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1 The ProblemIt is very common in computer vision to wish torepresent some large dataset in a concise wayin order to extract geometric properties, at-tenuate noise, or simply to reduce the volumeof data. In almost all cases, this is achievedby �tting an appropriate parametric model tothe data set in the least squares sense. It isthen vital to have some way of telling whenthe �t is wrong, and the model is not `appro-priate' to the data. Simple least squares tech-niques [7] assume the noise in the data to bestrictly Gaussian of known variance, and thenuse the �2 test to give an estimate of the proba-bility that, under that assumption, the data �tsthe model. Robust estimators [5] approach theproblem more directly, by e�ectively ignoringdata points which do not �t the model. Ro-bust models are, however, even more expen-sive to �t than unbiased nonlinear models, anddo not help when the model is already �ttedto the data, and simple veri�cation is all thatis needed. Our argument asserts that leastsquares is adequate for most purposes, until itsassumptions are violated. Of course it is pre-cisely these boundaries, at which the assump-tions are violated, that are of most importanceto the visual process. Hence, a quick and e�ec-tive test which identi�es such errors will allow acheap estimator to be used on most of the sig-nal, while the more expensive techniques areheld in reserve until the cheaper methods fail.2 Goodness-of-�t TestingWe denote the data points to which the modelis to be �tted by fxigni=1 and the parame-ters of the model by faigpi=1. We also assumethat we have a distance metric D(a;x) whichmeasures the signed distance between a par-ticular data point and the �tted model. Themodel �tting process is assumed to have foundthe value of a for which � = Pni=1 �(D(a;xi))

is minimized. The function �(x) is an inu-ence function, which for classical least squaresis �(x) = x2. We do not need to know theform of �, simply that it must be symmetricor antisymmetric about x = 0. Having foundthe value a, we can de�ne the set of residu-als R = D(a;xi)ni=1. The task of goodness-of-�t testing is to determine, based on the valuesof the residuals, whether it is likely that themodel describes the data. Lack-of-�t statisticssay whether the model is unlikely to describethe data1.2.1 Chi-Square TestWhaite [9] provides an accessible summary ofthe chi-square testing technique. The basicassumption is that each observed point x̂i isthe exact point corrupted by an isotropic zero-mean Gaussian noise process of variance �2.If �2 is known, the chi-square statistic �2 =Pni=1(Ri=�i)2 has a known distribution. In factthe number Q(n�p2 ; �22 ) where Q is the increas-ing incomplete gamma function gives a measureof how badly the model �ts the data.The disadvantages of the �2 test are wellknown: the Gaussian noise model has repeat-edly proved unrealistic in computer vision andthe noise variance is often di�cult to know ingeneral. Additionally, the test, depending ona linearization of the residual equation, fails inthe presence of high noise (see Figure 2c).2.2 Median Absolute DeviationThe median absolute deviation (MAD) mea-sure is not strictly a test, in the sense of pro-viding a probability of error. However, becauseit is essentially the error metric used in robustestimators, it is interesting to see how its re-1The distinction between lack of �t and goodness of�t is subtle and of great interest to statisticians, butwe shall not make it here, treating the two terms asequivalent.3



sponse compares with the RD test. The mea-sure is simply the median of the absolute valuesof the residuals, and may be evaluated in aboutO(n log logn) time. To use this measure as atest of goodness of �t, we need an estimate ofthe noise level. For Gaussian distributed resid-uals with a standard deviation �, the medianM of the absolute values of the residuals satis-�es 1�p2� Z M0 e� t22�2 dt = 14or erf( M�p2) = 12 . From this, we can calcu-late the expected value ofM and threshold theMAD value accordingly.\RANSAC" Maximum Run LengthTest:The \RANSAC" system of Fischler andBolles [2] is the most similar test reported inthe vision literature. Their system considersthe maximum run length (see below) observedfor a set of residuals. In our experiments, wehave found this measure to be noise sensitive.In addition, we provide a possible extension totwo dimensions.3 Run-distribution TestWe now introduce our test, which we havecalled the run-distribution test. We describethe idea behind the test, the noise model whichwe assume, the actual test, and how it di�ersfrom similar tests in the literature.The tests discussed above essentially extractone number from the set of residuals, and usethat as a basis for discrimination. Instead wewant to look at the set of residuals R, and de-cide whether that set is what we would expect,given data which is in concordance with bothour parametric and noise models.

3.1 Noise modelWe allow each point to be corrupted in each di-mension by a scalar noise component sampledfrom a symmetric zero-median process plus anoutlier process. Note that this is a very widerange of distributions, trivially including thenormal distribution. Moreover, this particulartype of distribution is common in computer vi-sion. With such a distribution, the residualsafter least-squares �tting will be similarly dis-tributed. We can therefore detect outliers byquantifying the extent to which the distribu-tion of the residuals matches our noise model.3.2 MotivationWe do this by creating the set S = sign(R �median(R)). By deleting the zeroes at the me-dian from S, we now have a set whose elementsmay be represented as either + or -. Followingvon Mises [8, page 184] we de�ne a run as asequence of one or more symbols of the samesign. For example the set S = f+-+++--+gcontains runs of lengths 1,1,3,2,1 respectively.Intuitively, we would expect that if the model�ts well, there will be a large number of shortruns, with long runs of positive or negativeresiduals indicating that the model has beenbiased. This idea was used by Besl [1] to de-cide whether a model was of high enough orderto describe the data. Besl also hints at the def-inition of an n dimensional run: We assumethat there is some topology de�ning adjacencybetween di�erent data points { commonly thepoints are de�ned on a grid, implicitly provid-ing such a topology. A run is then a connectedset of points with the same label, the `length' ofthe run becoming the volume of the connectedset. Again, with gridded data, this value willbe an integral multiple of some constant.Measuring the likelihood of a particular dis-tribution of runs is a problem that has been ap-proached in the statistical literature [3, 4, 6]. Inparticular, having decided to measure the runs,4



the question arises as to how to quantify the de-viation of a particular example from the generalpopulation. Kempthorne et al [4, page 234] cal-culate the expected value and variance of thetotal number of runs (E[M ] = n + 1; E[M2] =n(n�1)2n�1 ), and approximate the distribution bya Gaussian in order to calculate probabilities.This approach, taken also by Brownlee[3], vonMises [8] and Mood[6], simpli�es the analysis,but reduces the sensitivity of the test. In thispaper, we instead compare the \actual" dis-tribution to the observed distributions using amodi�ed Kolmogorov-Smirno� test.3.3 Comparing the distributionsIf we make a histogram H(j) where bin j con-tains the number of runs of length j in theresiduals, then the sequenceCk = kXj=1H(j); 1 � k � nwill approximate the cumulative distributionfunction. By comparing this function to thepredicted cdf P given by a zero-median pro-cess (see Figure 1), we can determine the extentto which the outlier process has corrupted the�t. Comparison of cdfs normally entails use ofthe Kolmogorov-Smirno� test, where the likeli-hood is calculated from the known distributionof D = max j Ck � P (k) j. However, this hasthe well-known disadvantage that the samplevariance of D varies with k. Our alternative,arrived at experimentally, was to calculate theweighted sum of distancesD = Pnk=1(P (k)� Ck)wkPwkIn the experiments described below, theweighting function used was a simple quadraticwk = k2 chosen to give more importance tolonger runs.
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Figure 1: Empirically derived distributions of runfrequencies for two values of n, the number of datapoints.3.4 Determining the Actual Distri-butionTo enable use of the Kolmogorov-Smirno� test,we must know the expected distribution ofour measure. To this end we performed aMonte-Carlo simulation of the �tting processand recorded the results. We modelled the sen-sor noise process as a Gaussian plus quanti-zation, which is an appropriate model for thelaser range �nder in use in our laboratory.The distributions (graphed in Figure 1) werecalculated as follows: For a given number ofpoints n, the line y = x + 1; x = 1:::n wascorrupted by Gaussian noise of � = 5, thenquantized to the next lowest integer. The runshistogram was calculated using the residuals ofa linear least-squares �t. Repeating this pro-cess 5000 times, and measuring the cumulativefrequencies for each length of run gave the dis-tributions shown. This technique was chosenbecause it was felt that the particular choice ofthis line would not alter the results. To test thisconjecture, the line slope and noise were variedwidely and the experiment repeated. Results5



were comparable to within about 0:2 percent.However, changing the model to a quadratic al-tered the frequencies by up to 10 percent, sug-gesting that in real applications, it is importantto `train' the test on the models expected.We note that although the histogram shouldbe calculated for all possible values of the num-ber of data point n (up to 106 in a 2D system),there was no signi�cant change in the frequen-cies after about n = 100, lightening the com-putational load signi�cantly.4 ExperimentsA number of experiments were performed to as-sess the performance of the new test and com-pare it to existing test. The three tests weredesigned to be representative of `everyday' vi-sion tasks.4.1 TrackingHere we consider the problem of tracking apoint through time or space while maintainingan estimate of its trajectory. The tracking canoften be foiled when one point passes in front ofanother and the program begins to follow thesecond point. The error may be detected byexamining the �t between the trajectory modeland the data. In this experiment the track isrepresented by a line at 45 degrees which pro-ceeds for 100 points (see Figure 2). The falsetrajectory is then represented by a second lineof 50 points joining the �rst at an angle of 90degrees.2 The response is observed for two dif-ferent noise levels.4.1.1 ProcedureThe following experiment was performed 1000times for each noise level:2Although the choice of 90� may seem arbitrary, us-ing smaller angles proved to be equivalent to increasingthe noise level on the 90� case.

1. Gaussian noise was added to the trajectorydescribed above.2. For each n between 3 and 150, a linewas least-squares �tted to the noisydata points and the results of the threegoodness-of-�t tests were recorded.This generates 3 by 1000 traces of 147 responsevalues.4.1.2 ResultsTo combine these results, we consider the meanand 98th percentile responses for each n. Themean value gives a smoothed impression ofthe abilities of the tests to reject the incorrectmodel. These traces are shown on the left inFigure 2. The 98th percentile response indi-cates the potential for false negatives with eachmethod. To ensure a false negative rate of lessthan 2%, it is necessary to threshold the testat a value above the highest 98th percentile re-sponse. These traces appear in the right handcolumn of Figure 2.4.1.3 DiscussionThe graphs of Figure 2 may be interpretedas follows. To the left of the dotted verticalline, false rejections will occur if the responseis high. To the right, low values imply false ac-ceptances. A perfect test will be a step functiongoing from 0 on the left to 1 on the right. Thesensitivity of a test may be thought of as theslope of the response curve at the breakpoint.The greater the slope, the more likely the testwill correctly reject outliers.The top left graph, for the low noise case,shows all three tests performing well, partic-ularly for large n. The �2, having been ap-plied using the known noise variance shows thegreatest sensitivity. Despite the tendency to-wards false rejections, as seen on the top right,a threshold of 0.95 will give excellent rejection.6
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Figure 2: Performance of the �2, MAD and RD tests on the tracking task. See section 4.1 for details.With the RD test, the low false rejection ratemeans that a much lower threshold will givesimilar results.The real advantage of the RD test becomesapparent as noise is increased. The �2 test,with a slightly incorrect a priori noise model(� = 4 rather than � = 5) fails drastically,rejecting almost every point.4.2 SegmentationThe test was applied to the problem of coniccurve segmentation, with results as shown inFigure 3. This experiment indicates the ability
of the test to identify subtle changes in model,at the C2 discontinuity between line and cir-cle for example. Curves were �tted to the 2Dboundary of a 3D plane using Taubin's gener-alized eigenvector �t and the RD test used toidentify outliers. This model was chosen to besimilar to that used by Whaite [9], but the re-sults are not comparable without knowing theuse to which the segmentation is intended tobe put.7
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Figure 3: Segmentation results. The tracked edge data on the left has been segmented into thelines and circles shown on the right. The RD test is used to identify the breakpoints (shown asdots on the right).5 ConclusionsWe have introduced a new method of testingthe hypothesis that some unknown data set isa noisy instance of a parametric model. Ourmethod is superior to existing methods thatmake unrealistic assumptions about the noisecharacteristics of the input data. The methodis fast, and can in most cases be made to haveO(n) time and space complexity. Sensitivity tosmall deviations in the model is high, while thefalse rejection rate is extremely low, even whenthe data are heavily corrupted by noise. Themajor advantage of our test however is thatthere is no need to know the input noise level.A problem with the system is that in situa-tions where quantization error grossly exceedssensor error, the noise model is violated and thefalse rejection rate increases sharply. This canbe avoided by adding a little Gaussian noiseto the data, but this is obviously not an idealsolution.6 Current Work
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