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Abstract

In this document, a technique for locating the eyes in Computed Tomography brain
scan data, is described. The objective is to automatically localise the eyes for protection
during radiotherapy planning. The image feature that is exploited is the circularity of the
eyes. After data preprocessing to remove parts of the CT machinery, signature analysis is
performed to locate areas of interest. By applying Canny’s edge detector to these areas,
data is further reduced to the significant edge fragments. The Hough Transform is then
applied. The Converging Squares algorithm is used as an efficient and robust method to
search the parameter space. The results are processed by the hypothesis generation stage
which clusters them according with the z,y, z coordinates of the suggested centres. The
ISODATA algorithm is used for clustering. The hypotheses are assessed and sorted. The
most valid hypothesis is selected and refined using a second Hough Transform, this time
considering spheres. After the rejection of the invalid members of the hypothesis cluster,
an ellipsoid is fitted to the new cluster centre and the results are drawn on the data. The
method is fast and robust. The method was tested using five different data sets and it
performed well on all of them.

1 Motivation and Problem Description

In radiotherapy the objective is to plan a treatment which will send a high dose of radiation to
the tumour tissue and at the same time restrict exposure to all other parts under limits specific
to their individual sensitivity, so as to avoid undesirable side effects. The eyes, of course, are high
in the list of sensitive (and crucial) organs which certainly have to be taken into consideration
during the treatment planning stage. This project designed and implemented an algorithm
which automatically identifies and locates the eyes in a Computed Tomography (CT) brain scan
data set. The specialised human operator is thus relieved from the tedious and time-consuming
process of manual segmentation, and the whole process of therapy planning is accelerated.

The system consists of a sequence of individual processes. The major feature exploited for
the location of the eye regions throughout the system is the approximate circularity of the eye
sections in every slice! . The system layout can be seen in Figure 1.

We discuss each of these stages separately in the following sections.

2 Background Removal

In the real data sets parts of the CT machinery are visible as well as the patient’s head (e.g. the
head supporting pads and parts of the machine). The objective of this stage is to process the
data set, so that these objects are removed.

The algorithm removes most of the undesired objects, making general assumptions about
the object geometry or location. The decision made 1s based upon the following object features:

1This follows the assumption that the eye is approximately spherical and consequently any planar section is
a circle
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Figure 1: System Layout

1. The objects are not connected to the head 2
2. The objects are the only features unchanged in shape and location throughout all slices?

3. The objects are constructed from a radio-opaque material so they have the maximum
intensity value (255).

Based on these features, the algorithm developed creates a buffer frame with every pixel set at
255 and iteratively AND the first N frames so to keep only the pixels having exactly the same
intensity (255) in all N frames. The result is an image consisting of parts of the wanted objects
(exploiting the fact that the objects are invariant in respect with z). At each slice, all pixels
connected with pixels existing in the buffer image are recursively deleted (exploiting the fact
that head and objects are not connected, at least at the slices of interest).

The final result 1s satisfactory and the process is efficient and sufficiently robust. It fails to
remove the head pads in the top of the head scan because they change their position significantly,
and 1n this way assumption 2 is violated. Again, the algorithm fails with the resulting destruction
of important parts of the image, when assumption 1, concerning connectivity is violated. The
application of the algorithm in the b data sets gave some errors in particular cases, but in general
the performance is satisfactory.

3 Finding the Bounding Box and Locating Areas of In-
terest

Speed is an important requirement for this system. A human operator can outline the eyes
manually within few minutes. To compete with this, the system must utilise all the high level

2This feature excludes a part of the head supporting pads (i.e. top of the head).
3Here again we have the exception of part of the head supporting pad



knowledge as soon as possible. In the case of the CT images only a mere % of the pixels contains
valuable information and the rest are just background. We also can certainly assume that one
and only one object of significant dimensions is present i.e. the patient’s head. The problem
consequently is to calculate the bounding box of the head. Having done this; we can locate
within a small region where we expect the eyes to be.

In [3] there is a method to derive properties of an object based on the analysis of its signatures.
The signature of an image is a one dimensional projection over one direction. More specifically,
the horizontal signature of an image I of size d is a set S, whose members are the values of
a mapping function fi(c), where ¢ € [0,d]. In this way we map image I — S,. The actual
function value of f(¢) is the number of pixels set in column ¢. Note that f5(c) is not dependent
on r, so Vr € [0,d]fr(c) = constant. Respectively, for the vertical signature S, the mapping
function f,(r) is constant for all values of column e.

An efficient algorithm was developed which, using “hardcoded” knowledge about the object’s
approximate size, calculates the bounding box. The application of the algorithm on an arbitrary
slice is displayed in parts (a),(b),(c) of Figure 2 . The algorithm traces the signatures searching
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Figure 2: Finding the bounding box in image (a) using the row (b) and column (c) profiles. The
failure to find the correct bounding box in (d) is because of the two unexpected objects

for a given threshold value, such that it guarantees that the row/column which corresponds to
this value belongs to the object we want to locate (i.e. patient’s head). Since we assume that
no other objects are present in the image, any comparatively large value would guarantee this.
To locate the minimum we trace the curve backwards up to a threshold value (e.g. 10 pixels)
from which we stop if we detect either zero value or an increasing trend to the data. The same
is done for locating the maximum?, only this time we start tracing from the other far right side
of the signature.

The algorithm, is efficient and robust. In many cases it is surprisingly successful in locating

4Minimum and maximum refer to the elements of the S; and S, sets, so actually are the minimum and
maximum 7 or ¢ where a local minimum exists



the correct bounding box, even though small objects exist around the patient’s head. The
algorithm is unsuccessful in images like that displayed in (d) of Figure 2. The cause of failure is
again the violation of the basic assumption that no other big objects are present. These parts of
CT machinery were not removed by the removal process because they appear only in this slice
and not before or after.

Before closing this section we should discuss some practical considerations. Signature analysis
is a tool applying to binary images. The CT images are not binary images. As again can be
seen in Figure 2 there are areas within the patient’s head with 0 intensity value. As a result, the
horizontal signature does not take the highest value at the position of the nose, as it would be
normally expected. Extracting further information is therefore risky. A procedure which would
fill the empty regions within the object and thus solving the problem is not considered worthy of
the computation time. Using just the bounding box information and a very sound assumption
(the patient’s head has standard orientation upwards, the eyes are expected to be always in the
top side of the bounding box), we can correctly and efficiently locate the area containing the
eyes within two 50 x 50 images® (which are drawn as squares in Figure 2).

4 Edge Detection

Although the size of the data to be processed has been significantly reduced, it is still too large to
manipulate. With edge detection the objective is to reduce the amount of data to the significant
edge fragments i.e. intensity changes between the different image regions. The Canny operator
[2] is used for its optimised performance with noise and localisation. Additionally, the Canny
operator gives a unique response to a single step.

The performance of the edge detection stage is important for the localisation of the eye by
the circle finding stage. Unfortunately edge detector performance is data dependent. For this
reason, there was not any special emphasis given to a very detailed adjustment of the Canny
parameters (sigma value and hysterisis thresholds). The rest of the system must be designed to
be compliant with edge detection performance. Actually, the CT data is a quite difficult test
since the intensity values are quantised, and soft tissue boundaries are not easily detectable. A
sigma value of 1.0 was selected for the Canny smoothing parameter, giving the desired level of
detail in the area around the eye.

5 Circle finding

As mentioned above, the feature exploited for the localisation of the eyes is the approximate
circularity of the eye sections. For this, the Hough Transform (HT) is used. This selection is
based on the HT performance with incomplete or corrupted data. In general there are several
inherent problems in HT applications, namely storage requirements and time complexity. Lo-
calising the feature by finding the bounding box loosens the space and time constraints. Other
problems to overcome are:

e The eye sections are only approximately circular. In the first or the last slices that contain
eye sections, even this approximate circularity is lost.

e There 1s context interference 7.e. a dense mesh of non-circular curves around the feature.

Since the HT deals with each pixel separately, it is vulnerable to this interference®.

e There are many other approximately circular features present in the edge image. Semi-
circular bones give a non fragmented edge when the Canny operator is applied and con-

5The exact size of the subframes depends on the pixel dimension of the data set. The program partitions
the frame using millimetre dimensions. The correspondence of these dimensions in pixels is calculated using the
pixel dimension

6Sometimes termed in relevant literature as the “connectivity” problem



sequently sharp peaks in the parameter space of the HT. Also, the eye boundary is frag-
mented and in parts erroneous.

These problems are addressed in the design of an HT procedure. Design decisions have
to be made on the two major components of the HT: the voting scheme and the search of
the parameter space. The standard theoretic framework is to view the HT as imaging using
signal processing terminology [1]. Here, we view the HT as a search problem and the voting
as an heuristic evaluation of the model existence in a specific location. The informedness of
the selected heuristic (voting scheme) is important in this framework, and can describe more
accurately the quality of the voting scheme than the Signal to Noise figure [5].

5.1 Voting Scheme
The standard HT with line voting and the use of directional information was chosen:

1. Using a standard HT with a 3 dimensional accumulator is more appropriate for the com-
plicated images since the voting “encodes” more information in the parameter space (com-
pared to the 2-1 method [8]).

2. Line voting using directional information (every point votes in the parameter space across
the normal to the tangent) increases the informedness of our voting and many spurious
votes are saved. At the same time we could characterise it as a cost efficient approximation
of more elaborate schemes (Bayesian approach, template voting etc). Drawing a line is
much more efficient than drawing a surface.

The geometry of the line is displayed in Figure 3. In part (a) of this figure, a point O(X,Y, Z) on a
curve votes in the parameter space along the line defined by the points (X1,Y7, 71), (X2, Y2, Z2).
The calculation of their coordinates is as follows:

X1 = X 4 Radpin - cos(0),Y1 =Y + Radpmp - sin(6), 71 = Radmin
X2 = X 4 Radpmag - c0s(0),Ys =Y + Radmqy - sin(f), 7o = Radpas

where 6 is the orientation of the tangent at point O(X,Y,7) (measured as an offset from the
vertical direction, as shown in Figure 3), and Radpmin, Radmey are the range of radii that we
are looking for. The Bresenham algorithm is used for drawing the line in the 3 dimensional
parameter space. The parameter space over the whole image can be seen in Figure 4. The 3
dimensional space 1s projected onto a plane and the histogram of the image is equalised so even
weak peaks can be seen. The existence of many peaks is the most conspicuous characteristic.
From the histogram in the same Figure we select two threshold values and display the parameter
space after thresholding with these values. The results (Figure 4 (d) and (e)) do not give only
the desired two peaks for the eyes. Threshold selection also cannot be based just on absolute
values because the eye peaks are smoothed in other slices where the eye segment is not very
circular. The peaks though are always locally distinct as dense voting areas. The HT represents
approximate circularity with these dense areas in the parameter space. Thresholding regards
only absolute peak values and thus loses important information. In fact the search procedure is
an important element of the system since it can be used to compensate for error and inaccuracies
of the voting stage.

5.2  Searching the Parameter Space: the Converging Squares Algo-
rithm

Searching the parameter space is the important last part of the circle locating stage. As we
noted above, the HT has evaluated heuristically the “circularity” of various segments in the
image. This evaluation is not only related to the absolute peak values but also to the density
of votes in the area. As noted above, one method to incorporate local area information is to
smooth the HT. O’Gorman and Sanderson in [6] present a method for locating peaks in many
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Figure 3: Calculation of line vote parameters

dimensions called the converging squares algorithm. The method (originally used over pixel
intensities for object location) is cited as a method of searching the parameter space in [4].

The purpose of the algorithm is to find the maximum density region’s peak with a compu-
tationally efficient method. There are no constants defined so the algorithm is equally valid
to all slices”. The algorithm is general and can be extended to N dimensions. O’Gorman and
Sanderson calculate the computational complexity of the algorithm and report the method to be
faster than smoothing and search for maxima. Finally, the most important reason for selecting
the converging squares algorithm is that, since it searches for density as well as for peak value,
it is a more reliable search. It interprets correctly the heuristic evaluation of possible model
locations, performed by the HT.

The converging squares views the 2 dimensional image as iteratively decomposable to smaller
size squares. The decomposition of the image continues until the most dense 3 x 3 square has
been located. Then the biggest value in this square is returned as the peak of the region.

The HT procedure implemented locates the eyes successfully in the majority of the slices
where the eye segment is circular. The algorithm performs adequately in all 5 data sets. The
processing time for a slice is a fraction of a second. Most importantly, the method is more

"If a threshold value was determined the procedure becomes data-dependent since the actual HT results are
not appropriate for thresholding as noted in previous paragraph.



successful in the correct peak localisation than the maximum value method. Comparative results
of the converging squares algorithm and the maximum value search are in Figure 5.

It is clear from Figure 5 that the converging squares is enhancing the HT robustness in circle
detection. The maximum value search performs well only in the case of a privileged slice (e.g.
slice #7 in Figure 5). In slices #8,#9 sharper peaks lead maximum value to be incorrect, where
the converging squares still locates the feature.

6 Hypothesis Generation

Circle finding is successful in locating the feature when it exists, but at the same time “unsuc-
cessful” to give a reliable evidence of the feature’s absence from the image. In the data there are
also present minor circular features other than the eyes. These features are going to be picked
out together with the eyes. The number of votes with which a circular feature is supported at
each particular slice is a measure of the feature’s validity. It is not enough however to decide the
existence of eyes, based on just that. The segments we want to locate have low contrast and the
edge detection stage is not expected to give very good boundary description. The HT manages
to locate these segments with the use of the converging squares algorithm, but records the result
only with the peak value. Therefore the number of votes suggesting a circle somewhere in the
image 1s not an appropriate criterion to perform thresholding. Also, even if this is feasible, it
would introduce a heavily data dependent parameter, the threshold value.

We can view this as a three dimensional segmentation problem. The new “image” to be
segmented consists of a series of triplets (x,y, slicenumber). These triplets define points in a
3 dimensional space. We want to locate the parts of this 3D cluster which imply the existence
of spherical/cylindrical /quadric surface in the 3D data. In other words find the approximately
linear cluster. The new data to be processed is visualised in Figure 6. The data plotted here is
the result of the circle finding stage for the left eye in data set 1. The z axis represents the slice
number and the z,y the location of the centre given by the circle finding stage.

In part (b) of the same figure the range of z containing the slices 6 to 10 is magnified. In
these slices the eye is present and the circle finding stage gives valid results. As a consequence
there 1s this small linear cluster.

Since this classification task is a high level decision, the issues of robustness and generality
are here of even greater importance. The solution must conform with the following :

e No assumptions for the nature of the data. That is, more than one spherical feature might
be present (and actually are present).

e No assumptions for the correctness of the circle finding stage can be made. A method
that would track this cluster along the z axis trying to find linear segments (something
like corner detection) would overestimate the reliability of the circle detection stage. Our
solution should permit the circle detection stage to fail in one or two slices where it would
be normally expected to find the eye.

e Verify in 3D the results and improve as far as possible the accuracy of the circle finding
method.

The first two restrictions are so limiting that they reject any solution that would discard
data. What is suggested to be done instead is hypothesise the eye location. The only criterion
we can securely apply to the data is its relation with the context (e.g. circle finding results in
adjacent slices). Thus our problem is turned into a pattern recognition problem.

6.1 ISODATA clustering

For the reasons noted above the selected method for clustering is the ISODATA unsupervised
clustering algorithm[7]. The circle finding stage will result in a set of vectors of the following
format:



< X,y ,slice number z, radius r, number of votes n >

where x,y refer to centre location of a circle with radius r found at slice z by the converging
squares with n votes. From this information we select only the <x,y,z> part to use as input
to the ISODATA module. What we want the ISODATA to perform with the clustering is the
generation of hypotheses about the existence of spherical/quadric surfaces in the data. The
Euclidian space in which the ISODATAS® clusters the results is appropriate for centre location
hypothesis generation. For this, the radius i1s excluded from the ISODATA input. The number of
votes n, 1s excluded because 1t is not very reliable information and possible errors are amplified.
This is used later, for hypothesis assessment and to check the correctness of circle finding and
clustering.

The ISODATA requires several parameters to supervise the clustering (M, Np, o2, dmaz)-
In more detail, the M parameter defines the minimum population of a cluster. The desired
number of clusters expressed by Np is used by the algorithm to decide whether to do cluster
splitting or cluster merging in order to increase or decrease the number of clusters respectively.
The o2 _,, parameters are given in order to determine when and where (i.e. on which axis should
the two new centres have different coordinates) a cluster should be split. Clusters whose centres
have distance less than d,, 4, are merged into one new cluster. Descriptions of the algorithm can
be found in pattern recognition textbooks (e.g. page 218 in [7]).

In the data sets provided by the circle finding stage the ISODATA converges after 3 to 7
iterations. This is of course related to the nature of the data. The z axis value increases mono-
tonically at all circumstances since all measurements belong to different slices. Theoretically,
the ISODATA does not converge always. A maximum iterations constant in the implementation
code makes ensures termination.

7 Hypothesis Refinement

To state the new problem briefly, the clustering stage gives valid circles that include the eye,
but also gathers erroneous results from adjacent slices where the eye does not exist. There are
several reasons why this happens:

o The clustering task of ISODATA searches among different clustering combinations that
minimises the total dispersion (sum of each cluster dispersion). This is not automatically
equivalent with picking only the desired circles. The algorithm, in order to converge, may
classify incorrect points (vectors produced by the circle finding stage) together with the
correct results.

e No matter how we may set the parameters of the ISODATA that describe the desired
solution, it is impossible to exclude the case where the erroneous vectors conform to our
statistics. The difference with the previous case is that the points are classified together
with the correct results, not because this is comparatively the best solution, but because
our description of the solution is not detailed enough to exclude them.

The results can be filtered using our high level knowledge for the desired solution. The HT
can be used for a second time here, as a filter set to remove erroneous data. In this case the
input 18 < x,y, z > vectors and the output is the sphere centre coordinates X.,Y., Z. that best
fits these points. We consider the range of sphere radii which the eye could have. The HT
procedure can be simplified if we consider the x,y as known. The z,y coordinates accuracy is
satisfactory. For this reason we can just have a two dimensional parameter space 7, R.

We can get the Z coordinates of the possible spheres containing the cross section data z,y, z, r

from:
\/(R : fslice)2 - (7“ : fpixel)z
fslice

& Although ISODATA could be possibly modified in order to use some other norm than the Euclidian distance

J =z




where fo1ice, fpizer are factors to translate distances between slices or pixels to millimetres. Using
this simple formula the new HT casts votes to a two dimensional accumulator. The number of
votes each point casts is the actual number of votes with which this point was suggested by the
circle finding procedure minus the distance of this point from the original centre of the cluster.
After this, a search for maximum value will give the Z coordinate of the sphere best fitting the
data. Using this sphere we delete all the points of the cluster that are not inside the sphere.

As it 1s clear, the HT in this case i1s not used for the actual estimation of the model’s
parameters. It is used only as a criterion for rejecting points. The method performs well with
all five data sets. In cases that the clustering is correct, the big size of the sphere makes sure
that all the cluster members are included and nothing is rejected. Otherwise members that do
not fit with the rest are rejected.

8 Shape Fitting

Finally at this stage we know accurately the centre coordinates of the eye. For drawing the
results (and possibly for modelling the eye as well) it is possible to use an ellipsoid model. This
will ensure that the eye 1s included in a predefined volume. For this reason we assume an egg
shaped ellipsoid surface surrounding the eye (elongated along the z axis). The ellipsoid model is
closer to the natural shape of the eyes®. We want each intersection of our ellipsoid with planes
parallel to the x, y plane to be circles so the ellipsoid’s equation becomes:

1,2 y2 22
rrtete=!
x2+y2:R2~(1—i)
c2

The ¢ parameter is a security parameter that ensures that we do not omit parts of the eye
(not detected at all by the circle finding because there was not any circular feature) e.g. we
know that the eye is going to be present in 6-8 (24mm-32mm) slices so we set ¢ as 4 to cover
all cases. The R parameter could be taken to be the biggest radius of the cluster members (and
probably multiplied by a factor to ensure that the eye is included).The results in Figure 7 show

circles of radius R? - (1 — i—z) superimposed on the raw data.

9 Results and Conclusion

The system outlined above was implemented in C++. The system locates the eyes with satis-
factory accuracy in all five data sets in less than 1.5 min running on a SUN Sparcstation 14+
(including 1/0). The results of all five data sets can be seen in Figure 7. The circles drawn
there are the cross-section of the estimated ellipsoid with each slice. The #, y axis localisation
of the eyes is very accurate. The z dimension of the ellipsoid fitted is such that the whole eye
is included in 1t. The primary goal is to protect the eyes from radiation, so to ensure that the
eye 18 completely contained within the ellipsoid found is important. There are no data depen-
dent parameters determining the operation of the system. All the parameters hardcoded in the
programme are model dependent. This is the system’s knowledge about the eyes as a general
geometric shape. Minimal assumptions are also made about the nature of the data (e.g. one
major object present, patient’s head orientated towards the top side etc. ). These assumptions
are used for the significant relaxation of the computational task to be performed.

The system conforms with all problem constraints mentioned in the specifications section,
being especially robust and quick. It is therefore a reliable alternative solution to manual or
interactive segmentation, and it can save valuable time for the human operator.

9 Although more demanding in computational terms and for this note used so far
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Figure 7: Results of the system applied to the first data set
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