
A dynamic model for autonomous vehicle navigationAlexander Kick, Ashley Walker, Robert FisherDepartment of Arti�cial IntelligenceUniversity of Edinburgh5 Forrest HillEdinburgh EH1 2QLScotlandAbstractIn recent years, much progress has been made inrobotics research by employing ideas taken frombiology. In particular, inspiration has been drawnfrom ethologist's study of insect navigatory capa-bilities. The long distance foraging behavior ofhoney bees (Apis mellifera) has been well studiedand models of bee navigation have been suggestedand simulated. The most popular of these mod-els (due to Cartwright and Collett), proposes thathoney bees navigate via a static image comparisonprocess wherein motion vectors towards a targetare calculated based on the di�erences between animage currently projected on a bee's retina and aremembered snapshot { taken from a similar placein the environment. This work describes our im-plementation of such a static localization modelon a mobile robot and discusses our conclusionthat a dynamic model of bee navigation, basedon optical ow, is more plausible. We propose adynamic model based on comparison of apparentspeeds of edges.1 IntroductionRecent trends in robotics research suggest that charac-terizations of biological systems may inspire useful en-gineering insights to the designers of arti�cial systems[2]; [15]. An example of this is active vision { a tech-nique which employs the known motion of the viewingsystem to make tractable certain visual problems whichare mathematically ill-conditioned or underconstrainedfor a stationary observer. Franceschini et. al [10] havebuilt a robotic system with a vision sensor based on thecompound eye of the hovery which exploits motion par-allax in an e�ort to explore how motion detecting (ar-ti�cial) neurons enable collision avoidance. In previouswork, one of the authors has employed the motion par-allax e�ects induced by the movement of a camera tobuild up (in real-time) a depth map of visual scenes [11].Recently this work was extended to robotic world model

construction through exploitation of the constrained op-tic ow arising from controlled forward motion of a robotvehicle [16].In search of a relatively simple spatial representationtechnique and a primitive spatial information process-ing algorithm for use in our autonomous mobile robot,we too took an example from biology. The navigationalsystems of central place foraging insects have been asource of wonder to scientists for more than a century.Honey bees (Apis mellifera) are capable of traveling upto 10000 meters on food foraging journeys, after whichthey can return home along highly e�cient (i.e., bee-line) routes [21]. These insects also have precision shortrange navigational abilities which allow them to pinpointthe location of speci�c targets, e.g., the small openingto their hive, and to orient precisely toward the foodbearing portion of a ower [4]. The behavior of centralplace foraging honey-bees has been extensively studiedby ethologists and computational models have been sug-gested and tested in simulation (e.g., [1], [4], [5], [6]). Wedeveloped and implemented a bee-like robot-navigationsystem [12], similar to a model suggested by Cartwrightand Collett [4], which employs a static image comparisonprocess as the basis of precision navigation localization.Before our work, this kind of model had only been testedin computer simulation and it was generally consideredcapable of predicting behavior encouragingly similar toreal bees. During our implementation on a robot, how-ever, we found that employing only static representationsof space for precision localization has various disadvan-tages.In response to these concerns, we devised a dynamicmodel of navigation based on optical ow which seeksto overcome the problems we encountered with a staticmodel. Our dynamic model could account for the etho-logical �ndings regarding bee navigation which moti-vated the Cartwright and Collett model and incorporatesknowledge about bees acquired since then.This paper is structured as follows. We will brieydiscuss the features of bee navigation in Section 2. Sec-tion 3 reviews a static model of bee localization and our



implementation of such a model on a mobile robot. Dis-advantages of models employing only static images arediscussed in this section. In Section 4, a dynamic modelof localization is presented. In Section 5 we draw con-clusions and discuss our future work.2 Bee navigationIt is commonly believed that bees navigate due to theinterplay of two distinct means: dead reckoning and lo-calization. During dead reckoning, bees use a path in-tegration process (which receives proprioceptive input)to continuously update a vector pointing back to theirhive. After having explored new food sources, bees re-verse their ight direction and travel home along this vec-tor without having to re-trace the (often) circuitous out-bound journey [21]. However, this dead reckoning mech-anism only facilitates coarse-grained navigation becauseintegration errors accumulate. Therefore, bees must em-ploy a second mechanism for �ne-grained (i.e., precision)navigation.This secondary navigation facility is vision-based.During precision localization, bees exploit visual infor-mation describing landmarks en route to their destina-tion [19]. It is widely held that bees compare the memo-rized characteristics of landmarks surrounding their tar-get to the characteristics of those landmarks as seen fromthe bee's current position in order to calculate motionvectors which will steer them towards the desired po-sition precisely [4]. It is uncertain as to exactly whatinformation insects obtain from an array of landmarksand how they use it. Various theories exist, one of theearliest and still most widely cited of which is describedbelow.3 A static model for localization3.1 Cartwright and Collett's static model forlocalizationCartwright and Collett conducted several experiments toinvestigate how bees use vision to perform localization.Among these, we will summarize two which motivatedtheir static model.In the �rst experiment, bees were trained to �nd foodat a �xed distance to one landmark of a certain size.During the subsequent test phase, the food source was re-moved, the original landmark replaced by one of greateror lesser size, and the search pattern of a hungry, navigat-ing bee recorded. Results showed that bees search closer(than the position of the original food source) to smallsubstitute landmarks and further from large substitutelandmarks. From this Cartwright and Collett concludedthat the size of the landmark, rather than distance tothem, is memorized.In a second type of experiment, bees were trained with

a con�guration of three landmarks. A similar test proce-dure was run, but this time the size and con�guration oflandmarks was varied. It turned out that \a simple rulepredicts the bee's search area ... the bee always searcheswhere the compass bearing of the landmarks on its retinawere the same as they had been when it was stationed atthe food source [during training] [4]." (Cartwright andCollett also determined that the bearings of landmarkson the retina were determined with respect to externalcompass bearings.)The idea that insects can remember relatively unpro-cessed images was introduced by Wehner's [18] study ofpattern recognition in honey bees. Later work byWehnerand Flatt [20] showed that bees learn and inspect partic-ular regions of the visual pattern using particular regionsof the eye. Collett and Land [7] �rst suggested that in-sects (i.e., hoveries in this case) learn a representationof 3-D space consisting of these 2-D \snapshots" and usethe di�erence between a current and remembered snap-shot in order to steer their return to a preferred hoveringspot.Cartwright and Collett's �ndings corroborated thisearlier work and, in 1983, they suggested a computermodel [4] of landmark guidance based on eidetic im-ages. According to their theory, a bee memorizes a snap-shot (i.e., an intensity image which has received mini-mal amounts of perceptual processing) of its nearby sur-roundings as perceived from some position (e.g., a foodsource or teh hive) to which it may wish to return. Insubsequent navigation trials to this target, the bee couldcontinuously compare its retinal image with the snapshotand adjust its ight path so as to lessen the discrepancybetween the two.In their most successful computer simulation,Cartwright and Collett [4] assumed that both the mem-orized and current image are segmented into light anddark areas, and that an area in the snapshot is pairedwith the closest retinal area of the same type (dark,light). \Each of these pairings gives rise to two unit vec-tors... One is perpendicular to the bisector of the retinalarea and points so as to align the two areas. The otheris radial to the retinal bisector and acts to lessen sizediscrepancy between the two areas. Flight direction isgiven by the sum of these tangential and radial vectors."This model simulates the behavior of honey bees in thisexperimental scenario quite well. However, it was notmotivated by considerations of how most of its featuresmight actually be implemented in an insect's brain. Forexample, the model makes the strong assumption thatsnapshot orientation is constant and stabilized by an in-dependent compass.2



3.2 Our implementation of a bee-like robot nav-igation system based on a static bee modelOur work is the �rst (known to us) to implement (ona mobile robot) a static localization algorithm inspiredby Cartwright and Collett's model. 1 [12]. Althoughour goal was to engineer a navigation control systemfor a mobile robot, we believe that our results are rele-vant to ethologists because our implementation provideda more realistic test environment for a biological nav-igation model { i.e., our robot, like a navigating bee,must embrace the full complexity of operation in the realworld (including real-time processing constraints, sensoruncertainty, vision problems such as illumination varia-tions and occlusion, and actuator imprecision). As wewill see below, we faced unforeseen di�culties and cameto view problems di�erently.Like the bee, our robot begins navigating by exploringits environment in order to build up a memory of impor-tant locations and the associated motion vectors whichlink them. When the robot desires to go to a memo-rized location, it either follows a path traveled duringthe exploration phase or plans a new path by reasoningabout routes which it has memorized (i.e., by performingvector addition as suggested by Cartwright and Collettsuggested [5]).Our �rst concern in implementing this localizationtechnique was centered around the desire to re-create(using CCD camera with a 90 degree �eld of view) asensor whose �eld or view matched the 270 degrees ofthe honey bee's compound eye. In order to do this, webuilt up a 270 degree �eld of view place description (i.e.,snapshot) from three individual images { taken to therobot's left, front, and right viewing quadrants.Upon return (via dead reckoning) to a location wherea description was previously memorized, the robot col-lects new images and compares them to the correspond-ing snapshot. In the Cartwright and Collet simulation,image features were extracted, matched, and the di�er-ences in image positions of corresponding features werecompared. In our implementation, we simpli�ed this pro-cedure by instead correlating corresponding images. Bycomparing pixels, more information is retained and thecomparison computations required are easier. The al-gorithm correlates previously stored views with the cur-rent views and estimates the orientation and translation(forwards/backwards) errors. This is repeated for three1The robot used is a cylindrically shaped (30 cm diameter and50 cm high) machine whose head unit (i.e., the external sensingand computational facilities) translates and rotates atop a B12RealWorld Interfaceomni-directionalmobile robot base. The headelectronics include: sensors and their associated control and pro-cessing systems (including a CCD camera with frame grabber), aswitch interface board, the stand-aloneTranstech transputer array(i.e., four T800 transputers), and an Electronics Flight 68-k board.The transputer system can send data to and receive data from aremote terminal via a radio modem. (For more detail see [9].)

Table 1: Average percentage of dead reckoning error leftafter application of simple and iterative version of theglobal localization algorithmd. r. error simple version iterative versionsmall errors 62.6 39.7medium errors 57.4 51.1big errors 94.8 35.4total 65.6 45.1views at 90 degrees to each other. From this informa-tion, a motion vector is calculated which corrects for therobot's dead reckoning error and thus brings it closer tothe target.We tested our arti�cial bee at various locations andwith various (introduced) dead-reckoning errors in ourlaboratory. Since we stored the approximate distance ofobserved objects (derived through motion parallax cal-culations), the robot can improve its position by an it-erative algorithm which takes into account its currentposition estimate and relative target positions. The iter-ative correction of the dead-reckoning error stops whenthe position improvement with respect to the previousiteration is below a given threshold.The iterative version of the algorithm reduced errorson the average by a greater amount than the simple ver-sion, especially, if errors were large (Table 1). The vari-ous dead reckoning error ranges we introduced and testedwere:� small: sideways, towards/away errors smaller than 21mm; rotational errors less than 2.1 degrees,� medium: sideways, towards/away errors from 21 to40 mm; rotational errors from 2.1 to 4.0 degrees, and� big: sideways. towards/away errors above 40 mm;rotational errors above 4.0 degrees.Thus, using this procedure, the robot is able to main-tain its dead-reckoning error within a certain limit.Guidance correction vectors gleaned from localizationcan be used as part of a target acquisition process as wehave shown above. Alternatively (or additionally) thisinformation could be used to recalibrate a dead reckon-ing system. In the latter capacity, it is a valuable tool forroboticists. (Arti�cial calibration techniques (i.e., thoseinvolving decorating an environment with arti�cial bea-cons and bar codes providing calibration constants) arenot always feasible and more sophisticated techniqueswhich rely on external sensing of naturally occurring en-vironmental cues (e.g., Kalaman �ltering) are computa-tionally expensive relative to this technique.3



3.3 Discussion of static model, disadvantages,questionsUsing a static localization algorithmbased upon compar-ison of image data, our bee-like robot navigation systemenabled a robot to navigate towards targets more pre-cisely than possible via dead reckoning alone. We believethat these results could be improved further while stillemploying static images. However, during the processof implementation, we began to hypothesize that staticimage comparison alone may not provide enough infor-mation to guide an autonomous agent's return toward aprecise location. We believe that dynamic information(i.e., optical ow descriptions) are used as well. This hy-pothesis is motivated by three noted shortcomings in thestatic localization model we implemented:� It is not clear how valuable a snapshot taken froma �xed position would be for an autonomous mobileagent. Such a snapshot would be only a tiny temporalfraction of the world projected on the agent's retinaand thus not contain much information about a lo-cation. Furthermore, a single perspective on a scenerarely provides enough information to disambiguateits 3-dimensional structure (e.g., shadows and oc-cluded regions complicate the image). From theseconsiderations, it would seem that information ac-quired during the process of motion certainly pro-vides a more rich and relevant description of theworld than one gathered from a particular vantagepoint.� Noise in an image matching system is also a criti-cal consideration. Zeil argues: \Consider a snapshottaken at the nest entrance and covering half of the fullsolid angle, i.e., 6.28 steradians. A small cylindricallandmark (2.2 cm * 6.3 cm) at 6 cm from the nestentrance would cover 0.385 steradians, i.e., 6% of thesnapshot. If one allows for noise, it is di�cult to seehow such a small part of the snapshot could generatea reliable signal in an imagematching procedure"[23].� Image matching by static image correlation degradesrapidly as distance from the observed features devi-ates from the true distance. We attempted to cor-rect for this by estimating a conversion factor andapproximate target distance; however, we still foundthe e�ect to be signi�cant.These concerns and the abundance of recent attentionethologists have focused on motion cues in insect navi-gation systems inspired the navigation model suggestedin the next section.4 A dynamic navigation modelFlying animals use visual motion cues to stabilize theiright (e.g., opto-motor response in hover ies [7]). In

addition to optomotor pathways, it is apparent that in-sects use visual motion information in more sophisticatedways. Due to the small interocular separation in the in-sect visual system, stereo vision can not be used to mea-sure the range of objects at distances greater than a fewcentimeters. Therefore, visual motion cues must be em-ployed to recover this information. Scanning behaviorof insects (i.e., honey bees), as described by Lehrer et.al [14], demonstrates that bees do induce motion of im-ages on their retina during navigation. Srinivasan [17]has shown that honey bees use optical ow cues to de-termine the distances of surfaces, discriminate betweenobjects at di�erent distances, land on a contrast edge,and distinguish objects from background.There is mounting evidence that dynamic visual infor-mation plays a vital part of an insect's spatial representa-tion. Additional experiments, similar to those performedby Cartwright and Collett [4] which follow the searchpattern of navigating honey bees, indicate (i) that theyweight landmarks close to the target more heavily thandistant ones [6], and (ii) that they frequently search atthe appropriate distance from a landmark regardless ofits apparent size [3]; [6] especially when no other cuesare available [13]. Both �ndings suggest that bees usepatterns of motion cues in their localization procedures.The retinal position of motion vectors in a parallax �eldproduced during an orientation ight, their size and di-rection all contain information on the spatial layout ofthe nest surroundings [22].In the next section we propose a way by which anautonomous mobile agent might learn and use dynamicdescriptions of the world in its localization procedure.4.1 Analysis of optical ow4.1.1 Speed of edges in the optical owThe motion of an autonomous mobile agent induces ap-parent motion of objects on its viewing surface. Regionson the agent's eyes or camera(s) that move with di�er-ent speeds represent di�erent objects. The further theobject from the agent and the closer to the focus of ex-pansion (the pole towards which the observer is moving),the smaller the speed of the projection of the object onits imaging surface will be. From this dynamic informa-tion, it is possible to segment the image by analyzing theoptical ow �eld.Suppose the agent moves with velocity v and at timet = 0 has distance d to the object. Furthermore, theagent's motion direction and r, s and � are as in Figure1. Then we can calculate the speed of the induced motionof the object on the imaging surface a(t):tan� = sr � vt (1)4
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Figure 3: Dependence of apparent motion on the anglebetween motion direction and object.when the smaller angle between motion direction of agentand line between agent and object decreases.4.1.3 E�ects of changing bearingThis fact can be used when comparing apparent speeds ofobjects on the left half of an agent's viewing surface withthe right (Figure 4). If the agent turns towards object1 (changed motion direction) the speed of object 1 willbe decreased and speed of object 2 increased. Turningright has the opposite e�ect. Thus, the motion paral-lax �eld is a function of not only the spatial layout ofthe scene, but also of ego-parameters such as the agent'smotion direction and agent position. This complexitychallenged the original Cartwright and Collett model.They resolved that snapshots (i.e., static snapshots inhis case) are de�ned with respect to compass bearingsand may be �xed to a bee's retina, but only activatedwhen the bee is oriented in the direction in which thesnapshot was taken. (Since bee's can return to a par-ticular location from many directions, they would needseveral snapshots, each taken when the bee was facingin a di�erent direction and used when the bee is yingapproaching along that heading.)In the following subsection, we outline a localizationmodel which employs motion parallax information. Indoing so, we employ the same set of assumptions usedin previous bee localization models regarding orienta-tions e�ects, i.e., the agent maintains its scene descrip-tion (e.g., static snapshots and/or motion parallax �elds)with respect to the particular compass bearing orienta-tion it employed when the description was recorded.5
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moves so as to induce the ow �eld experienced when�rst moving to the goal. This is done by performing gra-dient ascent/descent on the di�erences between speedson the left and the right half of the viewing surface asdescribed above.5 Conclusions, future workCollett and Kelber [8] found that distant landmarks andother contextual cues ensure that bees retrieve the cor-rect memory of a constellation of local landmarks whilethe bees are still some distance away from their goal. Theoutlined model suggested above incorporates this �nd-ing: the navigating agent �rst tries to match currentlyexperienced distant landmarks with those in memory.Having found the correct match for the distant surround-ings, the retrieved context will determine the searchingbehavior of the agent for the close landmarks. In partic-ular, it will enable the agent to correctly orient itself sothat the di�cult position corrections can then be madeindependently. This hierarchical approach to localization(i.e., wherein coarse-scale deviations and orientation er-rors are corrected before the agent �ne-tunes its position)reduces the computational complexity of the algorithmand allows the agent to pay most attention to the richinformation provided by near landmarks [6].Our implementation of a static bee-like navigationsystem on a robot has furthered our understanding ofthe behaviors and underlying mechanisms that allow au-tonomous mobile agents to adapt and survive in theirenvironments. Although we were mainly interested inbuilding a robust robot navigation system, our imple-mentation on a robot changed our beliefs about the or-ganizational principles which induce the bee's adaptivebehavior. Thus, our work has implications for both nat-ural and arti�cial animals.We believe that a dynamic model of localization couldbe very e�ective since it provides a more subjectivelyrelevant representation of a mobile agent's world. Ithas been shown that information about dynamic changes(e.g., the apparent motion of objects) is a useful envi-ronmental feature for a navigating autonomous agent.Furthermore, the level of scene necessary analysis stillremains low: instead of creating a precise geometric de-scription of objects and employing complicated reason-ing schemes, directly available information about objects(their apparent motion) is stored within a context (thelocation).Clearly, we have much interesting work ahead of us inimplementing a dynamic localization model.AcknowledgementsThanks for assistance with the research and paper to An-drew Fitzgibbon and Martin Westhead. This researchwas supported by the Hanns-Seidel-Stiftung and Univer-7
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