BEST-FIRST AND TEN OTHER
VARIATIONS OF THE
INTERPRETATION-TREE MODEL
MATCHING ALGORITHM

FISHER, R.B.

DAI Research Paper No. 717
Sep 1994

Robert B. Fisher
Dept. of Artificial Intelligence, University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom
Telephone: 44-(31)-650-3098
Fax:44-(31)-650-6899
email:rbf@aifh.ed.ac.uk

Abbreviated title: The Best-First Model Matching Algorithm

Submitted to the AI Jounal

Copyright ©FISHER, R.B. 1994

Abstract

The best known control algorithm for symbolic model matching in computer
vision is the Interpretation Tree search algorithm. popularized and extended by
Grimson. Lozano-Perez. Huttenlocher and others. This algorithm has a high
computational complexity when applied to matching problems with large num-
bers of features. This paper examines eleven variations of this algorithm in a
search for improved performance. and concludes that a best-first algorithm has
greatly reduced theoretical complexity and runs much faster than the standard

algorithm.

KEYWORDS: model-based vision, model matching, object recognition. search

1 Introduction

The most well-known control algorithm for symbolic model matching in computer vi-
sion is the Interpretation Tree (IT) search algorithm, as used by Grimson and Lozano-
Perez [12]. The algorithm searches a tree of potential model-to-data correspondences,
such that each node in the tree represents one correspondence and the path of nodes
from the current node back to the root of the tree is a set of simultaneous pairings.
This model matching algorithm is a specialized form of the general Al tree search
technique, where branches are pruned according to a set of consistency constraints
(usually related to the geometric structure of the problem). The goal of the search
algorithm is to maximize the set of consistent model-to-data correspondences in an
efficient manner. Finding these correspondences is a key problem in model-based
vision, and is usually a preliminary step to pose estimation, identity verification or
visual inspection.

Unfortunately, this algorithm has the potential for combinatorial explosion. This
has prompted researchers to develop techniques for pruning the trees, thus limiting
the number of matches considered. The main technique commonly used is based on
pruning constraints [12] (which locally reject pairings that are inconsistent. and
hence eliminate all of the search that might further extend this inconsistent pairing)
and early termination [14]. The latter stops search: (1) completely at the first

hypothesis with a given T pairings, or (2) on any path when it is impossible to make

T pairings with the remaining potential matches. (Grimson [13] - Section 12.3 page
350 - has given an analytic derivation of the termination threshold T as a function of
the probability of false matches being accepted.) However, even with these effective
forms of pruning, the algorithm still can have exponential complexity, making it
unsuitable for use in scenes with many features.

This paper discusses and analyses eleven extensions to the standard IT algorithm
that have the potential to reduce the search space (including three original algorithms
and the others are adapted from either techniques in general use or from published

reports):

1. switching from standard search to a geometric algorithm as soon as possible

(with and without spatial indexing),

E\D

using alignment methods to expand the search tree once several features are

matched,

3. partitioning the model features into a hierarchy, using either binary feature or

subcomponent pose consistency testing,

4. use of “model invocation” methods to eliminate unmatchable combinations at

the start,
5. re-ordering the search space,
6. only using model features once,
7. partitioning features by visibility (in the 3D case) and
8. use of typed features.

As reported by Grimson [14, 15], the main cause of the exponential complexity is the

use of a “wildcard” match feature. Hence, we also:

9. explore a slightly different search tree using consistent pairs without using a

wildcard and
10. extend this algorithm to form a “best-first” matching algorithm.

Finally, although this is a slight change to the problem assumptions, we also consider:

11. exploiting an ordering of the model and data features,

to test the effect of strengthening the problem information.

The results of the paper show that several of the variations produce greatly im-
proved performance in both theory and as applied to real data, and in particular.
the best-first algorithm is greatly superior to the standard interpretation tree. (Al

algorithms except for the best-first, which is new, were briefly compared in [9].)

2 The Standard Interpretation Tree Algorithm

Consider a set { d; } of D data features and a set { m; } of M model features. Then,
the root of the interpretation tree has no pairings. The first level expands the root
node to pair all of the M model features with data feature d;. The second level in
the tree expands each of these nodes to pair all model features with data feature dy
(multiple use of m; are allowed), and so on. The expansion continues for all D data
features. At each node at level k in the tree, therefore, there is a hypothesis with &
features matched.

If this IT were explored completely, there would be M D “jaaf” nodes at the bottom

of the tree (i.e. these many complete interpretations) and
MP+
';)M‘ oL = MP
nodes in the full tree. If either M or D are of any reasonable size (e.g. larger than
5), then we can expect to have excessively large search trees.

An additional complication is that one usually wishes to include a “wildcard”
feature that will match with any other feature. This is necessary because it may
not always be possible to find a model feature that matches the data feature at the
current level of the tree (because of fragmentation, bad segmentation, noise, unrelated
features, etc.). If one were searching for a data feature to match a given model feature,
there is also the possibility of occlusion. This increases the number of leaf nodes to
(M + 1)P.

One way to reduce the amount of searching is to ‘prune whole branches of the tree’,
by showing that a given pairing or sequence of pairings is inconsistent. In consequence,

all descendents from that node in the tree will also be inconsistent and need not be

4

explored. The most common approach uses unary and binary pruning constraints.
Unary constraints eliminate model-to-data pairings when some shared property is
inconsistent. Binary constraints eliminate hypotheses when a relative property be-
tween a pair of model features is inconsistent with the same property between the
corresponding pair of data features. For example, Grimson and Lozano-Perez [12]
provide a set of binary constraints useful for three-dimensional scene analysis, based
on pairwise consistency constraints, that compare quantities such as relative distance,
orientation and direction. Similar constraints can be developed for higher-order con-
sistency (e.g. vector triple products). Of particular importance is the local nature
of the consistency tests, based on the assumption that a few simple, fast tests on
partially generated hypotheses will eliminate large numbers of globally inconsistent
hypotheses. Of course, it would be ideal if satisfying the set of local unary and binary
tests would guarantee global consistency, but this is not always the case. (Freuder
[10] considers k-consistent problems, wherein satisfying constraints over all sets of
k-tuples of pairings guarantees global consistency).

The following quantities are used:
e There are M model features in the model.

e On average, p,M of these are visible in the scene (less than M by occlusion,
being on the back side of the object, etc.). In 2D scenes, p, = 1 and, in 3D
scenes, p, = 0.5 as about half of the features are back-facing and hence not

visible.

e Of the visible model features, only p, of these are recognizable (less than those
visible because of segmentation failures, etc.) forming C = p,p,M correct
matchable data features. (If the model chosen for this scene is not present,

pr = 0.) Which C of the M model features are matchable is not known initially.

e There are also S spurious data features (e.g. noise features and unrecognizable

visible model features). Altogether there are D = C' + S data features.

e The probability that a randomly chosen model feature matches with an incorrect

random data feature is p; (correct pairings always match).

o The probability that a random pair of model features is consistent with an
incorrect random pair of data features (given that the individual model-to-data

pairings are consistent) is ps.

o An acceptable set of model-to-data pairings must have at least T = 7p, M

non-wildcard correspondences (7 € [0,1]).

In the discussion that follows, the term generated refers to matches that are hy-
pothesized prior to consistency testing, and accepted refers to matches that pass the
consistency tests.

Grimson [13] analyzed the combinatorics of the standard algorithm, and showed
that, without wildcards, the algorithm tends to accept (Proposition 5, pg 274) a single
path with many pairings (i.e. the correct one), and generates (Proposition 6, pg 274)
a number of nodes that is quadratic in the number of model features.

When wildcards are allowed. examination of the search process shows there are
several sources of wasted effort. Now, the algorithm could accept an exponential
number of correctly matchable features. One key term is 2C, arising from the power
set of the C matchable features. The complexity occurs because each matchable
data feature can be either matched with the correct model feature or the wildcard.
Examination of a typical search tree shows that most of the tree consists of paths
containing either members of this power set or many wildcards, paired with one or
two false matches. The best-first and consistent pair matching algorithms reduce
this wasted exploration. Another source of wasted effort is the re-exploration of
identical subtrees under each initial set of matches. The best-first and consistent pair,
invocation, hierarchical and geometric matching algorithms reduce this re-exploration.

Many of the mainly wildcard paths can be eliminated by using the termination
threshold, but this can only apply when the search is sufficiently advanced. Grimson
[13] analyzed the consequences of using pruning and the termination condition and
showed (Corollary 3.2, pg 367) that if p, DM < 2 then the expected number of nodes
generated is bounded by:

2 2
D < num.generated < aTMC{)

where a is a small constant. Unfortunately, the p DM < 2 condition given above

does not always hold, in which case the algorithm again seems to be exponential. In

6

the experiments described below, it only holds for the smallest test cases.

There might be some small problems with the exactness of these bounds. as:

1. In the bound O(W(s)) in Corollary 3.1 and o(W (s)) in Corollary 3.2 ([13], Page
367) (1 + ‘5&)2 should perhaps be (1 + ;Tzz) = (1 + p2) , and a factor of p, seems

to have been lost.

o

As p; and p; become very small, we expect only true matches to be accepted.
Hence, a lower bound on the amount of search comes from having the first T
data features (of D) to be true. If 42’!— model features are tried on average for
each of these, the lower bound is o(W (s)) = T%”—, or the the algorithm gets lucky
and finds the corresponding matchable features in the first 7 model features,

the lower bound is o(W(s)) = T72 Either of these is smaller than the stated

2
lower bound of %.

However, the conclusion that the use of a termination condition improves performance
is valid, although the published bounds on the effectiveness of that algorithm may

not be correct.

3 The Algorithmic Variations

This section describes the different algorithm variations explored, starting with the
consistent pair algorithm to lay the foundation for the best-first algorithm.

The algorithmic framework for most variations except the hierarchical algorithm
(Section 3.11), the consistent pair algorithm (Section 3.1) and the best-first algorithm
(Section 3.2) is similar to that of the standard IT algorithm, except with additional
tests applied where appropriate. Pseudocode for the hierarchical IT algorithm is given
in [8] and for an earlier version of the consistent pair search tree in [7]. Appendix
A gives the generic C code for the best-first algorithm, including the location where
statistics on generated and accepted nodes are collected (which are used in the testing
reported in Section 4). For discussion purposes, the standard algorithm is also sum-
marized here. The locations where modifications are made for the various algorithm

variants are given with respect to the line numbering.

i
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

searchtree(model_featurelist, data_featurelist, treesofar)
{

if no more data features, return fail

// expand tree to next stage
data_feature = head(data_featurelist)
for each model_feature in model_featurelist plus wildcard

{

increment generated count

// test new pairing for compatibility
if compatible(model_feature, data_feature, treesofar)

{
increment accepted count
if have enough matches, return success
if can never get enough with this most recent
pairing, then skip this pairing
// recurse to expand next level
searchtree(model _featurelist, tail(data_featurelist),
append ((model_feature,data_feature) ,treesofar))
if success, then return success
}
}
return fail
}
//
// test for compatibility of new pairing with rest of pairings:
// - pairing satisfies pairwise constraints (compatiblel)
!/ - pairwise geometric consistency between filled slots
// (compatible2)
/! - special cases for wildcards
//

boolean compatible(model_feature, data_feature, treesofar)
{

if model_feature = wildcard then return true

// test compatibility between model_feature and data_feature
if not compatiblel(model_feature, data_feature)
then return false

// check pairwise with previously filled slots of this hyp
for each pair in treesofar
if (model_feature(pair) !'= wildcard)
{
// test compatibility between
// (model_feature,data_feature)

49 // and each non-wildcard previously found pair

50 if not compatible2(pair,model_feature, data_feature)
51 then return false

52 ¥

53

54 // passed all tests

55 return true

56 }

3.1 Non-wildcard Search Tree Algorithm

As many of the nodes in the standard interpretation tree algorithm arise because
of the use of wildcards, an alternative search algorithm [7] explores the same search
space, but it does not use a wildcard model feature to match otherwise unmatchable
data features. The essence of the difference is that the search process skips over
all data pairings that use a wildcard, to consider the next true data-model feature

pairing. This results in a flattening of the search tree. The algorithm has two phases:

1. The set @ = {s¢} = {(miw),dj(x))}, k = L.V of all pairs of features satisfying
the unary pairing constraints is formed, such that if s, is before s, (i.e. r < s),

then j(r) < j(s). If j(r) = j(s) then i(r) < i(s).

2. A different search tree is explored, in which each extension of a branch is formed
by appending new entries from (2, subject to the constraints that (1) each data
feature appears at most once on a path through the tree and (2) the data

features are used in order (with gaps allowed).

Starting from a branch ending with pair s, (or nothing at the root of the tree), all
pairs sy ...Sy are possible extensions to the branch. Only extensions that satisfy
the normal binary constraints are accepted. Extension stops when the termination
number of matches is reached, or on branches where insufficient possibilities remain
in the tail of .

For example, if Q = {s1,52,53,84} = {(m2,d1),(m4,d2), (m1,d2), (ms,ds)}, the

tree:

X
S1 SS9 83 S84
S92 S3 84 S4 S84

S4 Sy
is searched depth first following the leftmost branches first (no pruning is shown here
to illustrate the shape of the tree).

The implemented algorithm has several additional work-saving ideas: (1) members
of the set () are generated only when needed, which means that fewer unary tests need
be done if the data is in a fortuitous order and (2) there is a recording of pairs s; and
s, (i < 7) that pass the binary tests so that when s, is added to an existing match,
only consistent pairs s; are considered as successors. New pairs may be generated
and tested on demand after previously generated pairs have been explored.

As the second and third levels of the new search tree represent matches. using
several non-wildcard pairings, the binary constraints eliminate almost all false pairings
quickly. The trade-off is that the branching factor of the new treeis sizeof (1) instead
of M, but the depth of the tree for any false sets of matches is usually very shallow.

This search algorithm can produce the same set of hypotheses as the standard IT
algorithm, with respect to the data features paired to non-wildcard model features.
The order of generation may be different when the termination threshold is used.

Pseudocode for this algorithm are given in [7].

3.2 Best-First Algorithms

Using the structure of the model-to-data pairing representation of the consistent pair
approach, it is now possible to define a best-first matching algorithm. Formulation
of such an algorithm is not easy when using the standard IT problem representation.

Assume that it is possible to evaluate how well sets of model features match sets
of data features, and also to estimate the benefit of adding additional feature matches
to an existing set of matches. This evaluation can then be used as the basis of a best-
first matching algorithm that investigates hypotheses in order of the best estimated
evaluation. As any real problem is likely to provide some useful heuristic ordering
constraints, the potential for speeding up the matching process is large. As formulated

below, the algorithm is an instance of the branch-and-bound general search technique

10

[17]. 1t is also very similar to the A" search algorithm (e.g. [20], except that we are
interested in both the cost of a path to a solution (i.e. we wish to minimize the time
to finding a solution) as well as the quality of the solution. In the general framework
of the A-type algorithms, the evaluation function f() = g() + k() is specialised to use
g() to represent the quality and size of a partial match set so far and A() to represent
an estimate of how much an addition to the match set would enhance the evaluation
of the partial match set.

The core algorithm initially evaluates all model-to-data feature pairings. These
pairings are then sorted into a best-first list. Larger sets of pairings are found by
adding new members of the sorted list in a best-first order as defined below.

As with the standard algorithm, exploration terminates whenever a sufficiently
large set of consistent matches is found, or whenever it is impossible to extend the
current set of matches to the required number.

One major computational cost is the initial exhaustive model-to-data comparison,
which, in most cases, is unnecessary. It is rather unlikely that false hypotheses achieve
more than 2 (or 3) matched features. Hence, any initial set of 2 false matches will
reach the termination criteria before needing any model features of the remaining
M — (T — 2). Moreover, assuming a reasonable distribution of the correct matches, it
is likely that the required T' correct matchable features will be in the first [;rl;;'] +3
model features matched, and certainly in the first M — (T —C') model features. Hence,

we need only initially explore

T
PrPy

model features. Doing less initial exploration has 3 key benefits: 1) less work on the

W =maz(M — (T - 2),min(M — (T - C),[—] +3))

initial comparisons, 2) fewer matches so faster sorting of the matches and 3) a lower
probability of false matches with an evaluation higher than the first correct match (so
less exploration of false leads, before the well-focussed search after an initial correct
match is found.) Of course, the algorithm needs to be able to generate additional
model-to-data matches if they are needed.

Another improvement on the basic algorithm is to temporarily reduce the amount
of search allowed when looking for an extension to a given set of matches. Assuming
that there are C correct model-to-data pairs in the list of consistent pairs (of length

L), then, on the average, a correct pair should be encountered periodically. Hence,

11

if one has searched for a new extension without success for some time (i.e. we are
probably on a false path that cannot be extended), it is probably more productive to
start exploring other possible matches. Let:

nD

F=]——F——7—
l—prpv(l -T)

]

The method used to temporarily halt exploration of a path is to reduce the priority
of successor extensions. After I potential extensions to a node are tried at level 1
and after 2F potential extensions are tried at level 2, the evaluation of subsequent
potential extensions are penalized. This lowers their position in the priority queue.
Terminating the extensions is incorrect, as there is always some probability that the
current set of matches is the correct one, whereas lowering the priority ensures that
the set of matches will be reconsidered eventually.

The main data structures this algorithm uses are:

o a list of consistent model-to-data pairs, initially sorted, but any entries created

later are added at the end in unsorted order (when new entries are dynamically

added):

pair; = (model; datai, A7)

where A; is the compatibility measure of features model; and data;. The pair

list is initially sorted with larger A; values at the top.

e A priority queue of entries of the following form, sorted by the estimated eval-

uation of the next potential extension of the set f().

(Si = {pairy,, pairy,, .. .pair:, },9(Si), m, f(S:U{pairn}))

where S; is a set of n mutually compatible model-to-data pairs, g(5;) is the
actual evaluation of S;, m indicates that pair,, is the next extension of S; to be
considered, and f(S;U{pairm}) is the estimated evaluation of that extension.
The priority queue is sorted with larger f() values at the top. The queue has
a finite maximum length. Whenever a new entry is to be added that requires

more than the allocated space, either it is deleted (if its f() value is too low), or

12

the bottom-most entry is deleted and the new entry inserted in the appropriate

location.
The core of the matching algorithm is:

1. compare first W model features to all D data features, evaluate match and sort

to form initial consistent pair list.
2. initialize the priority queue with entry ({},0.0,1, A;)

3. while no satisfactory match found, do:

(a) pop priority queue top (S;, g(Si), m, f(S; U{pairn}))

(b) if consistent(S;, pairy,)

i. if size(S;U{pairm}) > T, then return success.

ii. if not rejected by early termination, generate* next descendent of suc-

cessful extension:

(Si U{pairm}ag(si U{pairm})’ m + 1, f(St U{pairm} U{pairm+l}))

and insert* into priority queue.

(c) update old state: if not rejected by early termination, generate® next de-
scendent of original popped node: (S;,g(S;),m+1, f(S; U{pair,n+1})) and

insert* into priority queue.

The generate® function returns the next entry in the current model-to-data pair
list, if there are any more. Otherwise, it may attempt to generate a new entry if all
model-to-data comparisons have not been done. If all model-to-data comparisons have
been done, then nothing gets generated and no new queue entry is made. The insert*
function estimates an evaluation of the new node (taking account of any temporary
reductions of the evaluation as described above), and then enters the new node in the
appropriate priority position.

The early termination rejection tests compare the number of current matches plus
the estimated remaining possible matches from the initial model-to-data pair list and

the remaining potential models still to explore in the initial model-to-data pairings.

13

Using a finite length priority queue may result in matching failures, which might
occur when the correct set of matches has a low intermediate evaluation and thus
falls off the priority queue bottom. However, no failures have been observed with
sufficiently long queues (with at least 2Mlog(M) entries), although low priority bad
matches do fall off of the queue.

The algorithm needs two evaluation functions, f () for the estimated new state
evaluation and g() for the actual state evaluation. In the algorithm comparisons

given in Sections 4.2 and 4.4 below. we used these evaluation functions:

F(5:Utpairm)) = (S + (size(S) = 1) + Am

with the special case:
f({pairm}) = Am

If the last pair in S; is pair, and m — ¢ 2 F and size(S;) = 1, then the f() value is
reduced by 1. If m — z > 2F and size(S;) = 2, the f() value is reduced by 3.

The initial A, values are calculated from the degree to which the model feature i1s
compatible with the data feature. It is assumed that the evaluation for model-to-data

pairing i is e;, which lies in the range (0,1]. Then:
A; =2log(e;) +1

Finally, here, the g() function was set to be equal to the f() function. However,
in a real matching problem. g() should reflect the consistency of the whole set of
matches, and might be something like a scaled least-square error value.

In the simulations, the model-to-data pairing evaluations used the function
1,'2
2177 —1

where zel/[—3,3]. In the algorithm variant compared with the other algorithms in
Section 4.4, both the correct and false matches were evaluated from the same distri-
bution (to allow comparison with the other algorithms); however, in the case of real
matching problems, it is expected that the evaluation function would produce higher
evaluations for correct matches. The ideal g() evaluation function would take account
of how well the current set of features are matched to the model as a whole, not just

how well their properties match. That is, some form of geometric verification should

14

be used, coupled with some metric on how much evidence has been found. With such
a function, then the rankings should well represent the degree to which the model is

recognized.

3.3 Re-ordering The Tree

In the most common formulation of the algorithm, one expands the IT one data
feature at a time, leading to a maximal tree of size MP. However, one might also
expand the IT one model feature at a time, leading to a maximal tree of size DM.
In a typical scene, one usually expects D > M > 2, so in this case DM < MD,
The difference in the number of nodes generated might be quite substantial. For
example, if M = 20 and D = 40, then MP = 102, whereas DM = 1032. These are
both ridiculously large, of course, but it illustrates the point that substantial savings
might be achievable by expanding the search tree in the other order.

Besides the complexity difference, the two algorithms also explore a different
search space. In the extreme, the standard algorithm might pair all data features
to the same model feature. This cannot occur with the re-ordered algorithm, but it
might pair all model features to the same data feature. Hence, another determinant
of which algorithm to use is the nature of data errors expected. If multiple data fea-
tures can pair with one model feature (i.e. a feature may get fragmented), then one
should use the standard algorithm. If multiple model features can pair with one data
feature (i.e. a feature may be undersegmented), then one should use the re-ordered
algorithm.

Both algorithms generate the same subset of combinatorial pairings when all fea-
tures can be used only once, but there is also a substantial difference in those paired
with the wildcard. Since both algorithms require a given number of matched features,
the matched results will be similar; however, the number of spurious hypotheses main-
tained can be quite different.

Algorithms that mix data and model levels are possible, opportunistically expand-
ing likely sequences of matches. However, the book-keeping required to ensure that
all possible matches are explored is complex. Moreover, as the results in Section 4
do not show a marked advantage to the reordered algorithm, there is probably not

much benefit to be obtained from this extension.

15

The reference to model and data features should be swapped in lines 6, T and

20/21 in the standard algorithm given above.

3.4 Unique Use of Features

The standard algorithm allows the use of all model features at each level in the search
tree, irrespective of whether the model feature might have previously been matched
to another data feature. This is reasonable when data features might be fragmented;
however, it need not always be the case, and it might also be reasonable to allow only
the first match to occur.

A variation on this algorithm is described in [19], where verification is based on
the number of unique groups in a bi-partite graph. If model features are separated
sufficiently with respect to sensor error, then the number of matched model features
gives the same results.

A test for unique use of model features should be added after line 9 in the standard

algorithm.

3.5 Visibility Subgroups

When enough non-wildcard features are matched, it is possible to estimate a 3D
orientation for the model. We can then predict which other model features are visible
(here assumed to be p,M), and the search tree is expanded only for the visible
features. This reduces both the number of generated features and the number of
false matches.

A test for whether orientation can be determined is inserted before lines 20/21 in
the standard algorithm and if the test succeeds, then non-visible model features are

removed from the set of model features used in the recursion.

3.6 Typed Features

If we use typed features (e.g. only matching “straight” lines to “straight” lines), then
we need only consider pairs where the model feature type is the same as that of the
data. If there are N types each with equal likelihood, this reduces the probability of

a false feature correspondence by a factor of 3. On the other hand, the factors that

16

determine the type can be included in the unary constraint testing. So, this extension
can be seen as the same as the standard algorithm, except possibly with a different

value of p;.

3.7 Geometric Matching Algorithms

Once two (or more, depending on the type of feature and problem dimension) oriented
model-to-data pairings have been formed, it is (usually) possible to estimate a pose
for the model [2]. Then, the exponential portion of the search algorithm stops for
that branch. From the pose estimate, it is possible to predict the image position of
unmatched model features including which are back-facing and hence not visible [6],
and hence not searched for further. For the other unmatched model features, direct
search is possible, testing each data feature to see if its position is consistent with
the predicted model feature position. The effort required to do each comparison is
assumed to be comparable to that of standard algorithm doing the unary and binary
tests when considering a new match, and is thus added to the complexity of the
algorithm in the experiments given below.

This variation still has an exponential element, because it is not possible to guar-
antee that the correct solution is found early in the search. Hence, many paths
containing mainly wildcards still are generated. Further, although the direct search
phase requires only about % searches for each unmatched visible model feature, D
must be checked for each non-visible model feature (unless some visibility pruning is
done — see Section 3.5). And, for each initial false set of pairings, O(M D) searches
must be done, which adds a considerable effort.

If spatial indexing of data features is possible, then the direct search phase need
only match against data features directly indexed, instead of all features. This reduces
the verification work to O(M). In the experiments described below, we assume that
spatial indexing is sufficiently good that, for each prediction, only 1 other incorrect
data feature is considered (besides any correctly matching, if nearby). Further, in the
experiments, we investigate requiring both 2 and 3 non-wildcard matches in the IT
before going to the geometric matching phase.

A test for whether pose can be determined is inserted after line 7 and if so the

algorithm passes to the geometric search phase.

17

3.8 Alignment Methods

Huttenlocher and Ullman [18] described a variation on the interpretation tree search
where. after several levels of the interpretation tree were explored. a geometric prun-
ing operation was applied. When sufficient numbers of non-wildcard model-to-data
features are paired that the model position can be estimated, then this position is
used to predict the position of the remaining unmatched model features. Then. using
some form of image indexing, potentially matching data features for the fan-out on
subsequent branches of the interpretation tree are located directly. Only these data
features are used in the remaining exploration of the search tree. In this case, the
interpretation tree is searched by expanding model levels, rather than data levels (as
in the reordered algorithm described in Section 3.3). The intuition behind this al-
gorithm is that there are unlikely to be many candidate features near the predicted
position. so the branching factor of the remaining matches is likely to be small. In the
experiments below, we assume that direct search starts after 2 non-wildcard features
are matched and that spatial indexing is sufficiently good that, for each prediction.
only 1 other incorrect data feature is considered (besides any correctly matching, if
nearby).

A test for whether orientation can be determined is inserted before lines 20/21 in
the standard algorithm and if the test succeeds, then the position of the remaining

candidate data features is made for each remaining model feature.

3.9 Model Invocation Methods

The standard combinatorial matching model presumes that every possible model and
data feature could be paired with each other. If some very limiting pre-classification
of the data features or model invocation ([4], Chapter 8) occurs, then only the pre-
selected model-to-data correspondences need to be considered, resulting in a greatly
reduced search space. The pre-classification does not affect the number of nodes
accepted (as exactly the same nodes as before are accepted), but it reduces the fan-out
at each node and hence the number of nodes generated. The pre-classification process
requires a comparison between each model and data feature with complexity O(M D).

Once in search, the search tree is the same as for the standard IT algorithm, except

18

that at level A, only model features (or the wildcard) known to be unary compatible
with data feature d) are compared. No unary tests are needed as compatibility is
ensured, but the binary feature compatibility tests still apply.

In the standard algorithm, line 7 is replaced by a generation that uses only com-

patible model features.

3.10 Ordered Search

If some way of ordering the features existed, then a more efficient algorithm could be
developed. Suppose that both the model and data features could be given a linear
order and valid pairings were required to follow this ordering. Then, whenever we
have successfully matched a model feature, for subsequent matches we need only
consider model features after this feature in the ordering [1]. This might lead to a
large reduction of the search space, as the number of candidate matching features
could shrink quite quickly. However, as there is always a chance of a spurious match
with any data feature, some false matches are still expected, and this will limit the
performance gains. In this case, early termination can occur whenever there are either

insufficient model or data features remaining.

3.11 Subcomponent Hierarchies

Suppose that the M = K model features can be decomposed into KZ-1 primitive
subcomponents each containing K features [8]. The algorithm (with special cases for
incomplete branches) also works if M is not an exact power of K, but the description
below is simpler if we assume it is an exact power. Then, each of the subcomponents
are grouped into JK2~2 larger models, each containing K? features, and so on hierar-
chically until we have one top-level model containing all K* model features. Let each
group at each level now define a new type of model feature representing its particular
set of subcomponents. The matching algorithm described below generates hypothe-
ses of these submodel types, and only these model types can be matched together to
create hypotheses of the next larger model type. We note that it is not necessary
for the features to have any natural model hierarchy — the algorithm described here

assumes that any set of model features can be grouped into any arbitrary hierarchy.

19

MODEL

ABCD LevelL=2

OSER ORI
oJoNor

Figure 1: Simple Model Hierarchy

We describe here a binary subcomponent hierarchy matching algorithm (i.e. K =
2). As an example, consider the simple model hierarchy consisting of four model
features A - D organized into two larger subcomponents AB and CD, which are
combined into a larger model ABCD (see Figure 1). We use a top-down matching
strategy (e.g. look for instances of ABCD, which recursively looks for instances of
AB and CD, etc.). Then, at level A from the bottom of the model hierarchy, we need
only compare the hypotheses that were successfully generated at level A — 1.

The algorithm records hypotheses accepted at any given point in the model hi-
erarchy. Then, for example, if the algorithm needs to backtrack from level ABCD
to find a new hypothesis for AB, it is not necessary to later re-explore previously
explored portions of the matching space for CD. The algorithm recalls and retries
previously verified matches, and then, if there were no successes, generates additional
hypotheses starting from where the matching last stopped for this model. This pro-
vides a substantial savings over the standard IT algorithm, which re-explores the
latter portion of the interpretation tree for each different initial match.

At the lowest levels of the hierarchy, many consistent hypotheses are composed
mainly of wildcards. Hence, the hierarchical algorithm uses a “largest-subhypothesis-
first” search algorithm (i.e. having the most matched non-wildcard data features).
The algorithm determines the largest possible hypothesis size, then attempts to gen-
erate hypotheses of that size before considering smaller hypotheses. For example, if
N were the currently desired hypothesis size, for a binary tree it would attempt to
find two sub-hypotheses of sizes (%’—, %), then (’—;’— +1, %— —1), then (LV,; -1, -12! +1), then
(1-;’- +2, % —2), etc. After all possible subhypotheses of this size have been generated

and if more matches still need to be considered, then the algorithm then attempts to

20

generate hypotheses having N — 1 matched features. Since the subhypotheses may
be of different sizes (although generated in order of size), the algorithm for pairing

hypotheses at this level uses a sensible ordering:

e all hypotheses that have N matched data features are generated before any

hypothesis of size N — 1,

e amongst all hypotheses with the same size, the algorithm generates the hy-
potheses in the order that keeps the subhypothesis sizes as similar as possible

(e.g. it chooses the pair of sizes (3+2) over the pair of sizes (4+1))

At higher levels, when a new subhypothesis is needed, the algorithm may: (1)
return a previously generated subhypothesis of the desired size, (2) generate a new
subhypothesis that is the same size as that returned at the last call (if there was a
previous call), (3) generate the largest possible new subhypothesis of a smaller size
or (4) fail when no more subhypotheses are possible.

This algorithm works because, by induction on the previous level, the subhypothe-
ses generated for the two subcomponents at the next lower level are also recursively
generated in a largest-first order, and are then combined in the order that produces
the largest hypotheses first.

When the recursive request for hypotheses reaches the lowest level 0, the “leaf”
level of the subcomponent tree (e.g. model feature A in the above example), the
algorithm matches the original data features to the original primitive model subcom-
ponents. New pairings are tested on demand from above, so not all given model-data
feature pairings need always be tested before a successful match is found. Consistency
is tested using the standard unary feature matching tests. After all possible matches
with data features have been attempted, then a match using the wildcard is generated.
This promotes filled hypotheses over the proliferation of empty hypotheses.

When testing subhypothesis consistency at level 1 (i.e. pairings involving two
model and data features), the standard algorithm’s binary feature matching tests are
used. At level 2 and higher, consistency is based on the same binary compatibility
tests, only tested using primitive model-data feature pairings that come from different
subhypotheses.

The approach generates hypotheses that do not need wildcards before those need-

21

ing wildcards. Thus large consistent hypotheses will succeed before hypotheses con-
taining a few false matches and large numbers of wildcards. This ordering limits
backtracking and pursuit of dead-ends, for example, when the first match is a false
one, and many subsequent matches have to be tried before it is realized that the first
match must be rejected. On the other hand, the algorithm still must generate most
of the same low-level hypotheses as the standard algorithm, pairing individual model
and data features. so there will still be a lot of matching required.

Also important to the efficiency of the algorithm is early termination testing.
Whenever the algorithm determines that a hypothesis at a given level cannot generate
enough matches in the rest of the tree to satisfy the termination condition, that
hypothesis is rejected and no further hypotheses for that node are generated (as they
will only be the same size or smaller). The maximum hypothesis size at a given point
is equal to the number of matched features to the left of the current node in the tree
(can be passed down the tree as matching recurses to lower levels), plus the number
matched at the current point (i.e. after either the left or the right subnodes have been
generated), plus the maximum matchable nodes in the remainder of the tree to the
right. This last term is either the size of the first actual hypothesis generated for the
right portion of the (as generation is largest first) or the number of model features
to the right of the tree. Recording the maximum sizes of hypotheses to the right of
each point allows easy determination of this value.

The order of features in the hierarchy is not important to the success of the
algorithm, and the algorithm does not require the model to have any natural binary
decomposition. However, efficiency is improved if highly likely matches are in the
leftmost nodes, thus preventing the algorithm from having to back-track through
false starts.

There are special cases when M is not an exact power of K and for matches
consisting of all wildcards (which becomes a wildcard at the next higher level). Pseu-
docode for this algorithm and an example of a matching with the model shown above

are given in [8)].

22

Matching Subcomponent Hierarchies But Using Pose Con-

sistency

We also experimented with only testing compatibility between subcomponent po-
sitions, rather than testing binary compatibility at all levels. In this variation of
the hierarchical algorithm, when a new hypothesis is tested for conmsistency, if the
two subcomponent hypotheses have sufficient features matched that their poses have
been estimated, then rather than doing a combinatorial binary test comparison be-
tween the features of the two subcomponent hypotheses, instead only the positions
of the subcomponent hypotheses are checked for consistency relative to the position
of their “parent” hypothesis. This reduces the number of binary tests being checked
dramatically resulting in a substantial reduction in computing time. This algorithm
was found to allow false matches to result, because the subcomponent testing re-
quired only the one position test to succeed, whereas the binary testing approach
tested many pairs of hypotheses. The binary testing approach described in the previ-
ous subsection requires more data to be kept and tested, but allowed false complete

matches to result with only a very low probability.

4 The Experiments

4.1 Method

To demonstrate the effectiveness of the different search algorithms, we use the follow-
ing simulated experimental problem, based on on experiments described in Grimson
[14, 15]. (Real matching problems also follow below.) The approach is designed to
allow comparison of methods for which no formal complexity measure has yet been
determined, and also to allow comparison of algorithms within the same complexity
class. The experiments use simulated data, but Grimson showed that the model and
simulation gave a reasonable characterization of real matching problems. The use of
the simulated problems then allows us to compare the algorithm performance on data
sets of varying sizes.

Based on the problem model given in Section 2, each model-match experiment of

the standard algorithmic variations consisted of:

23

1. Initially determining a random selection of C' of the D data features to be the

solution.

o

For each generated model-to-data pairing, a correspondence that is not part of

the solution and does not use a wildcard is accepted if:

o the new correspondence is individually satisfied with probability p, and

e the new correspondence is pairwise satisfied with each previously filled

non-wildcard feature with probability ps.

Correspondences that are part of the solution or use the wildcard are accepted.

The experiments of the best-first and consistent pair algorithms are straight-forward
extensions of this framework, except they obviously do not use wildcards. The geo-
metric pruning algorithm was run for the cases when 2 and 3 matches were needed
before the geometric matching phase.

For the experiments described in this paper, we used:

PARAMETER | NOMINAL | RANGE

M 40 5 to 100 by 5

S 20 0 to 100 by 5

j 2! 0.1 0.05 to 0.75 by 0.05

P2 0.01 0.001, 0.002, 0.004, 0.008, 0.01,
0.02 to 0.20 by 0.02, 0.25

T 0.5 0.2 to 0.9 by 0.1

Py 0.5 no variation

Pr 0.95 no variation

In each experiment described in this section, one parameter was varied over the
range given above and all others were set to the nominal value. All experiments were

run 200 times and the value reported is the mean value.

4.2 Comparison of Variants of the Best-First Algorithm

In the main algorithm comparison in Section 4.4, we use one variant of the best-first
algorithm for comparison to the other algorithms. Here, we look at seven variations

of the best-first algorithm:

24

1. the basic algorithm: initial model-to-data comparison over all model features,
no limits on the fan-out from any sequence of matches, uniform distribution of

a single property.

o

limit the initial model-to-data comparison to the number expected to be needed

for successful termination.

3. limit the fan-out to a reasonable number to terminate search on unproductive

nodes.
4. combine the limits on initial comparisons and fan-out.

5. use a property that has a gaussian (rather than uniform) distribution for correct

matches (and uniform for incorrect matches).

6. use the average of three gaussian property evaluations rather than a single
property evaluation, to reflect the fact that model-to-data comparison is usually

not just over a single property.
7. combining the techniques of cases 2, 3 ad 6.

The graphs in Figure 2 show how the number of nodes generated and accepted
varied with seven variations of the best-first algorithm. In the graphs, the curves for

the different algorithms are labeled by:

Label Algorithm

basic Basic algorithm

ilimit Initial comparison limits

flimit Fan-out limits

bestu Using both limits and a single uniform property comparison
gaussl Single gaussian property in basic algorithm

gauss3 Average of 3 gaussian properties in basic algorithm

bestgd Using both limits and average of 3 gaussian properties

norm Standard Interpretation Tree (Section 2)

As can be seen in the generation results, both the fan-out (flimit) and the initial

generation (ilimit) techniques make some improvement and combine to produce a

25

Best-First: Search vs M Best-First: Acceptance vs M

Number Number
[i 7] bestg3 2 bestg3
le+05 |- A i O
. les03 Besii
flimit ilimit
3 71 gauss3 5 auss3
le+04 - eS| fligt
‘sz | llimit 2 gauss|
Kl IE‘SiC_- Elsx?_ N
norm fe+02 Torm
le+03
5
3 7
2
le+02 | " 5
le+02 le+02

Figure 2: Best-first algorithms: Generated and Accepted Nodes versus Number of
Model Features (M) with S =20 p, = 0.95 p; = 0.1 po = 0.01 p, = 0.5 7 = 0.5. The
number of nodes generated for M = 100 for the left graph is: bestg3:5556 bestu:7030
flimit:8619 gauss3:9633 gauss1:20001 ilimit:23434 basic:38576 norm:161236. For the
right graph the number of accepted nodes at M = 100 are: bestg3:598 bestu:627
ilimit:657 gauss3:775 flimit:799 gauss1:799 basic:851 norm:1667.

good algorithm (bestu). Using a single gaussian property (gaussl) improves over the
basic algorithm by about a factor of 2 and using the average of 3 gaussian properties
(gauss3) adds another factor of 2. Using 3 gaussian properties (bestgd) also improves
on the combined (bestu) algorithm; however, as this variant uses additional informa-
tion, only the bestu algorithm will be compared to the other algorithms in Section

4.4. In any case, all variants greatly improve on the standard IT algorithm.

4.3 Comparison of the Variants of the Geometric Algo-

rithm

The graphs in Figure 3 show how the number of nodes generated and accepted varied
with the changed parameter for the four variants of the geometric matching algorithms

(Section 3.7)." In the graphs, the curves for the different algorithms are labeled by:

26

GEOM: Search versus M GEOM: Acceptance versus M

Number Number

geom2hash geom2hash

geom3 le+03

Figure 3: Geometric Algorithms: Generated and Accepted Nodes versus Number of
Model Features (M) with S = 20 p, = 0.95 p = 0.1 p, = 0.01 p, = 0.5 7 = 0.5.
The number of nodes generated for M = 100 for the left graph is: geom2hash:50773
geom3hash:147727 geom3:155508 norm:161236 geom?2:271452. For the right graph
the number of accepted nodes are: geom2hash:490 geom2:490 geom3hash:1516
geom3:1516 norm:1667.

Label Algorithm
geom2 Geometric pruning with 2 starters
geom3 Geometric pruning with 3 starters

geom2hash Geometric pruning with 2 starters and spatial indexing
geom3hash Geometric pruning with 3 starters and spatial indexing

norm Standard (Section 2)

The comparison shows that the hashing variations have improved the performance,
particularly when starting with two matches before going to geometric verification (as
compared to starting with three matches). Altogether, the geom2hash algorithm is
substantially better than the standard algorithm.

The main problem with the geometric algorithms is the amount of work required
to refute bad initial matches. In the geom2 algorithm, requiring only two matches
before proceeding to the verification stage means that many false initial matches
are generated. Using spatial indexing reduces the verification cost per match from
O(MD) to O(M), which explains the considerable improvement in the geom2hash

algorithm over the geom2 algorithm. In the case of geom3, so much more work is

27

done in the initial interpretation tree stage that few false hypotheses are generated
and so the difference between the verification work of geom3 and geom3hash is small.
The geom2hash algorithm will be compared to the other main algofithms in the

next section.

4.4 Comparison of the Main Algorithm Variants

The graphs in Figures 4-13 show how the number of nodes generated and accepted
varied with the changed parameter for the different algorithms. In the graphs, the

curves for the different algorithms are labeled by:

Label Algorithm
align Alignment (Section 3.8)
bestu Best-first (Section 3.2)

geom2hash Geometric pruning with 2 starters and spatial indexing (Section 3.7)

hier Subcomponent hierarchy with standard pruﬁing (Section 3.11)
hiersubc Subcomponent hierarchy with subcomponent pruning (Section 3.11)
invoke Model invocation methods (Section 3.9)

consist Consistent pair matching (Section 3.1)

norm Standard (Section 2)

reorder Re-ordering the tree (Section 3.3)

sort Ordered search (Section 3.10)

uniq Unique use of feature (Section 3.4)

vis Visibility subgroups (Section 3.5)

As we look over the results, which explore a substantial portion of the parameter
spaces likely to be encountered in visual matching problems, there is no algorithm
which is always better. However, the bestu algorithm is often better or approximately
equal for both generation and acceptance rates over most normal ranges of parameters.

We summarize key observations about the various algorithms:

align: Distinctly worse search as M increases and not so good for small S. Initially

not so good for small p; and p,, but grows more slowly as p; and p; get large.

bestu: This algorithm generally has the best generation performance over most

ranges of parameters. Performance declines as the termination parameter 7 in-

28

Nodes Searched versus M Nodes Searched versus M
Number Number

consist

_ invoke

Figure 4: Generated Nodes versus Number of Model Features (M) with S = 20 p, =
0.95 p; = 0.1 p; = 0.01 p, = 0.5 7 = 0.5. The number of nodes generated for M = 100
for the left graph is: bestu: 7030 hier:9994, hiersubc: 10101, sort:17363 consist:20487
invoke:25535. For the right graph the numbers are: geom2hash:50773 align:62568
vis:113710 uniq:146563 norm:161236 reorder:258389.

creases (in part because more initial model-to-data comparisons are performed
and in part as the fan-out limit increases), but still has better performance
over most of the useful range of 7. Bestu’s performance degenerates a bit more
quickly as p; grows, but other algorithms also degenerate quickly. The accep-
tance performance is about the same as the consistent pair algorithm, and the

sort and geom2hash algorithms are somewhat better when M or 7 are large.

geom2hash: Good acceptance performance when M is large (acceptance grows with
a different order). Initially not so good for small p; and p2, but grows slower as

p1 and p, get large.

hier: Generally a good algorithm with regards to both number of nodes searched
and accepted. Tends to degenerate as p, grows, but more stable as p; grows.

Gets worse as termination threshold increases.

hiersubc: Very similar performance as the hier algorithm. This algorithm allows
incorrect matches to appear for larger p;. (All algorithms allow some when
M is small, as then only a few matches are needed to terminate and in this

case there is little pruning.) This occurs when most of the correct matches

29

Nodes Accepted versus M Nodes Accepted versus M

Number Number

J] sort] I [umq
¢ | geomnash- /| iavoke ™

le+03

7| hiersube reorder

Figure 5: Accepted Nodes versus Number of Model Features (M) with 5 = 20 p, =
095 p = 0.1 p, = 001 p, = 0.5 7 = 0.5. The number of nodes accepted for
M = 100 for the left graph is: sort:333 geom2hash:490 consist:590 bestu:627 hier:1107
hiersubc:1122. For the right graph the numbers are: uniq:1517 invoke:1667 norm:1667
vis:1815 align:3236 reorder:3735.

are in one half of the subcomponent hierarchy and a false match occurs on the
other branch. Then, there is some probability that the false match will have a
position that is compatible with the true position calculated for the other half
of the subcomponent hierarchy. Note that it is always possible for the other
algorithms to produce a false match, but the probability of this is low because

more features are checked.

invoke: Somewhat of a middle range algorithm - with decent search as M, S and 7
grow. The invoke algorithm has the same number of acceptances as the standard
algorithm (as it is essentially that with preprocessing to reduce the generation

phase), but has a greatly reduced generation rate.

consist: Generally a good algorithm with regards to both number of nodes searched

and accepted. However, tends to degenerate as p; and p; grow.
norm: Nothing much to distinguish the standard algorithm.

reorder: Distinctly worse acceptances as M large and also not so good at small

S. The reorder algorithm also does not produce a dramatic improvement, al-

30

Nodes Searched versus S Nodes Searched versus S

Number Number
3 I T sort
| Eomanash,
le+05 - i D
4: reorder

3 #74) o ™
i unig —

le+04 — /' =

- ‘;’/::.f;"'
L —_'_e-']
25

le+03 — —

3 n I s
le+00 le+01 le+02 le+00 le+01 le+02

Figure 6: Generated Nodes versus Number of Spurious Features (S) with M = 40 p, =
0.95 p; = 0.1 p, = 0.01 p, = 0.5 7 = 0.5. The number of nodes generated for S = 100
for the left graph is: bestu:7919 hier:10323 hiersubc:12875 consist:31176 invoke:44967
align:72047. For the right graph the numbers are: sort:83996 geom2hash:121459
vis:209770 reorder:221009 norm:320274 uniq:371581.

though it does have somewhat better performance as the number of spurious

data features increases.

sort: Good search and acceptance as M and p; grow. Appears to have a different

order of growth. Degenerates as S increases.

uniq: Nothing much to distinguish this algorithm, although usually better than the

standard algorithm.

vis: Nothing much to distinguish this algorithm, although better than the standard

algorithm.

Generally, the standard IT, the unique (Section 3.4), visibility (Section 3.5) and
geometric (Section 3.7) algorithms are significantly worse than the best-first (Section
3.2), the hierarchical (Section 3.11), the invoke (Section 3.9) and the consistent pair
(Section 3.1) algorithms. The real comparison is between these last four algorithms,
and the choice depends on the problem parameters. The ordered search algorithm
(Section 3.10) often has good performance, but makes an additional assumption about
the data properties. This assumption does not give a dramatic improvement in per-

formance, but it is a marked improvement over the standard algorithm. The align-

31

Nodes Accepted versus S Nodes Accepted versus S

Number Number

geom2hash~
|sort

2 H J-; bestu le+04
5 | Comsist

le+03

le+00 le+0t le+02 le+02

Figure 7: Accepted Nodes versus Number of Spurious Features (S) with M = 40 p, =
095 p, = 0.1 p, = 0.01 p, = 0.5 7 = 0.5. The number of nodes accepted for
5 =100 for the left graph is: bestu:459 consist:591 hier:792 hiersubc:979 align:1796
reorder:1929. For the right graph the numbers are: geom2hash:2904 sort:3816 vis: 7841
invoke:7939 norm:7939 uniq:9211.

ment algorithm uses the reordered search algorithm, and it does perform much better
than the reorder algorithm, but neither have particularly good performance. The
geom2hash algorithm requires a large amount of work to refute bad initial matches.

Broadly speaking, the best-first algorithm is best or equal when a match is possi-
ble. The consistent pair algorithm is not bad for most problems, but its performance
deteriorates when p; or p, is large (this increases the number of possible matches to
consider at each stage). For acceptances, the best-first and consistent pair algorithm
are usually the clear best, as they do not allow proliferating wildcard hypotheses.
The invoke algorithm is also a possibility as it has a similar amount of search, but it
has a much worse acceptance rate than the consistent pair algorithm.

One might also consider how the various algorithms perform when there is no
instance of the object in the scene. In this case, it is unlikely that the early success
conditions would occur, and thus almost all of the search space would have to be
explored. Figure 14 shows the number of nodes generated and accepted in this case
for the algorithms that showed the best results in the above experiments. When
there is no true match possible, the best-first, hierarchical, invoke and consistent pair

algorithms have good search performance (although both are much worse than when

32

Nodes Searched versus P1

Nodes Searched versus P1

Number Number
le+05 bestu vis
som consist
5 hiersubc™ ™" invoke
align”™ "~~~ uniq ~ '
2 hier ~ ~ reorder
geomZhash norm ~
le+04
5
2 :
2l
le+03 Pl ' Pi

Figure 8: Generated Nodes by Unary Match Probability (p;) with M = 40 § =
20 p, = 0.95 p; = 0.01 p, = 0.5 7 = 0.5. The number of nodes generated for p; = 0.75
in the left graph is: bestu:46563 sort:62724 hiersubc:63921 align:65886 hier:67819
geom2hash:90416. For the right graph the numbers are: vis:195772 consist:209837
invoke:266019 uniq:336562 reorder: 348414 norm:348414.

a match is possible). The best-first, consistent pair and hierarchical algorithms have
much better acceptance rates. Grimson ([13], page 389) shows that the standard
algorithm is also much worse when no match is possible. Here, the results show 3-27
times more search is required in all cases.

The results displayed above showed the mean results of the various algorithms.
Figure 15 shows the minimum and maximum number of nodes generated for the
best-first algorithm compared to the standard algorithm. As seen here, while the
mean results show the new algorithm has much better performance, and it’s worst
performance is better than the mean performance of the standard algorithm, it is
always possible for the standard algorithm to have better results on a particular data
set (i.e. if the search gets lucky with data and model feature orders).

Overall, given the problem as formulated here, only the best-first, hierarchical
and consistent pair algorithms seem like real alternatives to the standard algorithm,
and these algorithms give a factor of about 3-77 improvement (in search) over the
standard algorithm. The choice between these should be based on the relative costs of
the generation and acceptance processing. Further, the cost of real implementations

needs to be considered, as the number of actual binary property tests is a key factor

33

Nodes Accepted versus P1 Nodes Accepted versus P1

Number Number
" bestu le+4 [~ I I — align
"1 geomZhash 5 uniq
" hier invoke

norm
reorder

P1

Pl

le-Ot 3

Figure 9: Accepted Nodes by Unary Match Probability (p1) with M = 40 5 =
20 p, = 0.95 p, = 0.01 p, = 0.5 7 = 0.5. The number of nodes accepted for
p1 = 0.75 in the left graph is: bestu: 1180 consist:1560 geom2hash:2021 hier:2313
hiersubc:2537 sort:3177. For the right graph the numbers are: align:7868 vis:8414
uniq:8702 invoke:9008 norm:9008 reorder:9008.

in the actual run-time costs.

Even with very large problems (e.g. involving M = 100 model features to match),
the number of potential matches generated (7030 for the best-first algorithm, 9994 for
the hierarchical algorithm and 20487 for the consistent pair algorithm, as compared to
161236 for the standard algorithm) and number of acceptances (590 for the consistent
pair algorithm, 627 for the best-first algorithm and 1107 for the hierarchical algorithm,
as compared to 1667 for the standard algorithm) are low for the new algorithms. Both
factors are important, because, depending on the particular matching algorithm, the
savings achieved depend on relative costs of each action (e.g. the pairwise consistency
checking costs may be high relative to final verification costs).

It is possible that the relative speed difference of the matching algorithms might
overcome this reduction in search complexity, because the alternative algorithms are
more complex than the standard algorithm. However, again using the simulated
data M = 100 case from Figure 4, matching requires 0.28 seconds for the best-first
algorithm, 2.1 seconds for the consistent pair algorithm and 0.93 seconds for the
hierarchical algorithm, as compared to 5.4 seconds for the standard algorithm (on a

SparcStation 1+, code in C++). Hence, the speed of the best-first, consistent pair and

34

Nodes Searched versus P2 Nodes Searched versus P2

Number Number
' ' || biersube sH ! '] comsist
5 align invoke
hier 2 visTT
geom2hash o7 |morm™ "
lev0d - Best " le+05 47 | eorder
----------- ot T 5 /S idmig T
g VA a
5~
2~ .
C P2 P2
le-03 le-02 le-01 le-03 le-02 le-01

Figure 10: Generated Nodes by Binary Match Probability (p;) with M = 40 S =
20 p = 095 p; = 01 p, = 0.5 7 = 0.5. The number of nodes generated for
p2 = 0.25 in the left graph is: hiersubc:9844 align:14236 hier:15742 geom2hash:20559
bestu:20948 sort:28234. For the right graph the numbers are: consist:28887 in-
voke: 72920 vis:160584 norm:540186 reorder:540186 uniq:555177.

hierarchical matching algorithms are also significantly better, in practice, than the
standard algorithm. Note that these times were obtained only from the simulation,
which used a random number to test the feature compatibility. When in use, real,
time-consuming tests will be applied, in which case the bare-bones algorithm time
may be small compared to the testing time, in which case the complexity results
would be relevant (i.e. if the execution time is proportional to the number of testings,

which is equal to the search complexity).

5 Real Matching Examples

To assess the performance on real data, the best-first, hierarchical and consistent
pair algorithms were compared on the edges shown extracted in Figure 16 (part
a). Because the algorithms are sensitive to data feature order, the algorithms were
run 100 times with the model and data features permuted randomly. The effective
probabilities in this scene were p; = .235 and p; = 0.017 and the number of features
were M = 13 and D = 129. Seven of 13 model edges match true data edges in

the test scene using the given tolerances. The average time taken for the matching

35

Nodes Accepted versus P2 Nodes Accepted versus P2
Number Number

consist

sort

reorder

__| unig

Figure 11: Accepted Nodes by Unary Match Probability (p;) with M = 40 § =
20 p, = 0.95 p; = 0.1 p, = 0.5 7 = 0.5. The number of nodes accepted for p, =
0.25 in the left graph is: geom2hash:402 bestu:502 hiersubc:937 hier:947 consist:1746
sort:1774. For the right graph the numbers are: align:3796 vis:8157 invoke:14490
norm: 14490 reorder:14490 uniq:14863.

algorithms on a SparcStation 1+ was 0.56 sec for the best-first algorithm, 0.96 sec.
for the consistent pair algorithm, 1.69 seconds for the hierarchical algorithm and 5.88
sec. for the standard algorithm. The mean number of nodes generated and accepted
was 6048 and 28 for the best-first algorithm, 52686 and 1632 for the hierarchical
algorithm, 64412 and 845 for the consistent pair algorithm and 544171 and 39711
for the standard algorithm. On another test scene containing 10 instances of one of
these parts (Figure 16 part (b)), the average times required for a match was best-first -
2.9 sec, consistent pair 20.4 sec., hierarchical 21.4 sec. and standard 419 sec. The
effective probabilities in this scene were p; = .288 and p, = 0.011 and the number of
features were M = 28 and D = 191. Interestingly, while the multiple instances of the
part were simultaneously examined by the hierarchical algorithm, its performance
was comparable to the consistent pair. The extra memory costs of recording the
successful submatches in the hierarchical algorithm was about 1M bytes and about
0.5M bytes for the best-first algorithm. The hierarchical algorithm’s longer average
running time was a consequence of having to consider more (expensive) binary tests
before hypothesis rejection, even though it generated fewer tests.

The much improved performance of the best-first algorithm as compared to the

36

Nodes Searched versus Tau Nodes Searched versus Tau

Number Number

sort i
__ consist geom>2hash
invoke - vis T
Jbes™ " {0\ |umg T
hiee "7] s N [hom T

1 hiersubc ~
7
le+03 —

_f | Tau Tau

Figure 12: Generated Nodes by Acceptance Threshold (7) with M =40 S =20 p, =
0.95 p; = 0.1 p; = 0.01 p, = 0.5. The number of nodes generated for 7 = 0.90 in the
left graph is: sort:2532 consist:2704 invoke:2990 bestu:3139 hier:3154 hiersubc:3224.
For the right graph the numbers are: align:5588 geom2hash:7373 vis:7431 uniq:9364
norm:10512 reorder:10512.

consistent-pair and hierarchical algorithms is due to the use of a good ranking function
(here ranking consistent pairs by the product of average length and one minus the
relative difference in the paired edge lengths). This allowed many good pairs to appear
earlier in the initial priority queue than would have been the case with the uniformly
distributed evaluation that occurred in the simulation experiments.

One needs to consider also the impact that these algorithm improvements make in
the context of the full recognition process. Timings of the other stages of processing
are: Canny edge detector: 14.3 sec, connectivity and tracking: 2.1 sec, segmentation:
1.2 sec, merging/description: 1.9 sec and pose estimation and verification: 0.7 sec.
Hence, using the improved algorithms reduces the complete time from 26 seconds to
20 seconds in the first case and from 511 seconds to 23 seconds in the latter case.

Because the best-first algorithm sorts its initial consistent pairs into a best-first
order, and because all model-to-data pairs were initially evaluated, each run of the
real matching example above produced nearly identical results (varying only where
two pairings had identical evaluations). It may be the case that we were lucky with
the data set. To assess this question, the algorithms were also tested on a stereo

matching problem, because of the different nature of the problem. In this case, the

37

Nodes Accepted versus Tau Nodes Accepted versus Tau

Number Number
k= sort 500 = T — uniq
wof T TN, | i
_______ 400
300 i —= 350
250 300
200 250
200
150
7/
150 H 1 |
Tau . Tau
0.2 0.5

Figure 13: Accepted Nodes by Acceptance Threshold (7) with M =40 5 =20 p, =
0.95 p, = 0.1 p, = 0.01 p, = 0.5. The number of nodes accepted for 7 = 0.90 in
the left graph is: sort:114 geom2hash:180 consist:200 bestu:207 vis:247 align:249. For
the right graph the numbers are: uniq:249 invoke:279 norm:279 reorder:279 hier:483
hiersubc:492.

transformation between the two images (here treated as model and data images)
is affine rather than rigid. Hence, the problem produces a number of subsets of
edges that are within the unary and binary tolerances. Unfortunately, because of the
perspective distortion, not all edges match simultaneously within tolerances, and so
the matching algorithms can thrash a while with a subset that can almost satisfy
the termination criteria before finally rejecting it and proceeding to a subset that
successfully terminates. Here, the number of left image edges was M = 82 and the
number of right image edges was D = 98. The number of matches required was 12
and the average time (over 100 permutations of the edges) to compute this match on a
SparcStation 14 was 0.74 sec. for the best-first algorithm, 0.99 sec. for the consistent
pair algorithm, 1.29 for the hierarchical algorithm and 6.52 secs. for the standard
algorithm. Figure 17 shows the left scene with the edges being matched overlaid.
This is a particularly difficult test data set, because there are many subsets of the
edges that almost satisfy the termination threshold, so there is a lot of thrashing with
incorrect initial solutions. This problem is observed clearly in another stereo dataset
from this scene with M = 155 and D = 174, where the best-first algorithm took 8.7

sec to find a match, but the consistent pair algorithm did not even after an hour of

38

Nodes Searched When No Match Nodes Accepted When No Match

Number Number
le+06 hier bestu
hiersubc consist
3 wonsst T hier T
le+05 invoke ~ "~ hiersubc ~ ~
3 Ees_t_u-_-: Ee&'m'it?as_i'a
sort sort
le+04 geom2hash_ invoke — ~
3 align. norm
norm align

Figure 14: Generated and Accepted Nodes versus Number of Model Features
(M) When No Instance of the Model is Present with S = 20 p, = 0.95 p, =
0.1 po = 0.01 p, = 0.5 7 = 0.5. The number of nodes generated for M = 75
is: hier: 27135 hiersubc:32741 consist:73884 invoke:106384 bestu:122586 sort:276427
geom2hash:498951 align:571904 norm:913044. The number of nodes accepted for
M = 75 is: bestu:1230 consist:1251 hier:1872 hiersubc:2162 geom2hash:6639 sort:6725
invoke:12753 norm:12753 align:20936.

Sparcl0 time (and the other algorithms were not even tried).

One observation from the real matching examples is that the matching perfor-
mance is greatly dependent on the order of the features to be matched (as was
suggested from the minimum, mean and maximum generated matches reported in
Figure 15). A second observation is that there is a fundamental problem with match
sequences that start with a bad, but nearly plausible initial match. This causes the
matching algorithms to exhaustively explore an unproductive region of the search tree
before proceeding onto a more productive region. The fan-out limits in the best-first
algorithm help to overcome or avoid this problem, but in general it is still a problem

with symbolic matching algorithms.

39

Min/Mean/Max Nodes Searched for Best-First

Number

te+d6 normmin

le+05

le+04
le+03
le+02 |-

le+0t -

Figure 15: Minimum, Mean and Maximum Generated Nodes versus Number of Model
Features (M) for the Best-first and Standard algorithms.

6 Computational Complexity of the Hybrid Best-
First Matching Algorithm

Grimson [13] has mainly concentrated on estimating upper and lower bounds for the
standard algorithm. As seen in the results from Section 4, the hybrid best-first search
algorithm looks very promising. Hence, we give here a complexity analysis for that

algorithm, except that we derive the mean performance of the algorithm.

Theorem 1 (Mean Complexity of Hybrid Best-First Algorithm) Assume the
problem definitions from Section 2 and also that M and D are very large, so that the
effect of matching a few features does not significantly affect the statistics of the pool of
matchable features. Assume that the correct model-to-data pairings are uniformly dis-
tributed amongst the false pairings. Also assume that no false hypotheses containing

8 or more pairings survive the pruning tests (i.e. poF < 1).

Then, let:

M = maz(M — (T - 2),min(M — (C —T),3 + [-Z-1))

Prpv
(number of model features expected to be needed to terminate match).

¢ =que

40

Figure 16: (a) The first example scene with extracted edges highlighted and model
used shown in the box (b) The second example scene with multiple instances of the

part.

Figure 17: Stereo Scene with Edges Being Matched Highlighted

41

(ezpected number of matchable features to be observed before termination.)
F =p(MD - C)
(ezpected number of false pairings passing unary tests)
=i pD
s I-Prpu(l—’r)-l

(average number of false matches per correct match)

A = £
F+C

(probability of next pairing being false.)
pooo=N

(probability of not getting a correct pairing in 6 tries.)
P =i

(average number of false pairings before first true pairing.)

The ezpected amount of search (i.e. the number of nodes generated) is approxvi-
mately: .
GEN = go+ s + Gsz + Gpox + gt + ges + Gegz + Gt + guiz
where each of the gx terms refers to the number of potential matches generated along

each path in Figure 18, and has the value:

go = ﬂ:fD
g =p+(6+p)
9fz = day
Jfzz = 28ay,
_ 1
gt =1z
Gef = pa;
gtjz: = 2(5(1:}'
it =1

guz =(T-=2)x(p+1)

As the dominant terms are go, gz, fzz and guz, which are of order M2, M?, M3
and M2, the overall complezity is of order O(M?) for large M. However, for many
matching problems, the go dominates, which is O(M 2).

42

No More Maiches Accepted

No More Matches Accepted

Only Correct Matches Accepted
From Here

Figure 18: Prototypical Search Tree for Best-First Matching
The expected number of hypotheses accepted is approzimately:
ACC =ao+as+ag+ gz + ar + arp + iz + Gee + anse

where each of the ax terms refers to the number of matches accepted along each path

in Figure 18, and has the value:

dg = C+F
afs =9
Afr = P2dfx

Afrr = (pZ)zgf:cz

at =0

aif = P29t
atys = (p2)’Giso
Ay = gu

Atz = (T - 2)

As the dominant terms are ag, aj, and aj.., which are of order M?, M? and M?3,
the overall complezity is of order O(M?3) for large M. However, for many matching

problems, the ag term dominates, which is approrimately py M?2.

Proof:

Figure 18 shows the three prototypical types of hypothesis subtrees that can de-
velop. The top subtree shows an initial false pairing (of which many are possible),
followed by another true or false pairing. This terminates after the second attempted
match (by the assumption that the probability of getting a match at this point is
negligible). The second path is a true pairing followed by a false pairing, which

43

also terminates after next pairing. The third is a sequence of true matches which is
extended until the termination threshold is achieved.

The proof considers the mean case, so all occurrences are “on the average”. The
term “matching pairs” refers to model-data pairs that successfully match, even if
false.

The go term is determined by the initial pre-pass, which pairs a given number of
model features to each data feature. The number of model features is the larger of {
the number of model features to be encountered along the top false search path before
early termination occurs, the number of model features needed to be checked before
the number of required matches is reached}. The ao term is the percentage of the go
terms that match successfully (i.e. p; of the false matches and all true matches).

On the average, p false matching pairs are initially encountered along path F'
before the first true matching pair is encountered. Then, as occasionally the first
true pair cannot be extended to a second true pair before the fan-out limit is reached
(requiring testing & pairs), further returns to exploring the F* path for an additional
p pairings occur. On the average l—f—“ of these occur.

On the F path, compatibility testing is already done in the unary comparisons,
so all g; pairs are accepted. For each of these, all subsequent pairs are explored until
the fan-out limit is reached, in an attempt to form the second level X match. This
requires exploring 6 hypotheses. (Hypotheses to be explored after the first 6 could
be encountered later at lower priority, but they are ignored here. From experience,
there are not many of these.) The ones that pass the binary test (aj.) are matched
with a further 26 to try to extend the match.

Once the initial F paths are explored, the T path is then selected. Then, approxi-
mately p false matching pairs are encountered before the second true matching pair is
encountered. Of these, p; are accepted, and these are compared against 26 matching
pairs before this path is terminated unsuccessfully.

Finally, on the TT path, approximately p+ 1 matching pairs are compared before
accepting each new true matching pair, and we need T — 2 additional matches to
achieve successful termination.

end proof

44

The complexity formulas do not take account of the limitation of using each data
feature only once in a consistent hypothesis, which will reduce the number of matches
attempted and achieved. Neither do they account for matches that have had their
priority reduced (after the fan-out limit is reached) being later encountered as their
priority causes them to reach the top of the queue. This effect will increase the number
of matches attempted and achieved. The proof also assumed that no false hypotheses
with three pairs would be accepted, which is clearly false, so a real matching will
have a few extra matches of this type. Thus, the number of generated and accepted
hypotheses resulting from the actual matching algorithm will be slightly different
than those given in the bounds above. Further, the proof was essentially based on a
removal with replacement algorithm (i.e. the probability of getting either a true or
false match did not change as matches were made), so again the real algorithm will
be more efficient, particularly when the number of model and data features is small.

To test the complexity bounds, we ran the simulated matching according to the
procedure given in Section 4. Figure 19 part (a) compares the number of nodes
actually searched by the hybrid best-first algorithm in the simulation experiments
with the number estimated by GEN. Part (b) compares the number of nodes actually
accepted with the number estimated by ACC. We can see that there are small
differences between the predicted and actual number of nodes generated and accepted,

but the mean complexity results above characterize the performance well.

7 Discussion and Conclusions

From the experiments, it is obvious that the best-first, consistent pair and hierarchical
algorithms produce better performance than the more straightforward variations of
the standard matching algorithm. Even for a small number of model features (e.g.
M = 10), the amount of work of the worst algorithm is about 3 times that of the best.
It is also the case that the choice of which algorithm to use depends on the nature and
parameters of the problem, although the best-first algorithm seems to be generally
better. There are also situations where the performance of an algorithm might suffer
dramatically because of the nature of the problem. One example of this is with the

hierarchical algorithm when used with problems containing parts with symmetry or

45

Best-First: Predicted Nodes Searched Best-First: Predicted Nodes Accepted

Number Number

prediction

prediction
observed

le+01 le+02 le+02

Figure 19: Part (a): Predicted and Observed Generated Nodes versus Number of
Model Features (M) for the Hybrid Best-First algorithm with 5 =20 p. =0.95 p; =
0.1 p, = 0.01 p, = 0.5 7 = 0.5. Part (b): Predicted and Observed Accepted Nodes
versus Number of Model Features (M).

duplicated instances of the matched parts (because the bottom-up approach of the
hierarchical algorithm will propagate upward multiple instances of the recognized
features until finally a single complete match is achieved at the top level).

It is possible that the performance in any particular problem could be improved
further by a combination of techniques. For example, once the best-first algorithm
has matched 2-3 features, a visibility pruning stage could be applied, removing pairs
involving model features that cannot possibly be seen. The uniqueness constraint
could also be applied. In the case of the best-first algorithm, the amount of search
can be reduced to almost nothing beside the initial model-to-data feature comparison,
if a good evaluation function can be found. The simulation results given above showed
the best-first algorithm could achieve better results if it knew nothing special about
the data and if the correct model-to-data feature pairs were distributed uniformly
amongst the false model-to-data pairs. If an evaluation function can be found that
is good at selecting likely model-to-data pairs, then the algorithm could have much
better performance. If the evaluation function were perfect, then only the correct
matches would be selected first. However, the cost of applying such a function needs

to be considered. Here, we assume that the initial evaluation function must be cheap

to apply.

46

Another form of reduction can be achieved by pre-expanding the search tree [11]
according to what model features can still be matched after particular model features
have already been matched. This is similar to the visibility algorithm described in
Section 3.5, in that each match further constrains the viewer’s position, and hence
the features that remain at each level are still potentially visible from that position.

However, for all of these algorithms, a comparison between nearly all model and
data features is required, which can be the source of much of the real work. As
any model feature might be an explanation for any data feature, it is hard to avoid
this complexity, which results in M D initial comparisons and roughly p, M D false
acceptances. This effectively provides a lower bound on the amount of work required.
After that, a reduced search space needs to be considered, but the initial effort is
substantial. For example, except where the problem parameters are extreme (e.g.
where p; is large), in the best-first algorithm most (i.e. approximately 70%) of the
search complexity is in the initial model-to-data comparison.

There does not seem to be much possibility of reducing this amount of effort, unless
some additional aspect of the particular problem can be exploited. For example, one
might only consider the largest features first, and only perform additional comparisons
as more features are needed. Some sort of property hashing scheme might be able to
link directly from the properties of a data feature to compatible model features. This
substitutes increased memory usage and offline processing for on-line processing, but
could improve the performance by another factor of 2-3.

The other main sources of unproductive matches in the best-first algorithm are
incorrect initial model-to-data matches that are encountered before the first correct
initial model-to-data match. These can be eliminated using a more well-tuned initial
evaluation function; however, as the initial model-to-data comparisons should be done
quickly, there may be some limits to how much can be compared at the initial stage
(where many hypotheses are tested).

To improve on these results, I believe that real benefits can be gained by reducing
the number of features that need to be considered at a time. If the data features can
be reliably partitioned into K subsets, which can be matched independently, and the

model features can also be partitioned into some corresponding L subcomponents,

47

then the brute-force version of the matching algorithm is reduced from (M + 1)? to:

I\'L(f‘g+1)%

which is considerably less. To do this, some form of perceptual organization [21} is
needed, such as a region or surface patch grouping algorithm (e.g. [16], [4] Chapter
5). This step will ultimately be necessary for most real visual matching problems. If
the model and data features features could be organized into corresponding groups
with no more than (e.g.) 5 features, then almost any algorithm is reasonable.

The performance of the geometric pruning search algorithms (Section 3.7) is a
disappointment. The direct search phase (after the geom2 algorithm initial interpre-
tation tree search) requires the additional search (assuming that the initial matches
are correct):

é(T—Q)(D —2) +{i - 1T -2)(D -2)

v

The first term is the amount of search needed to match the T — 2 remaining required
model features, and the second term is the amount of search needed for checking other
model features that were not visible. However, the real work comes from attempts to

verify incorrect initial hypotheses, which has search cost:
(D-2)(M—-T+1)

for each spurious hypothesis (of which there might be many). This complexity anal-
ysis assumes that all data features must be checked, but any form of spatial hashing
that can allow direct access to a small subset of the data features using the pre-
dicted feature position has potential for dramatic increases in performance, as then
the verification search cost would be O(M) instead of O(M D). However, in spite
of its generally poorer performance, the geometric matching algorithms have other
advantages in that they predict the position of sought-for features. This provides the
possibility to overcome feature mismatch arising from over- and under-segmentation,
and occlusion.

The complexity analysis and simulations done here and by Grimson [13] assume
that the probability that three falsely matched features pass the binary matching
constraint is (p;)?. However, M. Orr (private communication) finds that this has not

been the case in his experience. A possible explanation is that when two features pass

48

the binary tests and incorrectly match. the event of finding a third incorrect match
compatible with either of the first two matches is not independent. The net result of
this is an increase in the number of incorrectly matched hypotheses.

The analysis assumed that the amount of work was proportional to the number
of nodes searched. This is only partially true, in that extending a hypothesis might
require a number of binary tests equal to the number of non-wildcard matches cur-
rently in the hypothesis, which might require a lot of computational effort. If the
hypothesis is valid, then all tests will be done. However, if the hypothesis is invalid,
then it will be rejected, and the odds are that most will be rejected after a single
binary test. As there are likely to be a much larger number of invalid hypotheses
tested, the average number of binary tests should be close to one per hypothesis, so
the modeling assumption is usually valid.

The analysis above also assumed that only one model (i.e. one set of model fea-
tures) was considered when matching. If all models must be considered, then the
computational complexity will be high, as the results in Section 4 showed that the
performance of the best search algorithms on an incorrect model is about 3-17 times
worse than with the correct model. Hence, some form of model invocation method is
needed to reduce the number of candidate models (e.g. [4] Chapter 8, [13] Chapter
15).

However, in spite of the complexity of the analysis, the key conclusion is that
by using the best-first algorithm as an alternative to the standard interpretation tree
visual matching algorithm, it is possible to reduce the amount of search, the number of
partial interpretations accepted and the computation time by about a factor of 10-20,

where the precise amount of improvement depends on the problem parameters.

Acknowledgements

This research was funded by SERC (IED grant GR/F/38310, ACME grant

GR/H/86905). Other facilities provided by University of Edinburgh. This paper
benefited greatly from discussions with Dibio Borges, Sheila Glasby, John Hallam,
Howard Hughes, Mark Orr, Kristian Simsarian, Martin Waite, Manuel Trucco and

Mike Uschold. Particular thanks go to Andrew Fitzgibbon for the suggestion of

49

investigating the best-first algorithm which was designed, in part, through discussions

with him and Josef Hebenstreit.

References

(1]

2]

3]

[4]

[5]

[6]

[7]

(8]

(9]

D. W. Murray, B. F. Buxton. Experiments in the machine interpretation of

visual motion. MIT Press, Cambridge, Mass. 1990.

O. D. Faugeras, M. Hebert. A 3-D Recognition and Positioning Algorithm
Using Geometric Matching Between Primitive Surfaces, Proceedings 8th

Int. Joint Conf. on Artificial Intelligence, pp996-1002, 1983.

R. B. Fisher. SMS: A Suggestive Modeling System For Object Recognition.
Image and Vision Computing, 5(2), pp 98-104, 1987.

R. B. Fisher. From Surfaces to Objects: Computer Vision and Three Di-
mensional Scene Analysis. John Wiley and Sons, Chichester, 1989.

R. B. Fisher. Reducing Viewsphere Complexity. Proc. 1990 European Cont.
on Artificial .Intelligence, pp 274-276, 1990.

R. B. Fisher. Determining Back-facing Curved Model Surfaces By Analysis
At The Boundary. Proc. 3rd Int. Conf on Computer Vision, pp 296-299.
Osaka, 1990.

R. B. Fisher Non-Wildcard Matching Beats the Interpretation Tree. Proc.
1992 British machine Vision Conf., Leeds, pp 560-569, 1992.

R. B. Fisher. Hierarchical Matching Beats The Non-Wildcard and Interpre-
tation Tree Model Matching Algorithms. Proc. 1993 British Machine Vision
Association Conf., pp 589-598, Surrey, 1993.

R. B. Fisher Performance Comparison of Ten Variations on the
Interpretation-Tree Matching Algorithm. Proc. 1994 European Conference
on Computer Vision, Stochholm, Sweden, 1994.

50

[10] E. Freuder. Backtrack-Free and Backtrack-Bounded Search. in L. Kanal
and V. Kumar (eds), Search in Artificial Intelligence. pp343-369, New
York:Springer-Verlag, 1988.

(11] C. Goad. Fast 3-D Model Based Vision. in Pentland (ed), From Pixels To
Predicates. pp371-391, Ablex Publishing, New Jersey, 1986.

[12] W. E. L. Grimson and T. Lozano-Perez. Model-Based Recognition and
Localization from Sparse Range or Tactile Data. International Journal of

Robotics Research, Vol. 3, pp 3-35, 1984.

[13] W. E. L. Grimson. Object Recognition By Computer: The Role of Geomet-
ric Constraints. MIT Press, 1990.

[14] W. E. L. Grimson. The Combinatorics of Heuristic Search Termination for
Object Recognition in Cluttered Environments. Lecture Notes in Computer

Science, ECCV-90, Springer-Verlag, pp 552-556, 1990.

(15] W. E. L. Grimson. The Combinatorics of Object Recognition in Cluttered

Environments Using Constrained Search. Artificial Intelligence, Vol 44, No.

1-2 pp 121-166, 1990.

[16] A. Guzman. Decomposition of a Visual Scene into Three-Dimensional Bod-

ies. Proceedings Fall Joint Computer Conference, pp291-304, 1968.

[17] F. S. Hillier and G. J. Lieberman. Operations Research. Holden-Day, San
Francisco, 1967.

[18] D. P. Huttenlocher and S. Ullman. Recognizing Solid Objects by Alignment
with an Image. Intl. Journal of Computer Vision, vol. 5, no. 2pp. 195-212,
1990.

[19] D. P. Huttenlocher and T. A. Cass. Measuring the Quality of Hypotheses
in Model-Based Recognition. Proc. European Conf. Comp. Vision, London,

pp T73-777, 1992.

[20] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing, 1980.

91

[21] A. P. Witkin and J. M. Tenenbaum. What Is Perceptual Organization For?
Proceedings 8th Int. Joint Conf. on Artif. Intel., pp1023-1026. 1983.

A Generic Best-First Matcher

// best-first algorithm

//

// no re-use of data feature

// termination on enough matches

// bounded expansion of non-matches
//

#include <stdio.h>
#include <math.h>

#define MAXFEATURES 200

#tdefine MAXSTATE 2000

#define MAXCOMPAT MAXFEATURES*MAXFEATURES
#define LISTEND ((state_record*) -1)

// data features
struct feature {

int properties; // some abstract properties
b
struct feature modelfeature[MAXFEATURES]; // model features
int nummodelfeat; // number of model features
struct feature datafeature[MAXFEATURES]; // data features
int numdatafeat; // number of data features

// state queue
struct state_record

{
short state[MAXFEATURES]; // pairs added to state
int numpairs; // number of pairs added to state
float stateeval; // evaluation of state so far
int nextpair; // next entry to add to this state
float nexteval; // evaluation of the next addition

struct state_record *next, *prev; // doubly linked list
} st [MAXSTATE];
int stateused;
struct state_record listhead, listtail; // queue binding
struct state_record *freelist;

// run input parameters

float perreqd; // percent of matched features required
int numfeatneeded; // number of features needed before termination

52

// derived run parameters
int searchlimit; // amount searched before probability reduction
int modelsweep; // number of model features initially explored

// statistics
int sumgenerated;
int sumnodecount;

// compatible pairs
struct compatstr
{
short model,data;
float plaus;
} compat [MAXCOMPAT];
int numcompat,allcompatgenerated,lastmodel,lastdata;
struct compatstr tmpcompat;

// unary and binary compatibility tests
int unarytest(int data, int model, double *eval)
{
if (!'compatiblei(data, model)) return 0;
*eval = compatibility_evaluation(data, model);
return 1;
}
int binarytest(int datal, int modell, int data2, int model2)
{
// unique data use
if (datal == data2) return 0;

// relative property tests
if (!compatible2(datal, modell, data2, model2)) return O0;
return 1;

// estimate merit of adding this feature to current set of matches
// high plausibility matches add positive weight (up to 1)

// low plausibility matches subtract weight, down to -infinity
double fevalfunct(state_record *ste)

{

double tempvalue;

if (ste->numpairs == 0) tempvalue = compat[ste->nextpair].plaus;
else tempvalue = ste->stateeval + ste->numpairs - 1
+ compat [ste->nextpair].plaus;

// decrement if too large of a search passed without success

if (ste->numpairs ==
&& ste->nextpair > ste->state[ste->numpairs-1] + searchlimit)

53

tempvalue -= 1;
else if (ste->numpairs ==
&& ste->nextpair > ste->state[ste->numpairs-1] + 2*searchlimit)
tempvalue -= 3;
return tempvalue;

}

// get a new node for insertion
void getnode(state_record **newstate)
{
// decide if 1) there is room for the newstate
// and if not 2a) whether it falls off of the queue
// bottom or 2b) the current queue bottom falls off
if (lempty_freelist()) *newstate = nextfree();
else
{
// last state falls off of Q bottom
*newstate = listtail.prev;
((*newstate)->prev)->next = &listtail;
listtail.prev = (*newstate)->prev;

// insert a new queue entry.
// order by estimated next best state
void insertqueue(state_record *ptr)

{

register state_record *here,*herenext;

// insert ptr into queue
// for now, do the dumb thing of searching from the top
// could use some sort of tree sort, but statistics shows
// that average walk in queue is about 1-2, so maybe not
// worth the overhead of constructing and maintaining the
// tree (although sometimes have to walk
// several 100 nodes when demoting a hypothesis)
//
here = &listhead;
do {
herenext = here->next;
if (ptr->nexteval > (herenext)->nexteval)
{
// insert here
ptr->next = herenext;
ptr->prev = here;
(ptr->next)->prev = ptr;
here->next = ptr;
break;

94

// get next
here = here->next;
} while (1);

¥

// pop the next top of state off

int poptop(state_record **top)

{
if (listhead.next == &listtail) return 0;
*top = listhead.next;
listhead.next = (*top)->next;
(listhead.next)->prev = &listhead;
return 1;

// check for a compatible new state extension
int nextcompatible(state_record *teststate)

{
for (int k=0; k<teststate->numpairs; k++)
{
if ('binarytest(
compat [teststate->state[k]] .data,
compat [teststate->state[k]] .model,
compat [teststate->nextpair] .data,
compat [teststate->nextpair] .model))
return O;
}
return 1;
}

// generate a new mode-to-data compatible pair, if possible
int get_next_unary_compatible()
{

double evaluation;

if (allcompatgenerated == 1) return -i;
while (lastmodel < nummodelfeat)

{
while (lastdata < numdatafeat-1)

{

lastdata++;

sumgenerated++;

if (unarytest(lastdata,lastmodel,&evaluation))

{
if (numcompat >= MAXCOMPAT)

39

{printf("Out of compat space\n"); exit(0);}
compat [numcompat] .plaus = 2*log(evaluation)+1;
compat [numcompat] .data = lastdata; // data feat
compat [numcompat] .model = lastmodel; // model feat
sumnodecount++;
return numcompat++;

}
}
lastdata = -1;
lastmodel++;
}
allcompatgenerated = 1;
return -2;

}

// generate successor state to the given one and insert into
// priority queue if appropriate
void update_state(state_record *state)
{
// see if any exist
if (++state->nextpair < numcompat)
{
if (state->numpairs + (nummodelfeat-lastmodel+1)
+ (numcompat-state->nextpair+i) >= numfeatneeded)
{
// more states to try
state->nexteval = fevalfunct(state);
insertqueue(state);
}
else {state->next = freelist; freelist = state;}
}
// else make some more if possible
else if (state->numpairs+(nummodelfeat-lastmodel) >= numfeatneeded)
{
if (get_next_unary_compatible() >= 0)
{
// more states to try
state->nexteval = fevalfunct(state);
insertqueue(state);

}

else {state->next = freelist; freelist = state;}

}

else {state->next = freelist; freelist = state;}

}

// main search algorithm
int searchtree()

{

56

register int k,i;
register struct state_record *newstate,*oldtop;

do {
// pop top of list and copy for new state
if (!'poptop(&oldtop)) return 0;

// test new state
sumgenerated++;

if (nextcompatible(oldtop))
{

sumnodecount++;

// check for early termination
if (oldtop->numpairs + 1 >= numfeatneeded)
{
for (k=0; k<oldtop->numpairs; k++)
printf("Model %d paired with Data %d Pair %d\n",
compat [oldtop->state[k]] .model,
compat [oldtop->state[k]].data,
oldtop->state(k]);
printf("Model /d paired with Data %d Pair %d\n",
compat [oldtop->nextpair] .model,
compat [oldtop->nextpair] .data,
oldtop->nextpair);
return 1;

}

// copy new state
getnode(&newstate);
newstate->numpairs = oldtop->numpairs;
newstate->stateeval = oldtop->stateeval;
newstate->nextpair = oldtop->nextpair;
newstate->nexteval = oldtop->nexteval;
for (i=0; i<oldtop->numpairs; i++)

newstate->state[i] = oldtop->state[i];
newstate->state[newstate->numpairs++] = oldtop->nextpair;
newstate->stateeval = oldtop->nexteval;

// add new state into queue
update_state(newstate);

¥

// update old state
update_state(oldtop);
} while (1);

57

main(int argc,char **argv)

{
float perreqd; // percent of matched features required
double evaluation;
int 1,3;

/* check arguments */

if (argec !'= 2)

{
printf ("usage: bestmatch <\% required>\n");
exit(0);

I

sscanf (argv[1],"}f",&perreqd) ;

// load data
nummodelfeat = load_model();
numdatafeat = load_data();

// calculate termination threshold
numfeatneeded = (int)ceil(perreqd*nummodelfeat);

// calculate search fan out limit
modelsweep = nummodelfeat;

// make up initial compatible pairs
numcompat = 0;
for (j=0; j<numdatafeat; j++)

for (i=0; i<modelsweep; i++)

{
if (unarytest(j,i,&evaluation))
{
if (numcompat >= MAXCOMPAT)

{printf("0Out of compat space\n"); exit(0);}
compat [numcompat] .plaus = 2*log(evaluation)+1;
compat [numcompat] .data = j; // data feat
compat [numcompat++] .model = i; // model feat
sumnodecount++;

1}

lastmodel = modelsweep-1;
lastdata = numdatafeat-1;
allcompatgenerated = 0;
searchlimit = (int)ceil((double) (numcompat
/ (nummodelfeat*(1.0-perreqd))));
if (searchlimit > numcompat) searchlimit = numcompat;

sort (compat) ; // sort initial list

// initialize the first element

58

st [0] .numpairs = 0;

st[0] .stateeval = 0.0;

st [0] .nextpair = 0;

st [0] .nexteval = compat[0].plaus;

// initialize the search queue
st [0] .next = &listtail;

st [0] .prev = &listhead;
listhead.next = &st[0];
listtail.prev = &st[0];
listtail.nexteval = -HUGE;

initialize_the_freelist();

// statistics to accumulate as tree explored
// accounting for initial pre-comparison pass
sumgenerated = numdatafeat*modelsweep;
sumnodecount 0;

// do model match
if ('searchtree())
printf("*** NO SOLUTION FOUND #**\n");

printf("Nodes unpruned:%d nodes generated:’%d\n",
sumnodecount ,sumgenerated) ;

59

