
Invariant �tting of arbitrarysingle-extremum surfaces.Andrew W. FitzgibbonRobert B. FisherDepartment of Arti�cial Intelligence, Edinburgh University5 Forrest Hill, Edinburgh EH1 2QLAbstractBesl and Jain's variable order surface �tting algorithm [1] is a usefulmethod of constructing a noise-free reconstruction of 2 12D range imageswith a small number of primitive regions. The use of bivariate polynomi-als as the approximation basis functions is linear, fast and easy to renderrobust. Seeding �ts from regions classi�ed by di�erential geometry is animportant step towards a viewpoint invariant segmentation.However, in order to better approximate arbitrarily shaped surfaces,polynomials of high degree are needed. For a region-growing paradigm,the poor extrapolation power of high order polynomials slows convergenceand generates \non-intuitive" segmentations when crossing curvature dis-continuities. Such segmentations are di�cult to match against traditionalCAD-like models. Further, the instability of the segmentation makes in-vocation of the correct model from a large database extremely di�cult.We show that these algorithms must of necessity trade representationalrichness for repeatability. In this paper we describe a new method of satis-fying the requirement for high representational richness while retaining theease of manipulation and recognition of single-extremum surface patches.By introducing a canonical reparameterised coordinate system, biquad-ratic patches can be made to approximate arbitrary single-extremumshapes in a viewpoint invariant manner. An iterative �tting algorithmis presented, which quickly converges to the appropriate description. Ex-amples of the abilities of the new approach are supplied, and comparedwith alternative strategies.1 IntroductionWe are interested in recognising complex curved objects using range data, withindustrial inspection being the intended application domain. Typical scenescontain one or many objects, possibly overlapping. Initially, we make the as-sumption that the objects in the scene are a subset of a database of knownobjects stored in the computer, and that novel objects will be indicated tothe system by an external agent. Given this framework, a number of decisionsremain to be made, choice of model representation and matching algorithms be-ing most important. The data representation is predetermined, a 212D image of1



depth values, which must be converted into a form suitable for matching againstthe chosen model representation, hence the need for some form of data segmen-tation. The combination of model representation and segmentation output mustbe su�cient to allow the system to1. Invoke a small number of plausible hypotheses of data-to-model pairingsfrom the (possibly large) object database. While in industrial applications,the number of objects can generally be controlled, this is not the case inless structured environments. It seems desirable that a system should beextendable to cope with such situations.2. Establish correspondences between features on the model and points inthe image. This is important in the industrial domain where inspectiontasks are speci�ed in terms of measurements to be made on or betweenlabelled model features.3. Compute the pose of the object in order to further verify correspondences,to direct the sensor to invisible parts of the object, and to displaymatchingresults in an visually intuitive form.4. Identify novel objects and add automatically acquired models to itsobject database. This ability is particularly relevant in unstructured do-mains, but is useful even in restricted domains | where a-priori models ofthe objects are unavailable or expressed in terms from which it is di�cultto derive a visual model.1.1 The Correspondence ProblemWithin this framework, we may consider the problem of establishing correspon-dences between model and data features to be the bottleneck process. If a scenecontaining a single rigid object is converted to a symbolic form which is exactlythat chosen in the model, modulo a prede�ned class of 3D transformations,matching will be exact. As an example, consider Figure 3. The model builtfrom the �rst viewpoint is being matched with a segmentation from the sec-ond viewpoint. The features used are planar and biquadratic patches. In thisinstance, the correspondence between patches which appear in both images isclose to exact. If the matching system can rely on such output, it can be simplerand more reliable. If it must also be able to cope with segmentations such asthat shown in Besl's paper [1] it will need to be considerably more complex.1.2 Desirable Properties of an Object RepresentationMany researchers, for example Marr [6] and Fan [3] have enumerated the desir-able properties of an object modelling scheme. Here we concentrate on three inparticular. 2



A

BFigure 1: Demonstration of instability problem when growing high-order sur-faces. The light curve is the data, the heavy curves are cubics �tted to the data.Depending on the choice of seed point (A or B), the breakpoint (shown as agap) between the two regions changes considerably.Repeatability: If we accept that �nding the model-to-data correspondenceis the key di�culty, this leads to the �rst requirement, that presenting the sameobject to the system produces the same segmentation. This is generally dividedinto two subgoals: Stability andViewpoint Invariance. Stability is the prop-erty that images which di�er by small amounts should produce segmentationswhich di�er by small amounts. Figure 1 illustrates how a simple region growingalgorithm's choice of seed point can lead to instability. Viewpoint invariance isthe property that the segmentation, expressed in the object's reference frame,is invariant to the prede�ned class of 3D transformations mentioned above.Generality of Representation: It seems reasonable that the �nal sym-bolic representation of the scene should be su�cient to reconstruct the originalimage, to ensure that no information has been lost in the conversion.Concise Descriptions: Although matching a perfect segmentation will ingeneral be exact, we cannot conclude that it will be quick. The speed of thealgorithm is dependent on the length of description | small rich descriptionswill invoke and match quickly, whereas a valid, but large, description will ingeneral take longer.2 The Richness / Repeatability Tradeo�Having chosen bivariate polynomials for region approximation, we must decidethe highest order that will be used. The simplest constraint is that higher orderswill model the data more accurately, while lower orders incur less computationalexpense. Besl chooses to limit to 4th order because it gives adequate results.With the requirement for stability, however, additional constraints are im-posed. In this case, the poor extrapolation power of high-order models is unac-ceptable. Consider Figure 1 where the order of �tting and choice of seed point3
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0.00 20.00 40.00 60.00 80.00Figure 2: Performance of the canonical biquadratic �tting algorithm. The log-log graph on the left demonstrates the performance of the algorithm in �ttingto the sloped cylinder z =pR2 � y2 + x tan � for three values of �. Increasingnoise variance is on the X axis, number of iterations on the Y. The graph onthe right shows the mean �t residuals as a function of surface slant. For moreslanted surfaces, the rotated �t improves signi�cantly, while the unrotated �terror is constant over all orientations.drastically a�ects the resultant segmentation, even from a single viewpoint. Weargue that this is because the segmentation is not su�ciently object-centered.In fact, stability is more easily guaranteed by restricting to single-extremumfunctions, which will not change curvature sign over their surface. In terms ofpolynomial order, this implies that we use only planes and biquadratics. Sucha restriction in turn immediately begs consideration of the issue of represen-tational richness, and does not address parameter invariance under change ofviewpoint. We now discuss solutions to both these problems.3 Invariant Fitting of BiquadraticsPerhaps the simplest parametric curved surface description is the explicit bi-quadratic patch, of the form:F (xi) = F (xi; yi; zi) = [a1:::a6][1; xi; yi; xiyi; x2i ; y2i ]T � zi = 0where the aj are parameters, and xi are the data points. As a representation,however, this clearly lacks viewpoint invariance and generality.4



3.1 A di�erent representationThe essence of the lack of viewpoint invariance is that explicit bivariate polyno-mials have a `canonical' reference frame, which is independent of the orientationof the surface patch away from the viewer. To eliminate this problem, we borrowan idea from the SMS modelling system [4, 5], which separates surface shapefrom extent and position. In this case, we consider the canonical biquadraticB(~�;u) = B(�1; �2;u; v; w) = (�12 u2 + �22 v2 � w) = 0which parameterises only the surface's principal curvatures at the origin. Thisrepresentation also implicitly places the surface in a canonical reference frame.To �t an arbitrarily oriented surface, we include the required reference-frametransformation into the surface's equation:F (�1; �2; R; t;x) = B(�1; �2;Rx+ t)where R is a 3 � 3 rotation matrix, and t is a translation vector. This repre-sentation is unique (up to a 180� rotation about the transformed Z axis) for ageneral biquadratic, where both curvature parameters are non-zero and unequal.When �1 = �2, the rotation about Z is unconstrained. If one curvature is zero,the translation has one degree of freedom. When both are zero, translation hastwo degrees of freedom.3.2 Determining the transformationGiven a set of data points fxigni=1, we need a means of determining the surfaceparameters (�1; �2; R; t), by minimising the least-square error measure�2 = nXi=1 � B(�1; �2;Rxi + t)krB(�1; �2;Rxi + t)k�2on the surface det(R) = 1.An initial estimate of the parameters is obtained by translating the points tothe data centroid and �tting a 6-parameter biquadratic to the data. From thiswe calculate the normal at the origin n = norm(a2; a3;�1) and the elongationaxis of the biquadratic in the X-Y plane a = (cos �; sin �; 0) with tan 2� = a4a5�a6 .The rotation estimate Rk is the matrix which rotates n into the Z axis and ainto the X-Z plane: Rk = [(n� a) � n n� a n]TAn e�ective �tting algorithm can be constructed by rotating the data points byRk and repeating the above process untiltrace(RkRTk ) > 3� �5



where � is close to machine precision. The �nal rotation R is the inverse ofRT = Qnk=1Rk. This algorithm has been implemented and converges in 3 to 5iterations on real images taken in our lab. Figure 2 illustrates the number ofiterations as a function of noise and initial angle to the viewer, by simulation.(Theoretical convergence calculations are di�cult due to the re-�tting at eachiteration.) Finally, it should be noted that Taubin [7] has recently developeda least-squares algorithm for implicit surface �tting which will �t this functionusing a generalized eigenvector method.
Figure 3: Calculating the rotation between 2 images. The two images on theleft are raw data from two views, the middle column is the segmentation outputand the left-hand image shows a model constructed from the �rst view (darkgrey) superimposed on the data from the second viewpoint (light grey).3.3 Matching two transformationsAn immediate application demonstrating the usefulness of this representationis in the calculation of the registering transform between two images. Withtwo corresponding patches (�i1; �i2; Ri; ti), applying the rotation R2R�11 to the�rst patch brings it into the same orientation as the second (again, modulore
ections). Figure 3 shows the registration between two images, where therotation is calculated as described, and the translation is taken as the di�erence6



between the corresponded centroids of one of the planes.
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Solid: Reparameterised BiquadraticFigure 4: Monotonic smoothing. The left image shows a parabola �tted to noisydata sampled from a sphere. The right image shows the �t after the parabola'sX axis has been smoothly monotonically reparameterised.4 Richness: modelling general surfacesAs noted in section 2, low-order polynomials do not closely approximate ar-bitrary curved surfaces. This implies that a representation based simply onbiquadratics fails to satisfy the reconstructibility requirement. In this sectionwe describe a modi�cation of the standard biquadratic which maintains thecurvature-sign preserving features of the single-extremum surface, while extend-ing the representational power of the primitives. Experiments have been per-formed on the 1-D case, which we describe here. Extension to the 2-D case isdiscussed.4.1 Monotonic reparameterisationFigure 4 illustrates a parabola �tted to non-quadratic data. In the absenceof noise the parabola cannot model the underlying circle. However, we canalter the shape of the parabola by reparameterising its X axis to \broaden theshoulders" of the curve. The single-extremum property may be retained byensuring that the reparameterisation is monotonic. Without loss of generality,we may consider a parabola at the origin y = f(x) = ax2. The reparameterisedequation is y = f(u), u = g(x). Then y(x) has only a single extremum asy0(x) = f 0(g(x))g0(x) = 2ag(x)g0(x). As g(x) is monotonic, its derivative hasconstant sign, so that the only zero of y0(x) is the single zero of g(x), implyingthat y(x) has a single extremum. 7
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Figure 6: Using the rubber sheet to deform the biquadratic. The top two imagesshow the original paraboloid and its parameter lines. The bottom images showthe deformed parameter lines with the corresponding biquadratic.By ensuring that the �i are non-negative, and because of the construction ofthe coe�cient matrix, the technique �nds the closest monotonic function to thedisparity map if we set gi =Pni=1�i+minni=1 dn. Results of the algorithm areshown in Figure 4.4.3 Extension to Two DimensionsExtending the 1D technique to two dimensions involves (a) de�ning whatcomprises monotonicity in 2D; and (b) devising a �tting technique that canquickly approach the required representation. We have cast the �rst problem asfollows: Consider the original parameterisation as inkblots on a rubber sheet ofconstant elasticity. If the sheet is heated, say, its elasticity will locally change,moving the inkblots in a single-extremum preserving way. Figure 6 shows thistechnique applied to a paraboloid, with a hand-chosen \heating matrix". Ourcurrent work is now centred around �nding an e�cient �tting algorithm todecide the initial values for the heating matrix, based on raw data points.9



5 ConclusionsWe have introduced two new representations to the biquadratic. The �rst di-rectly tackles the problems of viewpoint invariance of the surface patch, whilethe second extends the generality of the basic biquadratic. By restricting tothe simplest type of curved surface, quick and robust algorithms can be used.The utility of the rotated biquadratic has been demonstrated on real images,and results from the monotonic reparameterisation look promising. The systemshares similarities with other deformable modelling schemes, but is designedmore for 212D images.Future work will concentrate on improving the speed of the NNLS optimiza-tion, which currently uses a standard pseudo-inverse algorithm. In our case,however, the form of the matrices are a-priori limited, which may allow thedevelopment of an improved specialised method. Work is also progressing onthe use of piecewise monotonicity as a general adaptive smoothing paradigm.6 AcknowledgementsFunding for this work was provided by ACME grant GR/H/86905. The authorswould like to thank the members of the Machine Vision Unit at EdinburghUniversity for their help and advice.References[1] P. J. Besl and R. C. Jain. Segmentation through variable-order surface�tting. IEEE T-PAMI, 10(2):167{192, March 1988.[2] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, London,1987.[3] T.-J. Fan. Describing and recognizing 3-D objects using surface properties.Springer-Verlag, 1990.[4] R. B. Fisher. SMS: A suggestive modelling system for computer vision.Image and Vision Computing, 5(2):98{104, May 1986.[5] A. W. Fitzgibbon and R. B. Fisher. Suggestive modeling for machine vision.In Proceedings, SPIE OE/Technology '92, November 1992.[6] D. Marr. Vision. W. H. Freeman Company, New York, 1982.[7] G. Taubin. Estimation of planar curves, surfaces and nonplanar space curvesde�ned by implicit equations with applications to edge and range imagesegmentation. IEEE T-PAMI, 13(11):1115{1138, November 1991.10


