of the first research into matching free-form surfaces was done
by Faugeras and Hebert [6]. They presented a matching algorithm able
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Figure 2. Range image of Test object number 2

to successfully match a Renault auto part, but their algorithm had the
drawback of depending on the existence of planar regions in the object be-
ing matched. Potmesil [14] developed a system for modelling the complete
surface of a object from different range images. The different range images
were matched through heuristic search in the 6-D space of the translation
and rotation. Chen and Medioni [11] also developed an algorithm for reg-
istering overlapping range images of an object. They assumed an a prior:
knowledge of an estimated pose aligning the different range images and
approximate one of the surfaces being matched using its tangent planes.
Besl and McKay proposed the ICP (Tterative Closest Point algorithm) [10]
for registering free-form surfaces using only the 3-D points on the surface
of the object. Zhang [18] proposed an algorithm very similar to the ICP in
which an a priori approximation of the registration is assumed to be known
and is used to accelerate the convergence of the algorithm and make it more
robust to outliers. Recently Stein [17] advocated the use geometric hashing
together with an IT (Interpretation Tree) [9] for recognizing and aligning
objects in range and gray level images.

We assume that the object being registered does not present any salient
features (e.g. planar regions) that could help guide the registration pro-
cess and concentrate solely on the use of the 3-D points for obtaining the
registration. We also assume the a prior: knowledge of an approximation
of the pose aligning model and data and investigate the use of algorithms
such as the ICP for improving the accuracy of the registration.

The final accuracy that can be obtained using only 3-D points on the
data and model surface depends critically on the calculation of the pose
aligning sets of corresponding 3-D points on the surfaces of model and data.
Therefore we start by evaluating the accuracies that can be achieved using
sets of corresponding 3-D points in Section 3.1. In Section 3.2 we discuss
the ICP algorithm in detail and present some extensions for improving the
robustness of the algorithm.
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Figure 3. Uniform B-spline model of Test object number 1. Average distance
between model and data is 0.4 mm. Uniform grid of 50X50 knots.

3.1 Registering two sets of corresponding 3-D points

Consider aset of data points D = {d; } _, and aset of corresponding model

points M = {ml} _, such that D and M are related by a rigid transfor-
mation corresponding to a translation T and a rotation R as defined in
equation (3.1).

d;, = Rm;+ T+ w; (31)
0o 0
5200
E[w¢~w¢t] = 0 (52'2 0 (33)
00 4

=
g
I

where w; is white noise modelling the sensor errors and E[-] is the expec-
tation operator.

The problem of finding T and R that minimizes the mean square dis-
tance Epr between D and M (equation (3.4)) is a well known problem to
which there are several proposed solutions [4, 5, 6]. Under the the criterion
of accuracy in finding the right values of R and T all these methods are



IIIIIIIIIIIIIIII/II/IIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIII
,;';%;;;z;;;;z;%%;z;z;z;z%;z;;;;;;%;;;z;z;;;;z;z;';””””';:,'z,';;,';;,';,;,,,,;;z,,
//1/1/11/1//////1//l/1//1/1//1//1/1//1//////%%%%:;;”,IIZ”;;/%%%%%1;%;% Tl
i T

IIIIIIIIIIIIIIIIII, i 7

IIIIIIII IIIIIIIII
IIIIII iy it
II/IIIIIII/IIIIIIIIII;”I”””I”” ”

ﬂllllllﬂ!ﬂﬂ!lﬂ@!ﬁ!iﬂlﬂ!lﬂ!!Illl!llﬂ!!!!!’!l!?l'””’”“WW”?””?’?‘ﬁl’l’lﬂ‘fffffffifz;z;;;;;zzf

i

300 ///////////177””””’””’5Z’% i 11/l 1//1//1/1///5//%/

i ////////////%””””I”I””””””” IIIII/I;;II;;I%;IIII;II;II;IZI i

= 200 /ﬂ ] i m
ittt

S i, 11fiff 11l

~100 i 7

i
g i1
IIIIIIIIIIIIIIIIIIII/IIIIIIII/II/IIIIIIIIIIIIIIII;IIII;I;II;/;;I;I;%IZI
1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/II/IIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIII il
/5”mmm/”/”%Z%%ﬂ%%f%%f%%%Z%Z%Z55%55%%5Z55%ﬂ%ﬂ%%%Zf”%%%%Z’%’
i IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIII

S

300

250

200

150

250
100 50

(mm)

istance
. 2. Average dis
B-spline model of Test object n;l 1;10][;?;0 knots
; -sp . i ’
Figure 4. grilfor? data is 0.08 mm. Uniform grid o
between model an

’ ithm [5].
i Horn’s algorit
d 1l concentrate our attention on Ho
1 nd we w
equivalent, a ) TH2 o
2= d — Rmi —
= Du*=)_|d
Eup 4

f the algorithm
. radation in the accuracy o ine models
with increasing noise 2 and use them as model po Slgtion to the model
of test objects 1 and | i a known rotation and trans iment was run for
were generated byt?lll)g Zﬁegresult with noise. ghcﬁﬁe;”ift levels of noise §;.
oints and corrup . translation an :
giﬁerent values of ff)taizzla%% samples were COHSlderfli specific values of
To each value of noise the results did not depend on n square distance
As one could eXpe.Ct Also, the final value of Fhe mfaE[w.t cw;] =342
rotation and tranSlaEIOI; Orithﬁl tended asymp.toucauy5)oand 2(6) show the
(Ear) found by Horn Stahged points increase. Figures (latioﬂ estimate (T)
as the number of ma C3 4) and the error of the trans aximum accuracy
variation of Das (eq. ber 1. These graphs show th(;morresponds to the
for the test ObJe'Ct HUI? ea given level of noise, which ¢ mber of matched
that can be acinevf?cslenosi)r and modelling errors, and nu
combined effects o

7 IIIIIIIIIIIIIIIIIIIIIIIIIIII IIA
IIIIIIIIIIIIIIIIIIII
7 IIIIIIII;;I;;I;I’IIIIIZZII”””””””””””I
._______",I// IIIIIIIIII Il




6 Surface Matching for Inspection

points. The graphs also show that the error in the estimate of translation
will decrease almost inversely with the number of matched points, as shown
in equation (3.5). Tt is important to remember that the graphs show the
very best accuracy that can be achieved, because other sources of errors
such as sampling errors and mismatchings were not taken into account.
The experiments with test object 2 produced very similar results.
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Figure 5. Variation of the mean distance (DM) with the noise level §; for test
object number 1. Average and standard deviations calculated using 200 samples
(10 different curves for §; varying from 0.05 mm to 0.5 mm).

3.2 The ICP algorithm

Given a set of data points D = {di}f\;l, a model shape M and an initial

estimate (Iio, 'fO) of the rigid transformation aligning D and M, the ICP
algorithm [10] is:

1. Apply the rotation RX) and translation TX to the points in D
obtaining the set of points Do = {d(k)i}z‘:LN

2. To each point d®), find the point m); in M which is closest to d(*),.
3. Calculate new estimates of T¥+1 and Rk+1 by assuming the points

d; and m®); correspond, and applying Horn’s algorithm (or equiva-
lent).
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Figure 6. Variation of the translation error (||T — T|) with the noise level §;
for test object number 1. Average and standard deviations calculated using 200
samples (10 different curves for é; varying from 0.05 mm to 0.5 mm).

4. Repeat 1 to 3 till convergence (Eps stops decreasing).

where the superscript k corresponds to the iteration number.

In our experiments the model shape M was represented by a B-spline
model of the surface being registered. Because the evaluation online of the
points on the spline would be too computationally expensive, we used as
the model shape M a dense grid of points extracted offline from the spline
model.

A crucial step in the algorithm consists of finding the closest model point
to the point d*);. Zhang [18] used K-D trees. We used a multiscale search
for finding the closest point. This approach can occasionally fail when the
region containing the real closest point is not detected during the coarse
scale search. In our experiments this never happened because we start the
search at a scale small enough to avoid this problem. Also, due to the
consistency checks we added to the ICP algorithm (see below), occasional
failures to find the true closest point do not degrade the performance of
the algorithm. Figure 6 shows that an accuracy of the order of a tenth
of millimeter (i.e. approaching the noise variance) can be achieved using
only 1000 points. Therefore, we could subsample the data points (range
image) which reduces considerably the number of points to be considered.
The sampling of the model and data shape together with the use of the
multiscale shape allowed us to achieve a good speed without the use of
K-D trees. As suggested by Figure 6, better accuracies can be achieved
by running an extra iteration of the ICP algorithm with more data points,
after its convergence using coarser grids of data points.

In our experiments with the ICP algorithm, we verified most of the
properties described by Besl [10]. Clearly, the biggest problem with the

le+02 1le+03
NUMBER OF MATCHED POINTS NUMBER OF MATCHED POINTS
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ICP is the problem of converging to a local minimum of Ejs that does
not correspond to the right registration between model and data. This
problem may not be very significant with objects that have a large radius
of convergence for the global minimum (e.g object test 1 to which the ICP
will always converge to the right answer as long as the model was rotated
less than 100 degrees around any axis), because it is only necessary to run
the ICP a few times using different initial estimates of R and T. But this
fact is a very serious problem in the case of objects like the object test 2
that has a very small radius of convergence due to the existence of other
local minima near the desired global minimum.

A interesting aspect of the problem of the initial estimate is the influence
of the original translation estimate. As said in [10], when the data set is a
subset of the model which covers a reasonable portion of the model, the ICP
performance is reasonably insensitive to the original estimate of translation.
However the final accuracy of the registration found by the algorithm can
change considerably as illustrated in Figure 7 (a). The situation becomes
even worse when the data covers only a small part of the model as seen in

Figure 7 (b).

(mm) (mm)
100 NN — e i xfl}A\,
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(A) : DATA ;—SLAELRSN:—':A EBVI\EEOLE MODEL (B) : DA‘;’I—E ?()Lv';;gﬂ 5!?);!?0':

MODEL SURFACE

Figure 7. Variation of translation error (||T — T||) of ICP with the value of
the initial estimate of translation - Test object 1. Initial estimates of translation
vary between -2 and 2 times the dimensions of the object. Part (a) covers the
complete model and part (b) uses data from a subset of the model.

Another problem with the ICP is the fact that it cannot cope with
situations in which the data points are not a subset of the model points.
This is a considerable limitation in applications such as model acquisition
and inspection in which this assumption does not hold. In order to make
the method more robust to outliers we altered the original algorithm and
eliminated the pairs (d;, m(k)i) that did not satisfy a few consistency tests.
The first of these tests, essentially used by Zhang [18] though in a different
way, eliminates pairs of points (d;, m(k)i) if the distance between d; and
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m(¥); is bigger than three times the value of Ej; found so far. We also

used two local geometric constraints for rejecting wrong pairs: the distance
between points in the grid and the angles between the vectors joining pairs
of points in the grid. Because of the surface sampling, a matching for a
data point d; is any model point m; such that, after the alignment between
model and data, m; belongs to the portion of the data surface D that d;
represents. We approximated this region associated with d; by a cuboid
centered on d; with the faces parallel to the planes xy, xz and yz of the
sensor coordinate system and dimensions corresponding to the size of the
sampling grid.

The maximum values of distances and angles associated with the points
d; were calculated considering the angles and distances between the cuboids
associated with each of the data point. All the calculation of minima and
maxima was done offline. In execution, whenever the relative distance
between pairs of data points or relative angles between triples of data points
was inconsistent with their corresponding model points, the corresponding
pair of data points and model points were rejected.

These alterations make the method more robust to outliers but impose
a couple drawbacks. All the tests proposed can only be used when the
algorithm starts from a reasonable estimate of R and T. Besides that, the
consistency tests make the algorithm lose its monotonicity in the presence
of outliers, 7.e. the value of Fj; may increase sometimes. This happens
because the tests may fail to eliminate all the outliers in some iterations.
However, in our experiments with the modified ICP, the algorithm always
ended up converging.

4 Surface profile measurement

Because manufacturing methods are incapable of producing parts with per-
fect shapes and sizes, an essential point in the design of the mechanical parts
is the determination of the part tolerances. Several different approaches
have been proposed for combining the dimensioning and tolerancing stan-
dards with solid modelling, see [12] for a detailed survey, but none of them
were completely successful mainly because of the informal definitions given
in the current standards. We intend to base our approach to the definition
of tolerances on the theory of geometrical tolerancing proposed by Requicha
[15, 16].
In essence, Requicha’s theory says that :
e an actual feature fj; is within tolerance t if the measured feature fas
lies inside a tolerance zone defined by offsetting the corresponding

nominal feature fy by a positive distance d, and a negative distance
d,, such that:

t = dy+|dy| (4.1)
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e cach feature is given tolerance values which define acceptable varia-
tions in size, ortentation and position.

In this paper we use an adaptation of Requicha’s theory, inspired on the
work of Menq [7], to define position tolerance zones for measuring the
profile of sculptured surfaces. Asin the ISO standard, we define the profile
tolerance zone as the region limited by two surfaces enveloping a sphere of
diameter ¢.

The inspection of the surface profile consists then in:

Registration : Model and range data are registered using the ICP algo-
rithm.

Calculation of residual image : Calculate the residual image r(z, y) cor-
responding to the projection of the Euclidian distance between each
point (x,y) on the range image belonging to the surface being in-
spected and its closest point in the model on the direction of the
normal of the model surface.

Surface profile measurement : Process residual image to verify if the
surface is inside the tolerance zone.

Once the size of the tolerance zone ¢ is defined, the inspection process is
very simple and consists in verifying if all the residual values are within a
given threshold. The determination of the threshold value and its relation
to the number of the points tested and the significance of the result is
discussed in [7].

As an example, let us consider a case in which a random gaussian-
distributed deformation of amplitude 0.1 mm 1s added to the center of the
range image of the test object number 1. Figure 8 shows the detected
deformed region after comparing the residual of the registration with the

threshold 0.05.

5 Detecting periodic deformations

In this section we will concentrate on the detection and measurement of
waviness errors on sculptured surfaces. Waviness errors are caused funda-
mentally by the scalloped or cusped surfaces left by spherical and ball-nose
cutting. This means that waviness errors are periodic deformations created
by the cutting tools. Because periodic shape deformations produce peaks
in the frequency space, we detect the periodic deformations by looking at
the module of the discrete Fourier transform (DFT) of the difference image
d(xz,y) obtained after the registration between model and data. The cal-
culation of DFT is done in different subwindows covering the whole image
and for each window the inspection process consists of:
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Figure 8. Region of range image out of position tolerance. The white pixels are
the unmodeled background, the black pixels are the modeled part that is within
tolerances and the textured grey pixels are the detected out-of-tolerance region.

Deformation detection : The DFT of the difference image in a window
covering part of the original range image is thresholded. Peaks in
the frequency domain bigger than a threshold value (1) indicate the
presence of deformation.

Localization of deformation region : If a deformation is detected, the
region of the deformation is found by applying the inverse DFT to the
selected peaks of the DFT of the difference image, and then keeping
the deformations whose absolute values are bigger than a threshold
value (72).

A fundamental step in the inspection process is the definition of the
threshold values (71 and ) and the size of the window in which the DFT
is applied. These values depend on:

e the kind of deformation we want to detect,

e the minimum amplitude and size of deformation we want to be able
to detect,

e the statistical model of the noise in the original range image,

e the statistical model of the random error of the manufacturing pro-
cess,

o the maximum acceptable probability of false alarm (Py),

e the maximum acceptable probability of not detecting a given defor-
mation (P,) and

e the registration errors.

Il
400

Il
450
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It is important to notice that an important limitation in the detection
ability is the spatial frequency of the deformation. In order to avoid aliasing
problems, the spatial period of the deformation should be bigger than 2
pixels.

If we ignore the registration errors and assume that the random error
in the manufacturing process is much smaller than the noise in the range
image, the residual between model and data after registration can be writ-
ten as in equations (5.1) to (5.6). In these equations f(z,y) correspond to
the periodic deformation we want to detect and n(z, y) to the noise in the
range image.

o, y) = flo,y) +n(z,y) (5.1)
Eln(z,y)] = 0 (5.2)
E[n(z,y) -n(x,y)] = o (5.3)
Elp(z,y) -n"y)] = 0 (x££ or y#y) (5.4)
¢ = {0,1,.,N—1} (5.5)
y = {0,1,.,N—1} (5.6)
where : N is the size of the window considered.
The DFT of d(z,y), that we will call R(u,v), is given by:
1 r=N-1y=N-1
Rluw) = 5o 3 B y) W (5T)
z=0  y=0
Wy = e v (5.8)
w = {0,1,.,N—1} .
v o= {0,1,.,N—1} (5.10)

In the next sections we establish the relation between the detection
threshold values 7, and the minimum size and amplitude of deformation
detectable with the probability of false detection (Pf) and the probability
of not detecting a deformation (P,). We also discuss the determination of
the location threshold value 7.

5.1 Probability of false alarm

In this case we are interested in the probability of the module of R(u,v) to
be bigger than our threshold value 7, when there is not any deformation
in the difference image, i.e. :

é(z,y) = nlz,y) (5.11)
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R(u,v) = Re(u,v)+j-Im(u,v) (5.12)
r=N-1y=N-1

Re(wn) = o 3 3 ) cos(ETELTL 5 4y

> e,y Sin(_j : F(QE;.VU L U)O5~14)

Im(u,v) =

=]~

Because each n(z, y) is a gaussian distributed random variable, Re(u, v)
and I'm(u,v) are also gaussian distributed and, for N odd :

E[Re(u,v)] = 0 (5.15)
E[Re(u,v)?] = {1% Et:h(irjijevzo (5.16)
E[lm(u,v)] = 0 (5.17)
E[Im(u,v)’] = {2_ z;zrjvﬁjevzo (5.18)

E[Im(u,v) - R(u,v)] = 0 : E5.19;

5.20

The probability of false alarm P; can be found by integrating the joint
distribution of Re(w,v) and Im(u,v) in a disk of radius m:

1 T1 \/ T12—x? _£Z2+y21
. e o2
-7 J=

P = 1- dxd 5.21
i — 2 = wdy  (5.21)

Therefore, for u # 0 and v # 0 :
Py = (5 (5.22)

5.2 Probability of not detecting a deformation

In this case we want to find the probability of the module of R(u,v) being
smaller than our threshold when we have a deformation f(z,y). As in
the previous section, Re(u,v) and I'm(u,v) are gaussian variables with the
same variances given in the equations (5.16, 5.18, 5.19). However, if F'(u, v)
is the DFT of f(z,y), the means of Re(u,v) and I'm(u,v) are now:

E[Re(u,v)] = mg (5.23)
E[Im(u,v)] = my (5.24)
F(u,v) = mp—+j -mg (5.25)
(5.26)

1F(uo)ll = M=+\mg*>+m
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As before, the probability of not detecting a deformation can be found
by integrating the joint distribution of Re(u,v) and I'm(u,v) in a disc of
radius 71, which results in :

ido pr 2 2 2 2
1 o 2 1— M :
P, = —- x-e " ~arccos( ) tr de(5.27)
T l—o ar 2-x-0-M
n o= aM 0<a<l (5.28)

5.3 Window size and minimum amplitude of deformation

Equation (5.22) allow us to calculate the threshold value 7 given the de-
sired probability of false alarm and the noise level in the original range
image. After 7 is determined, using equation (5.27) we can determine the
value of ||F'(u, v)|| = M that will have probability P, of not being detected.

The value of M 1s related to kind of deformation we want to detect, the
size (area) occupied by the deformation and its maximum amplitude. In
this paper we will consider periodic deformations corresponding to ridges,
as shown in Figure 9. We chose this kind of deformation because it corre-
sponds to a reasonable model of one kind of deformation produced during
the milling process for manufacturing of sculptured surfaces. For this kind
of deformation Figure 10 shows the relation between the value of M and
the area of the deformation in pixels (Ndz) when the maximum amplitude
of the deformation is 0.1 mm. This graph was obtained by calculating the
DFT of a synthetic deformation of amplitude 0.1 mm for different sizes of
window Ny and different values of deformation parameters (see Figure 9).
The graph show the minimum value of M obtained for each size of window.

amplitude : h
width : d,; ana d,

inclination : (<=3

Figure 9. Ridges periodic deformation

It is important to remember that Ny should be big enough to cover at
least one spatial period of the deformation.
5.4 Estimating the position of the deformation

Assume that a deformation is detected inside a given observation window.
The region of the deformation inside the window 1is localized by applying
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o 50 100
WINDOWW SIZE

Figure 10. Minimum module of DFT for periodic ridge deformation as function
of Ng. Inclination varying from 0 to 90 degrees. Amplitude equal to 0.1 mm.
Width varying from 3 to 10 pixels.

the inverse DFT to the selected peaks of the DFT of the residual in the
observation window and then thresholding the results of the inverse DFT.

We now address the question of correctly locating true deformation
points and not detecting random noise points.

The threshold value (72) used during the localization process is related
to the probability of a point not belonging to the deformation being de-
tected (Py) and also to the probability of a point belonging to the defor-
mation not being detected (Ps). In order to relate 72 to Py and Ps let us
consider the reconstructed residual produced by the inverse DFT (#(xz,y)):

S(x,y) = % K(u,v) - (F(u,v) + N(u,v)) - Wy~ (5.29)
S(e,y) = [y +iz,y) (5.30)
flz,y) = % _Z _Z K(u,v) - Fu,v)- Wy~ "4y (5.31)
z,y) = % e _Z:_ K(u,v) - N(u,v) Wy~ 7479 (5.32)
o = {} e zr s

(5.34)

As we can see in equation (5.29) the reconstructed residual is composed
of two parts : a reconstruction of the deformation (f(x, y)) and a recon-
struction of the original noise in the residual (7j(x, y)). Because 7j(z,y) is a
linear combination of gaussian variables, 7(z, y) is also a gaussian variable

and:
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Il
o

E[i(z, y)]

E[n(z,y) -n(z,y)] = m Kon = 05 (5.36)

[(ON = _Z: _Z:_ K(u,v) (537)

From all these, we can conclude that the probabilities P» and P; for a
given point (#,y), such that f(x,y) = p, is given by:

(5.35)

P = 1- e dx (5.38)

V2-m-op /_72

" d (5.39)

T2—p
P e
2 m o / .
Typically, the value of Koy will never be bigger than 30, therefore a
reasonable upper limit to the standard deviation of 7(xz,y) (o5) is:

oy = 6% (5.40)

6 An inspection example

As an example, if we consider a original range image with noise standard
deviation o = 0.1mm and we want P; = P, = 0.0001 then from equations
(5.22) and (5.27) we obtain : 7 = 0.31 and M = 0.55. If we consider
deformations as defined in Figure 9 with amplitude 0.1 mm the graph
in Figure 10 says that the minimum deformation should cover a square
of 50 pixels on a side in the range image. Because we do not know the
exact position of the deformation, during the inspection procedure we used
observation windows of 100 pixels, in such way that successive windows
have half of their area in common.

From equation (5.40) the standard deviation of 7j(x, y) is equal 0.006mm.
Therefore if we use 72 = 0.05, from equation (5.38) we obtain P; < 2.2e—16.
Also, the probability of not detecting a deformation varies from P, = P
till Py ~ 1. In this case, assuming that the amplitude of the deformation
is uniformly distributed. Thus, the expected value of P, is 0.5. These
numbers mean that practically none of the points not belonging to the de-
formation will be detected and approximately 50% of the points belonging
to the deformation will be detected.
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Figure 11 shows the residual after registration between the test object
number 1 model and a range image of the test object when a ridge de-
formation of amplitude 0.1 mm is artificially added to the data. Figure
12 shows the selected peaks of the DFT of the residual in a observation
window over the deformed region. Finally, Figure (13) shows the deformed
region detected by the inspection process in the residual using 7 = 0.31

and ™ = 0.05.

RESIDUE

[Galas>)

Figure 11. Residual after registration

MODULE OF DFEFT OF RESIDUE

p

0000
oo N Mo om RN

Figure 12. Module DFT of residual in an observation window over the defor-
mation

7 CONCLUSIONS

We discussed the problem of inspecting free-form surfaces and presented
some results concerning the use of B-spline models of free-form surfaces for
the purposes of registration and inspection. Despite some initial promising
results there are still many issues to be further investigated: evaluating
the robustness to outliers of the modified version of the ICP, investigating
further the monotonicity of the modified ICP algorithm, studying the use of
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DETECTED DEFORMATION REGION

20
40
60
80
o 50 100 150 200 250 300
nz = 33546

Figure 13. Final deformed region detected

techniques as the Hough Transform and search to obtain initial estimates
of registration and, most of all, producing the final inspection diagnosis
after the registration between model and data.

8 ACKNOWLEDGEMENTS

This work was supported by ACME under Grant GR/H/86905. We would
like also to acknowledge the financial support of the CNPq in Brazil to
Edvaldo Marques Bispo, and to thank Andrew Fitzgibbon, David Wren
and the reviewers for their many suggestions and constructive criticizing.

Bibliography

1. P. J. Besl: Actwve optical range imaging sensors, In J. L. C. Sanz, ed-
itor, Advances in Machine Vision. Springer-Verlag, New York, 1988.

2. D. K. Naidu, R. B. Fisher, G. Cameron: User guide for the laser
range tmage acquisition package, University of Edinburgh, Dept. of
AT, Imagine software paper no. 18, 1990.

3. C. DeBoor: A practical guide to splines, New York:Springer-Verlag,
1978.

4. K. S. Arun, T. S. Huang and S. D. Blostein: Least-squares fitting
of two 3-D point sets, IEEE Trans. Patt. Anal. Mach. Intell.; vol.
PAMI-9, no. 3, Sept 1987.

5. B.K. Horn and J.G. Harris: Closed-form solution of absolute orien-
tation using unit quaternions, J. Optical Society of America, vol. 4,

no. 4, 1987, pp. 629 — 642.

6. O.D. Faugeras and M. Hebert: The representation, recognition, and
locating of 3-D objects, Int. J. Robotics Research, vol. 5, no. 3, 1986,
pp. 27 — 52.

350

400

450



10.

11.

12.

13.

14.

15.

16.

17.

18.

Bispo and Fisher 19

C. Menq, H. Yau and G. Lai: Automated precision measurement of
surface profile tn CAD-Directed Inspection, IEEE Trans. Robotics
and Automation, vol. 8, no. 2, April 1992.

. D. Poussart and D. Laurendau, 3-D Sensing for Industrial Com-

puter Vision, In J. L. C. Sanz, editor, Advances in Machine Vision.
Springer-Verlag, New York, 1988.

. W. Grimson and T. Lozano-Perez: Model-Based Recognition from

Sparse Range and Tactile Data, Int. Journal of Robotics Research,
vol. 3, 1984, pp. 3 — 35.

P. J. Besl and N. McKay: A Method for Registration of 3-D Shapes,
IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-14, no. 2, Feb 1992,
pp-239 — 256.

Y. Chen and G. Medioni: Object modelling by registration of multiple
range images, Image and Vision Computing, vol. 10, no. 3 , April

1992.

N. P. Juster: Modelling and representation of dimensions and tol-
erances: a survey, Computer-Aided Design, vol. 1, no. 24, January

1992.
B. R. Suresh, R. A. F. Koushi, T. S. Levetti and J. E. Overlend: A

real-time automated inspection for hot steel slabs, IEEE Trans. Patt.

Anal. Mach. Intell., vol. PAMI-5, no. 6, Nov 1983.

M. Potmesil: Generating models for solid objects by matching 3D
surface segments, Proc. Int. Joint Conf. on Artif. Intell., Karlsruhe,

Germany, August 1983, pp 1089-1093.

A. A. G. Requicha: Representation for rigid solids: Theory, methods
and systems, ACM Computing Surveys, vol. 12, no. 4, December
1980.

A. A. G. Requicha: Toward a theory of geometric tolerancing, The
International Journal of Robotics Research, vol. 2, no. 4, winter 1983.

F. J. Stein: Structural indexing for object recognition, PhD thesis,
IRIS, University of Southern California, April 1992.

7. Zhang: [lterative point matching for registration of free-form
curves, Research Report number 1658, INRIA | April 1992.



