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Abstract

In recent years, much progress has been made in
robotics research by employing ideas taken from
biology. In particular, inspiration has been drawn
from ethologist’s study of insect navigatory capa-
bilities. The long distance foraging behavior of
honey bees (Apis mellifera) has been well studied
and models of bee navigation have been suggested
and simulated. The most popular of these mod-
els (due to Cartwright and Collett), proposes that
honey bees navigate via a static image comparison
process wherein motion vectors towards a target
are calculated based on the differences between an
image currently projected on a bee’s retina and a
remembered snapshot — taken from a similar place
in the environment. This work describes our im-
plementation of such a static localization model
on a mobile robot and discusses our conclusion
that a dynamic model of bee navigation, based
on optical flow, is more plausible. We propose a
dynamic model based on comparison of apparent
speeds of edges.

1 Introduction

Recent trends in robotics research suggest that charac-
terizations of biological systems may inspire useful en-
gineering insights to the designers of artificial systems
[2]; [15]. An example of this is active vision — a tech-
nique which employs the known motion of the viewing
system to make tractable certain visual problems which
are mathematically ill-conditioned or underconstrained
for a stationary observer. Franceschini et. al [10] have
built a robotic system with a vision sensor based on the
compound eye of the hoverfly which exploits motion par-
allax in an effort to explore how motion detecting (ar-
tificial) neurons enable collision avoidance. In previous
work, one of the authors has employed the motion par-
allax effects induced by the movement of a camera to
build up (in real-time) a depth map of visual scenes [11].
Recently this work was extended to robotic world model

construction through exploitation of the constrained op-
tic flow arising from controlled forward motion of a robot

vehicle [16].

In search of a relatively simple spatial representation
technique and a primitive spatial information process-
ing algorithm for use in our autonomous mobile robot,
we too took an example from biology. The navigational
systems of central place foraging insects have been a
source of wonder to scientists for more than a century.
Honey bees (Apis mellifera) are capable of traveling up
to 10000 meters on food foraging journeys, after which
they can return home along highly efficient (i.e., bee-
line) routes [21]. These insects also have precision short
range navigational abilities which allow them to pinpoint
the location of specific targets, e.g., the small opening
to their hive, and to orient precisely toward the food
bearing portion of a flower [4]. The behavior of central
place foraging honey-bees has been extensively studied
by ethologists and computational models have been sug-
gested and tested in simulation (e.g., [1], [4], [5], [6]). We
developed and implemented a bee-like robot-navigation
system [12], similar to a model suggested by Cartwright
and Collett [4], which employs a static image comparison
process as the basis of precision navigation localization.
Before our work, this kind of model had only been tested
in computer simulation and it was generally considered
capable of predicting behavior encouragingly similar to
real bees. During our implementation on a robot, how-
ever, we found that employing only static representations
of space for precision localization has various disadvan-
tages.

In response to these concerns, we devised a dynamic
model of navigation based on optical flow which seeks
to overcome the problems we encountered with a static
model. Our dynamic model could account for the etho-
logical findings regarding bee navigation which moti-
vated the Cartwright and Collett model and incorporates
knowledge about bees acquired since then.

This paper is structured as follows. We will briefly
discuss the features of bee navigation in Section 2. Sec-
tion 3 reviews a static model of bee localization and our



implementation of such a model on a mobile robot. Dis-
advantages of models employing only static images are
discussed in this section. In Section 4, a dynamic model
of localization is presented. In Section 5 we draw con-
clusions and discuss our future work.

2 Bee navigation

It is commonly believed that bees navigate due to the
interplay of two distinct means: dead reckoning and lo-
calization. During dead reckoning, bees use a path in-
tegration process (which receives proprioceptive input)
to continuously update a vector pointing back to their
hive. After having explored new food sources, bees re-
verse their flight direction and travel home along this vec-
tor without having to re-trace the (often) circuitous out-
bound journey [21]. However, this dead reckoning mech-
anism only facilitates coarse-grained navigation because
integration errors accumulate. Therefore, bees must em-
ploy a second mechanism for fine-grained (i.e., precision)
navigation.

This secondary navigation facility is vision-based.
During precision localization, bees exploit visual infor-
mation describing landmarks en route to their destina-
tion [19]. Tt is widely held that bees compare the memo-
rized characteristics of landmarks surrounding their tar-
get to the characteristics of those landmarks as seen from
the bee’s current position in order to calculate motion
vectors which will steer them towards the desired po-
sition precisely [4]. It is uncertain as to exactly what
information insects obtain from an array of landmarks
and how they use it. Various theories exist, one of the
earliest and still most widely cited of which is described
below.

3 A static model for localization

3.1  Cartwright and Collett’s static model for
localization

Cartwright and Collett conducted several experiments to
investigate how bees use vision to perform localization.
Among these, we will summarize two which motivated
their static model.

In the first experiment, bees were trained to find food
at a fixed distance to one landmark of a certain size.
During the subsequent test phase, the food source was re-
moved, the original landmark replaced by one of greater
or lesser size, and the search pattern of a hungry, navigat-
ing bee recorded. Results showed that bees search closer
(than the position of the original food source) to small
substitute landmarks and further from large substitute
landmarks. From this Cartwright and Collett concluded
that the size of the landmark, rather than distance to
them, 1s memorized.

In a second type of experiment, bees were trained with

a configuration of three landmarks. A similar test proce-
dure was run, but this time the size and configuration of
landmarks was varied. It turned out that “a simple rule
predicts the bee’s search area ... the bee always searches
where the compass bearing of the landmarks on its retina
were the same as they had been when it was stationed at
the food source [during training] [4].” (Cartwright and
Collett also determined that the bearings of landmarks
on the retina were determined with respect to external
compass bearings.)

The idea that insects can remember relatively unpro-
cessed images was introduced by Wehner’s [18] study of
pattern recognition in honey bees. Later work by Wehner
and Flatt [20] showed that bees learn and inspect partic-
ular regions of the visual pattern using particular regions
of the eye. Collett and Land [7] first suggested that in-
sects (i.e., hoverflies in this case) learn a representation
of 3-D space consisting of these 2-D “snapshots” and use
the difference between a current and remembered snap-
shot in order to steer their return to a preferred hovering
spot.

Cartwright and Collett’s findings corroborated this
earlier work and, in 1983, they suggested a computer
model [4] of landmark guidance based on eidetic im-
ages. According to their theory, a bee memorizes a snap-
shot (i.e., an intensity image which has received mini-
mal amounts of perceptual processing) of its nearby sur-
roundings as perceived from some position (e.g., a food
source or teh hive) to which it may wish to return. In
subsequent navigation trials to this target, the bee could
continuously compare its retinal image with the snapshot
and adjust its flight path so as to lessen the discrepancy
between the two.

In their most successful computer simulation,
Cartwright and Collett [4] assumed that both the mem-
orized and current image are segmented into light and
dark areas, and that an area in the snapshot i1s paired
with the closest retinal area of the same type (dark,
light). “Fach of these pairings gives rise to two unit vec-
tors... One is perpendicular to the bisector of the retinal
area and points so as to align the two areas. The other
is radial to the retinal bisector and acts to lessen size
discrepancy between the two areas. Flight direction is
given by the sum of these tangential and radial vectors.”
This model simulates the behavior of honey bees in this
experimental scenario quite well. However, it was not
motivated by considerations of how most of its features
might actually be implemented in an insect’s brain. For
example, the model makes the strong assumption that
snapshot orientation is constant and stabilized by an in-
dependent compass.



3.2 Qurimplementation of a bee-like robot nav-
igation system based on a static bee model

Our work is the first (known to us) to implement (on
a mobile robot) a static localization algorithm inspired
by Cartwright and Collett’s model. ' [12]. Although
our goal was to engineer a navigation control system
for a mobile robot, we believe that our results are rele-
vant to ethologists because our implementation provided
a more realistic test environment for a biological nav-
igation model — i.e., our robot, like a navigating bee,
must embrace the full complexity of operation in the real
world (including real-time processing constraints, sensor
uncertainty, vision problems such as illumination varia-
tions and occlusion, and actuator imprecision). As we
will see below, we faced unforeseen difficulties and came
to view problems differently.

Like the bee, our robot begins navigating by exploring
its environment in order to build up a memory of impor-
tant locations and the associated motion vectors which
link them. When the robot desires to go to a memo-
rized location, it either follows a path traveled during
the exploration phase or plans a new path by reasoning
about routes which it has memorized (i.e., by performing
vector addition as suggested by Cartwright and Collett
suggested [5]).

Our first concern in implementing this localization
technique was centered around the desire to re-create
(using CCD camera with a 90 degree field of view) a
sensor whose field or view matched the 270 degrees of
the honey bee’s compound eye. In order to do this, we
built up a 270 degree field of view place description (i.e.,
snapshot) from three individual images — taken to the
robot’s left, front, and right viewing quadrants.

Upon return (via dead reckoning) to a location where
a description was previously memorized, the robot col-
lects new images and compares them to the correspond-
ing snapshot. In the Cartwright and Collet simulation,
image features were extracted, matched, and the differ-
ences in image positions of corresponding features were
compared. In our implementation, we simplified this pro-
cedure by instead correlating corresponding images. By
comparing pixels, more information is retained and the
comparison computations required are easier. The al-
gorithm correlates previously stored views with the cur-
rent views and estimates the orientation and translation
(forwards/backwards) errors. This is repeated for three

1 The robot used is a cylindrically shaped (30 cm diameter and
50 cm high) machine whose head unit (i.e., the external sensing
and computational facilities) translates and rotates atop a B12
Real World Interface omni-directional mobile robot base. The head
electronics include: sensors and their associated control and pro-
cessing systems (including a CCD camera with frame grabber), a
switch interface board, the stand-alone Transtech transputer array
(i.e., four T800 transputers), and an Electronics Flight 68-k board.
The transputer system can send data to and receive data from a
remote terminal via a radio modem. (For more detail see [9].)

Table 1: Average percentage of dead reckoning error left
after application of simple and iterative version of the
global localization algorithm

|| d. r. error | simple version | iterative version ||
small errors 62.6 39.7
medium errors 57.4 51.1
big errors 94.8 35.4

[Total | 65.6 | 51

views at 90 degrees to each other. From this informa-
tion, a motion vector is calculated which corrects for the
robot’s dead reckoning error and thus brings it closer to
the target.

We tested our artificial bee at various locations and
with various (introduced) dead-reckoning errors in our
laboratory. Since we stored the approximate distance of
observed objects (derived through motion parallax cal-
culations), the robot can improve its position by an it-
erative algorithm which takes into account its current
position estimate and relative target positions. The iter-
ative correction of the dead-reckoning error stops when
the position improvement with respect to the previous
iteration is below a given threshold.

The iterative version of the algorithm reduced errors
on the average by a greater amount than the simple ver-
sion, especially, if errors were large (Table 1). The vari-
ous dead reckoning error ranges we introduced and tested
were:

o small: sideways, towards/away errors smaller than 21
mm; rotational errors less than 2.1 degrees,

e medium: sideways, towards/away errors from 21 to
40 mm; rotational errors from 2.1 to 4.0 degrees, and

e big: sideways. towards/away errors above 40 mm;
rotational errors above 4.0 degrees.

Thus, using this procedure, the robot 1s able to main-
tain its dead-reckoning error within a certain limit.
Guidance correction vectors gleaned from localization
can be used as part of a target acquisition process as we
have shown above. Alternatively (or additionally) this
information could be used to recalibrate a dead reckon-
ing system. In the latter capacity, it 1s a valuable tool for
roboticists. (Artificial calibration techniques (i.e., those
involving decorating an environment with artificial bea-
cons and bar codes providing calibration constants) are
not always feasible and more sophisticated techniques
which rely on external sensing of naturally occurring en-
vironmental cues (e.g., Kalaman filtering) are computa-
tionally expensive relative to this technique.



3.3 Discussion of static model, disadvantages,
questions

Using a static localization algorithm based upon compar-
ison of image data, our bee-like robot navigation system
enabled a robot to navigate towards targets more pre-
cisely than possible via dead reckoning alone. We believe
that these results could be improved further while still
employing static images. However, during the process
of implementation, we began to hypothesize that static
image comparison alone may not provide enough infor-
mation to guide an autonomous agent’s return toward a
precise location. We believe that dynamic information
(i.e., optical flow descriptions) are used as well. This hy-
pothesis is motivated by three noted shortcomings in the
static localization model we implemented:

e It is not clear how valuable a snapshot taken from
a fixed position would be for an autonomous mobile
agent. Such a snapshot would be only a tiny temporal
fraction of the world projected on the agent’s retina
and thus not contain much information about a lo-
cation. Furthermore, a single perspective on a scene
rarely provides enough information to disambiguate
its 3-dimensional structure (e.g., shadows and oc-
cluded regions complicate the image). From these
considerations, it would seem that information ac-
quired during the process of motion certainly pro-
vides a more rich and relevant description of the
world than one gathered from a particular vantage
point.

e Noise in an image matching system is also a criti-
cal consideration. Zeil argues: “Consider a snapshot
taken at the nest entrance and covering half of the full
solid angle, 1.e., 6.28 steradians. A small cylindrical
landmark (2.2 cm * 6.3 cm) at 6 cm from the nest
entrance would cover 0.385 steradians, i.e., 6% of the
snapshot. If one allows for noise, 1t is difficult to see
how such a small part of the snapshot could generate
areliable signal in an image matching procedure” [23].

e Image matching by static image correlation degrades
rapidly as distance from the observed features devi-
ates from the true distance. We attempted to cor-
rect for this by estimating a conversion factor and
approximate target distance; however, we still found
the effect to be significant.

These concerns and the abundance of recent attention
ethologists have focused on motion cues in insect navi-
gation systems inspired the navigation model suggested
in the next section.

4 A dynamic navigation model

Flying animals use visual motion cues to stabilize their
flight (e.g., opto-motor response in hover flies [7]). In

addition to optomotor pathways, it is apparent that in-
sects use visual motion information in more sophisticated
ways. Due to the small interocular separation in the in-
sect visual system, stereo vision can not be used to mea-
sure the range of objects at distances greater than a few
centimeters. Therefore, visual motion cues must be em-
ployed to recover this information. Scanning behavior
of insects (i.e., honey bees), as described by Lehrer et.
al [14], demonstrates that bees do induce motion of im-
ages on their retina during navigation. Srinivasan [17]
has shown that honey bees use optical flow cues to de-
termine the distances of surfaces, discriminate between
objects at different distances, land on a contrast edge,
and distinguish objects from background.

There is mounting evidence that dynamic visual infor-
mation plays a vital part of an insect’s spatial representa-
tion. Additional experiments, similar to those performed
by Cartwright and Collett [4] which follow the search
pattern of navigating honey bees, indicate (i) that they
weight landmarks close to the target more heavily than
distant ones [6], and (ii) that they frequently search at
the appropriate distance from a landmark regardless of
its apparent size [3]; [6] especially when no other cues
are available [13]. Both findings suggest that bees use
patterns of motion cues in their localization procedures.
The retinal position of motion vectors in a parallax field
produced during an orientation flight, their size and di-
rection all contain information on the spatial layout of
the nest surroundings [22].

In the next section we propose a way by which an
autonomous mobile agent might learn and use dynamic
descriptions of the world in its localization procedure.

4.1 Analysis of optical flow
4.1.1 Speed of edges in the optical flow

The motion of an autonomous mobile agent induces ap-
parent motion of objects on its viewing surface. Regions
on the agent’s eyes or camera(s) that move with differ-
ent speeds represent different objects. The further the
object from the agent and the closer to the focus of ex-
pansion (the pole towards which the observer is moving),
the smaller the speed of the projection of the object on
its imaging surface will be. From this dynamic informa-
tion, it is possible to segment the image by analyzing the
optical flow field.

Suppose the agent moves with velocity v and at time
t = 0 has distance d to the object. Furthermore, the
agent’s motion direction and 7, s and « are as in Figure
1. Then we can calculate the speed of the induced motion
of the object on the imaging surface a(t):

t = 1
an o > (1)
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4.1.2  Dependence of relative speed on agent’s
relative motion

Formula 3 shows dependence of induced speed a for cer-
tain position of the agent (¢ = 0) and the object on r,
s, and v. How does a depend on the orientation of the
agent with respect to the object, for fixed distance be-
tween agent and object.

Looking at Figure 2 we can deduce with formula (3):

s = dsi.n|oz| (4)
a0y = el 5)

The graph of the apparent speed a is depicted in Figure
3. It shows that, for a given distance of agent to object,
apparent motion speed a has its maximum if the agent
moves perpendicular to the line of sight to the object and
a decreases as agent orients itself towards the object, i.e.

T T
increasing and decreasing apparént motidq of an edge —

Figure 3: Dependence of apparent motion on the angle
between motion direction and object.

when the smaller angle between motion direction of agent
and line between agent and object decreases.

4.1.3  Effects of changing bearing

This fact can be used when comparing apparent speeds of
objects on the left half of an agent’s viewing surface with
the right (Figure 4). If the agent turns towards object
1 (changed motion direction) the speed of object 1 will
be decreased and speed of object 2 increased. Turning
right has the opposite effect. Thus, the motion paral-
lax field is a function of not only the spatial layout of
the scene, but also of ego-parameters such as the agent’s
motion direction and agent position. This complexity
challenged the original Cartwright and Collett model.
They resolved that snapshots (i.e., static snapshots in
his case) are defined with respect to compass bearings
and may be fixed to a bee’s retina, but only activated
when the bee 1s oriented in the direction in which the
snapshot was taken. (Since bee’s can return to a par-
ticular location from many directions, they would need
several snapshots, each taken when the bee was facing
in a different direction and used when the bee is flying
approaching along that heading.)

In the following subsection, we outline a localization
model which employs motion parallax information. In
doing so, we employ the same set of assumptions used
in previous bee localization models regarding orienta-
tions effects, i.e.; the agent maintains its scene descrip-
tion (e.g., static snapshots and/or motion parallax fields)
with respect to the particular compass bearing orienta-
tion it employed when the description was recorded.
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Figure 4: Turning reduces apparent motion on one hemi-
sphere of the agent’s viewing system and increases it in
the other hemisphere (We assume that apparent motion
induced by turning is corrected for.).

4.1.4  Localization by comparing left and right
speeds

How does the difference of object (e.g., an edge) veloci-
ties on the left half of the imaging surface compare with
those on the right half (subtraction of speed on left half
from speed on right half) look for a given scenario? Fig-
ure 5 shows a scenario (seen from above) where the agent
moves towards edges 1 and 2 with motion direction par-
allel to the y-axis. The distances are given in arbitrary
units.

Figure 6 depicts the difference (z-axis) between a of
edge 2 (ag) and edge 1 (a1) for various (x,y)-positions.
The shape of the graph can be used to devise a localiza-
tion algorithm: at a target position (which can be any
position on the graph in Figure 6) the agent memorizes
the apparent speeds of the edges a;, and as,. When the
agent returns to a target (starting with a y value of 0)
it can perform gradient ascent/descent so as to experi-
ence a difference between as and a; (d.) similar to the
difference between the stored values as, and a1, (ds).

For example, suppose the agent stored the target po-
sition (0,7). Starting from (2,0), the agent experiences
a small difference between as and a;. In order to in-
crease this difference the agent will position itself more
towards edge 1 and thus increase speed of edge 2 and de-
crease speed of edge 1 (as shown in Section 4.1.3). As a
consequence, the difference between ay and a; increases.

4
O edge?
3
o edge 1
y-axis
10 simulated
positions
7 of the bee
X-axis

Figure 5: A scenario for the plausibility of the dynamic
localization algorithm.

Turning to the right would do the opposite and worsen
the similarity between stored and currently experienced
difference. The agent stops its surface ascent/descent
(on the 3D-shape described by |d.(x,y) — ds(z,y)| for
two given edges e; and e3) when moving forwards in ei-
ther direction reduces the similarity between d. and d;.
In the example shown, d. is identical for various (x,y)
positions. The more objects in the motion parallax field,
the more interesting and complicated this surface will
become. It is possible that target position can be reached
more accurately on a motion parallax field produced by
a more cluttered, realistic scene. (Alternatively, some
perceptual filtering may be necessary.) Therefore

f($ay) = Z |dc(61a62a$ay)_ds(61a62a$ay)|

€1,€2

could be the function on which gradient ascent/descent
is performed, where e; are edges on left part of the eye,
eo edges on the right part. However, there are other ways
to combine this information which might create a more
desirable surface.

4.2 A dynamic localization model

Based on this analysis of optical flow, we suggest the
following representation of the world in an agent’s mem-
ory and its use in localization. When an agent initially
moves to a target location, it stores the speeds of edges



speed of object 2 minus speed of object 1

Figure 6: Subtraction of speed of object 2 and speed of
object 1

experienced through motion parallax.

4.2.1 Feature disambiguation and orientation
correction using distant features

When the agent approaches a memorized location an-
other time, it matches object features (e.g., edges) from
current motion parallax and/or static descriptions with
the corresponding stored features.

The amount that the agent is off-course (due to impre-
cision in the dead reckoning mechanism) will affect the
scene description of distant objects only negligibly (in
contrast to close objects). That is, far away objects will
have the same characteristics, especially retinal image
size and velocity, as the memorized ones. We hypoth-
esize (similar to what has been stated in [5]) that the
agent exploits this fact and first matches far away ob-
jects (which are easily recognized since they move very
slowly on the imaging surface during the motion of the
agent) with memorized distant landmarks. This kind of
matching is fairly unambiguous because of the similar
characteristics.

The matching of far away objects will reduce the am-
biguities of the remaining regions so that the subse-
quent matching of closer objects is facilitated consider-
ably. Furthermore, the agent can use this initial phase
in the localization process to correct for deviations in its
current orientation from the original orientation so that
the later, precision phases of orientation need only work
in correcting for position misalignments.

4.2.2  Inducing similar optical flow field by
comparing speeds
Now, the characteristics of close objects that define the

position of a goal accurately are compared to memorized
ones in order to achieve a fine correction. The agent now

moves so as to induce the flow field experienced when
first moving to the goal. This is done by performing gra-
dient ascent/descent on the differences between speeds
on the left and the right half of the viewing surface as
described above.

5 Conclusions, future work

Collett and Kelber [8] found that distant landmarks and
other contextual cues ensure that bees retrieve the cor-
rect memory of a constellation of local landmarks while
the bees are still some distance away from their goal. The
outlined model suggested above incorporates this find-
ing: the navigating agent first tries to match currently
experienced distant landmarks with those in memory.
Having found the correct match for the distant surround-
ings, the retrieved context will determine the searching
behavior of the agent for the close landmarks. In partic-
ular, it will enable the agent to correctly orient itself so
that the difficult position corrections can then be made
independently. This hierarchical approach to localization
(i.e., wherein coarse-scale deviations and orientation er-
rors are corrected before the agent fine-tunes its position)
reduces the computational complexity of the algorithm
and allows the agent to pay most attention to the rich
information provided by near landmarks [6].

Our implementation of a static bee-like navigation
system on a robot has furthered our understanding of
the behaviors and underlying mechanisms that allow au-
tonomous mobile agents to adapt and survive in their
environments. Although we were mainly interested in
building a robust robot navigation system, our imple-
mentation on a robot changed our beliefs about the or-
ganizational principles which induce the bee’s adaptive
behavior. Thus, our work has implications for both nat-
ural and artificial animals.

We believe that a dynamic model of localization could
be very effective since it provides a more subjectively
relevant representation of a mobile agent’s world. It
has been shown that information about dynamic changes
(e.g., the apparent motion of objects) is a useful envi-
ronmental feature for a navigating autonomous agent.
Furthermore, the level of scene necessary analysis still
remains low: instead of creating a precise geometric de-
scription of objects and employing complicated reason-
ing schemes, directly available information about objects
(their apparent motion) is stored within a context (the
location).

Clearly, we have much interesting work ahead of us in
implementing a dynamic localization model.

Acknowledgements

Thanks for assistance with the research and paper to An-
drew Fitzgibbon and Martin Westhead. This research
was supported by the Hanns-Seidel-Stiftung and Univer-



sity of Edinburgh.

References

(1]

[13]

A. M. Anderson. A model for landmark learning
in the honeybee. J. Comp. Physiol., 114:335 — 355,
1977.

R.A. Brooks. Challenges for complete creature ar-
chitectures. In Proceedings of the Conference on
Sitmulation of Adaptive Behavior, September 1990.

B. A. Cartwright and T. S. Collett. How honey-bees
know their distance from a near-by visual landmark.

J Bxp Biol, 1982:367-372, 1979.

B.A. Cartwright and T.S. Collett. Landmark learn-
ing in bees. Journal of Comparative Physiology,
151:521 — 543, 1983.

B.A. Cartwright and T.S. Collett. Landmark maps
for honeybees.  Biological Cybernetics, 57:85-93,
1987.

K. Cheng, T.S. Collett, A. Pickhard, and
R. Wehner. The use of visual landmarks by honey-
bees: Bees weight landmarks according to their dis-
tance from the goal. Journal of Comparative Phys-

1ology, 161:469 — 475, 1987.

T.S. Collett and M. F. Land. Visual spatial memory
in a hoverfly. Comp. Physil., 100:59 — 84, 1975.

T.S. Collett and A. Kelber. The retrieval of visuo-
spatial memories by honeybees. Journal of Compar-

ative Physiology, 163:145 — 150, 1988.

P. Forster. A transputer-based autonomous mobile
robot. DAI technical paper 6, Department of Arti-
ficial Intelligence, University of Edinburgh, 1991.

N. Franschini, J. M. Pichon, and C. Blanes. From
insect vision to robot vision. Philosphical Transac-
tions of the Royal Society of London B., 337:283—
294, 1992.

G.M. Hayes and R.B. Fisher. FEvaluation of a
real-time kinetic depth system. In Proceedings of
the British Machine Vision Conference, September
1990.

A. Kick. Autonomous mobile robot navigation using
bee-like localization. Master’s thesis, Department
of Artificial Intelligence, University of Edinburgh,
1993.

M. Lehrer, M. V. Srinivasan, and G. A. Horridge.
Motion cues provide the bee’s visual world with a

third dimension. Nature, 332:356-357, 1988.

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

M. Lehrer, R. Wehner, and M. Srinivasan. Visual
scanning behaviour in honeybees. J. Comp. Physiol.

A, 157:405 — 415, 1985.

C.A. Malcolm, T. Smithers, and J. Hallam. An
emerging paradigm in robot architecture. DAI re-
search paper 447, Department of Artificial Intelli-
gence, University of Edinburgh, 1989.

S. Perkins. Real time optical flow based range sens-
ing on mobile robots. Master’s thesis, Department
of Artificial Intelligence, University of Edinburgh,
1993.

M. V. Srinivasan. How bees exploit optic flow:
behavioural experiments and neural models. Phil.

trans. R. Soc. Lond., 337:253 — 259, 1992.

R Wehner. Dorsoventral asymmetry in the visual
field of the bee apis mellificia. Journal of Compar-
atiwe Physiology, T7:256-277, 1972.

R. Wehner. Spatial vision in arthropods. Handbook
of sensory physiology, 7/6¢:287-626, 1981.

R. Wehner and I. Flatt. Visual fixation in free flying
bees. Z. Naturforsch (C), 32:469-471, 1977.

R. Wehner and R. Menzel. Do insects have cognitive
maps? Annual Review of Neuroscience, 13:403 —

414, 1990.

J. Zeil. Orientation flights of solitary wasps (cerceis;
sphecidea; hymenoptera): T description of flight.
Journal of Comparative Physiology A, 172:189-205,
1993.

J. Zeil. Orientation flights of solitary wasps (cer-
ceis; sphecidea; hymenoptera): Ti similarities be-
tween orientation and return flights and the use of
motion parallax. Journal of Comparative Physiology

A, 172:207-222, 1993.



