
Performance Comparison of Ten Variations onthe Interpretation-Tree Matching AlgorithmRobert B. FisherDept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United KingdomAbstract. The best known algorithm for symbolic model matching incomputer vision is the Interpretation Tree search algorithm. This algo-rithm has a high computational complexity when applied to matchingproblems with large numbers of features. This paper examines ten vari-ations of this algorithm in a search for improved performance, and con-cludes that the non-wildcard and hierarchical algorithms have reducedtheoretical complexity and run faster than the standard algorithm.1 IntroductionThe most well-known algorithm for symbolic model matching in computer visionis the Interpretation Tree (IT) search algorithm[7]. The algorithm searches a treeof potential model-to-data correspondences, which is a key problem in model-based vision, and is usually a preliminary to pose estimation, identity veri�cationor visual inspection. This algorithm has the potential for combinatorial explo-sion, even with techniques for limiting the search[7]. This paper compares tenextensions (mainly found in the published literature) to the standard IT algo-rithm that have the potential to reduce the search space. The results of thepaper show that several of the variations produce improved performance in boththeory and as applied to real data.We follow the standard IT model[8]:{ There are M model features in the model.{ On average, pvM of these are visible in the scene. In 2D scenes, pv := 1 and,in 3D scenes, pv := 0:5 as about half of the features are back-facing.{ Of the visible model features, only pr of these are recognizable forming C =prpvM correct matchable data features.{ There are also S spurious features and thus D = C + S data features.{ The probability that a randomly chosen model feature matches with anincorrect random data feature is p1.{ The probability that a random pair of model features is consistent with anincorrect random pair of data features (given that the individual model-to-data pairings are consistent) is p2.{ An acceptable set of model-to-data pairings must have at least T = �pvMnon-wildcard correspondences (� 2 [0; 1]).



2 The Algorithmic VariationsGeometric Matching:Once enough model-to-data pairings have been formed,it is (usually) possible to estimate a pose[2]. Then, the exponential portion of thesearch algorithm stops for that branch. The pose estimate allows the predictionof the image position of unmatched model features including which are back-facing and hence not visible[4]. If a model feature is visible, then direct search isused to �nd data features whose position is consistent with the predicted modelfeature. The e�ort required to do each comparison is assumed to be comparableto that of standard algorithm's testing.If spatial indexing of data features is possible, then the direct search phaseneed only match against data features directly indexed, instead of all features.We assume here that spatial indexing is su�ciently good that only 1 incorrectfeature is selected. We investigated algorithms that required 2 (e.g. for 2D) and3 (e.g. for 3D) matches before going to geometric matching.Alignment Methods: After several levels of the interpretation tree are ex-plored, a model pose can be estimated and used to predict the position of theremaining unmatched model features. Data features near the prodicted posi-tions are then used for subsequent levels of the IT. Here, the IT is searched byexpanding model levels, rather than data levels. In the experiments below, weassume that direct search starts after 2 non-wildcard features are matched andthe number of candidate features found is as described above.Subcomponent Hierarchies: Suppose that the M = KL model features canbe decomposed into KL�1 primitive subcomponents each containingK features,each matched to the D data features in the standard way. Then, each of the sub-components are grouped into KL�2 larger models, each containing K2 features,and so on hierarchically until we have one top-level model containing all KLmodel features. Let each group at each level now de�ne a new type of model fea-ture representing its particular set of subcomponents. The hierarchical match-ing algorithm[6] generates hypotheses of these submodel types, by combiningmatched sets of features (i.e. submodels) from the next lower level. The algo-rithm is a top-down matching process, in which the largest possible matches arealways generated �rst, and previous successes are recorded to limit computationwhen back-tracking. Consistency is checked using the standard IT criteria.Subcomponent Hierarchies Using Reference Frame Consistency:Whena new hypothesis is tested for consistency, if the two subcomponent hypotheseshave su�cient features matched that their poses have been estimated, then onlythe poses of the subcomponent hypotheses are checked for consistency relativeto the pose of their \parent" hypothesis.Model Invocation Methods: If a pre-classi�cation of the data features ormodel invocation ([3], Chapter 8) occurs, then only the pre-selected model-to-data correspondences need to be considered. The pre-classi�cation does not a�ectthe number of nodes accepted, but it reduces the fan-out at each node and hence



the number of nodes tested. The process requires an initial comparison betweeneach model and data feature. Once in search, the search tree is the same as forthe standard IT algorithm, except that at level �, only model features known tobe compatible with data feature d� are compared. No unary tests are needed ascompatibility is ensured, but the pairwise tests still apply.Re-ordering The Tree: This algorithm expands the IT one model feature ata time.Unique Use of Features: This algorithm allows model features to be matchedonly once.Visibility Subgroups: After two features match, estimate an orientation forthe model, predict which model features are visible, and then expand the searchtree for only these features.Non-wildcard Search: This matching algorithm[5] explores the same searchspace as the standard IT, but does not use a wildcard model feature. The algo-rithm compared here has several new unpublished work-saving ideas: (1) mem-bers of the set 
 are generated only when needed and (2) compatible pairsof matches (dataa;modelb) and (datac;modeld) are recorded to prevent beingtested more than once.Ordered Search: By exploiting an ordering of the features (e.g. size), thenwhenever we have successfully matched a model feature, for subsequent matcheswe need only consider model features after this feature in the ordering[1]. Thisadds an additional assumption to those used in the other algorithms.3 The ExperimentsThe following simulated experimental problem is based on an example describedin [8]. This allows us to compare the performance on data sets of varying sizes.(Real problems also follow below.)Each model-match experiment consisted of: (1) initially determining a ran-dom selection of C of the D data features to be the solution and (2) for eachgenerated model-to-data pairing, a correspondence is accepted if the new cor-respondence is: (a1) individually satis�ed with probability p1 and (a2) pairwisesatis�ed with each previously �lled non-wildcard feature with probability p2 or(b) part of the solution or use the wildcard.For the experiments described in this paper, we used:



PARAMETER NOMINAL RANGEM 40 5 to 100 by 5S 20 0 to 100 by 5p1 0.1 0.05 to 0.75 by 0.05p2 0.01 0.001, 0.002, 0.004, 0.008, 0.01,0.02 to 0.20 by 0.02, 0.25� 0.5 0.2 to 0.9 by 0.1pv 0.5 no variationpr 0.95 no variationIn each experiment described in this section, one parameter was varied overthe range given above and all others were set to the nominal value. All experi-ments were run 200 times and the value reported is the mean value.We show here only the results for varying the number of model features Mand the probability p1 (results from varying other parameters were not signi�-cantly di�erent). Figure 1 shows how the number of nodes generated varied withthe changed parameter for the best seven algorithms. In the graphs, the curvesfor the di�erent algorithms are labeled by the following. The two columns at theright show the mean number of nodes generated for the maximum parametervalue from the two experiments.Label Algorithm M = 100 p1 = 0:75align Alignment 94356 65886geom2 Geometric+2 starters 271452 596086geom3 Geometric+3 starters 155508 392350geom2hash Geometric+2 starters+indexing 50773 90416geom3hash Geometric+3 starters+indexing 147727 367265hier Hierarchy 11482 90870hiersubc Hierarchy+pose consistancy 12192 67983invoke Model invocation 25535 266019non-WC Non-wildcard 20487 209837norm Standard IT 161236 348414reorder Re-ordered tree 361943 348414sort Sorted Features 17363 62724uniq Unique use of feature 146563 336562vis Visibility subgroups 113710 195772As we look over the results, which explore a substantial portion of the pa-rameter spaces likely to be encountered in visual matching problems, there isno clear \winning" algorithm. The vis, geom2, geom3, norm, reorder and uniqalgorithms generally have poor performance compared to the others. The realcomparison is between the geom2hash, the hierarchical, the invoke, the align andthe non-wildcard algorithms, and the choice depends on the problem parameters.The sorted feature algorithm also has good, but not dramatic, performance, butmakes an additional problem assumption. The hier and hiersubc algorithms aregenerally the best when p1 is low, and the di�erence between them is not large.
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1e-01 3Fig. 1. Generated Nodes versus a) Number of Model Features (M ) and b) UnaryMatch Probability (p1). Labels are ordered by the results at the maximum pa-rameter setting.The non-wildcard algorithm is not bad for most problems, but its performancedeteriorates when p1 is large. The align and geom2hash algorithms become dis-tinctly worse as M increases and the invoke algorithm becomes distinctly worseas p1 increases.When there is no instance of the object in the scene, the hierarchical and non-wildcard algorithms have about 6 times more search. The standard algorithmis also much worse ([8], page 389). Simulation results suggest that only thehierarchical and non-wildcard algorithms are real alternatives to the standardalgorithm, and both of these algorithms give a factor of about 3{77 improvement(in search) over the standard algorithm.To assess the performance on real data, the hierarchical and non-wildcard al-gorithms were compared on edge matching from several real scenes (on a Sparc-Station 1+, code in C++). Because the algorithms are sensitive to data featureorder, the algorithms were run 100 times with the model and data features per-muted randomly. The e�ective probabilities in this scene were p1 = :235 andp2 = 0:017 and the number of features were M = 13 and D = 129. Seven of 13model edges match true data edges in the test scene. The average time taken forthe matching algorithms was 0.96 sec. for the non-wildcard algorithm, 1.47 sec-onds for the hierarchical algorithm and 5.88 sec. for the standard algorithm. Themean number of nodes tested was 55025 for the hierarchical algorithm, 64412for the non-wildcard algorithm and 544171 for the standard algorithm. On an-other test scene containing 10 instances of only the matched part, the averagetimes required for a match was non-wildcard 20.4 sec., hierarchical 21.4 sec. andstandard 419 sec. The e�ective probabilities in this scene were p1 = :288 and
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