
Locating the Eyes in CT Brain Scan DataKostis Kaggelides, Peter J. ElliottIBM UK Scienti�c Centre, WinchesterRobert B. FisherArti�cial Intelligence Dept, University of EdinburghAbstractIn this document, a technique for locating the eyes in Computed Tomography brainscan data, is described. The objective is to automatically localise the eyes for protectionduring radiotherapy planning. The image feature that is exploited is the circularity of theeyes. After data preprocessing to remove parts of the CT machinery, signature analysis isperformed to locate areas of interest. By applying Canny's edge detector to these areas,data is further reduced to the signi�cant edge fragments. The Hough Transform is thenapplied. The Converging Squares algorithm is used as an e�cient and robust method tosearch the parameter space. The results are processed by the hypothesis generation stagewhich clusters them according with the x; y; z coordinates of the suggested centres. TheISODATA algorithm is used for clustering. The hypotheses are assessed and sorted. Themost valid hypothesis is selected and re�ned using a second Hough Transform, this timeconsidering spheres. After the rejection of the invalid members of the hypothesis cluster,an ellipsoid is �tted to the new cluster centre and the results are drawn on the data. Themethod is fast and robust. The method was tested using �ve di�erent data sets and itperformed well on all of them.1 Motivation and Problem DescriptionIn radiotherapy the objective is to plan a treatment which will send a high dose of radiation tothe tumour tissue and at the same time restrict exposure to all other parts under limits speci�cto their individual sensitivity, so as to avoid undesirable side e�ects. The eyes, of course, are highin the list of sensitive (and crucial) organs which certainly have to be taken into considerationduring the treatment planning stage. This project designed and implemented an algorithmwhich automatically identi�es and locates the eyes in a Computed Tomography (CT) brain scandata set. The specialised human operator is thus relieved from the tedious and time-consumingprocess of manual segmentation, and the whole process of therapy planning is accelerated.The system consists of a sequence of individual processes. The major feature exploited forthe location of the eye regions throughout the system is the approximate circularity of the eyesections in every slice1.The system layout can be seen in Figure 1.We discuss each of these stages separately in the following sections.2 Background RemovalIn the real data sets parts of the CT machinery are visible as well as the patient's head (e.g. thehead supporting pads and parts of the machine). The objective of this stage is to process thedata set, so that these objects are removed.The algorithm removes most of the undesired objects, making general assumptions aboutthe object geometry or location. The decision made is based upon the following object features:1This follows the assumption that the eye is approximately spherical and consequently any planar section isa circle 1
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Figure 1: System Layout1. The objects are not connected to the head 22. The objects are the only features unchanged in shape and location throughout all slices33. The objects are constructed from a radio-opaque material so they have the maximumintensity value (255).Based on these features, the algorithm developed creates a bu�er frame with every pixel set at255 and iteratively AND the �rst N frames so to keep only the pixels having exactly the sameintensity (255) in all N frames. The result is an image consisting of parts of the wanted objects(exploiting the fact that the objects are invariant in respect with z). At each slice, all pixelsconnected with pixels existing in the bu�er image are recursively deleted (exploiting the factthat head and objects are not connected, at least at the slices of interest).The �nal result is satisfactory and the process is e�cient and su�ciently robust. It fails toremove the head pads in the top of the head scan because they change their position signi�cantly,and in this way assumption 2 is violated. Again, the algorithm fails with the resulting destructionof important parts of the image, when assumption 1, concerning connectivity is violated. Theapplication of the algorithm in the 5 data sets gave some errors in particular cases, but in generalthe performance is satisfactory.3 Finding the Bounding Box and Locating Areas of In-terestSpeed is an important requirement for this system. A human operator can outline the eyesmanually within few minutes. To compete with this, the system must utilise all the high level2This feature excludes a part of the head supporting pads (i.e. top of the head).3Here again we have the exception of part of the head supporting pad2



knowledge as soon as possible. In the case of the CT images only a mere 13 of the pixels containsvaluable information and the rest are just background. We also can certainly assume that oneand only one object of signi�cant dimensions is present i.e. the patient's head. The problemconsequently is to calculate the bounding box of the head. Having done this, we can locatewithin a small region where we expect the eyes to be.In [3] there is a method to derive properties of an object based on the analysis of its signatures.The signature of an image is a one dimensional projection over one direction. More speci�cally,the horizontal signature of an image I of size d is a set Sh whose members are the values ofa mapping function fh(c); where c 2 [0; d]. In this way we map image I ! Sh. The actualfunction value of fh(c) is the number of pixels set in column c. Note that fh(c) is not dependenton r, so 8r 2 [0; d]fh(c) = constant. Respectively, for the vertical signature Sv the mappingfunction fv(r) is constant for all values of column c.An e�cient algorithmwas developed which, using \hardcoded" knowledge about the object'sapproximate size, calculates the bounding box. The application of the algorithm on an arbitraryslice is displayed in parts (a),(b),(c) of Figure 2 . The algorithm traces the signatures searching
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Figure 2: Finding the bounding box in image (a) using the row (b) and column (c) pro�les. Thefailure to �nd the correct bounding box in (d) is because of the two unexpected objectsfor a given threshold value, such that it guarantees that the row/column which corresponds tothis value belongs to the object we want to locate (i.e. patient's head). Since we assume thatno other objects are present in the image, any comparatively large value would guarantee this.To locate the minimum we trace the curve backwards up to a threshold value (e.g. 10 pixels)from which we stop if we detect either zero value or an increasing trend to the data. The sameis done for locating the maximum4, only this time we start tracing from the other far right sideof the signature.The algorithm, is e�cient and robust. In many cases it is surprisingly successful in locating4Minimum and maximum refer to the elements of the Sh and Sv sets, so actually are the minimum andmaximum r or c where a local minimum exists 3



the correct bounding box, even though small objects exist around the patient's head. Thealgorithm is unsuccessful in images like that displayed in (d) of Figure 2. The cause of failure isagain the violation of the basic assumption that no other big objects are present. These parts ofCT machinery were not removed by the removal process because they appear only in this sliceand not before or after.Before closing this section we should discuss some practical considerations. Signature analysisis a tool applying to binary images. The CT images are not binary images. As again can beseen in Figure 2 there are areas within the patient's head with 0 intensity value. As a result, thehorizontal signature does not take the highest value at the position of the nose, as it would benormally expected. Extracting further information is therefore risky. A procedure which would�ll the empty regions within the object and thus solving the problem is not considered worthy ofthe computation time. Using just the bounding box information and a very sound assumption(the patient's head has standard orientation upwards, the eyes are expected to be always in thetop side of the bounding box), we can correctly and e�ciently locate the area containing theeyes within two 50� 50 images5 (which are drawn as squares in Figure 2).4 Edge DetectionAlthough the size of the data to be processed has been signi�cantly reduced, it is still too large tomanipulate. With edge detection the objective is to reduce the amount of data to the signi�cantedge fragments i.e. intensity changes between the di�erent image regions. The Canny operator[2] is used for its optimised performance with noise and localisation. Additionally, the Cannyoperator gives a unique response to a single step.The performance of the edge detection stage is important for the localisation of the eye bythe circle �nding stage. Unfortunately edge detector performance is data dependent. For thisreason, there was not any special emphasis given to a very detailed adjustment of the Cannyparameters (sigma value and hysterisis thresholds). The rest of the system must be designed tobe compliant with edge detection performance. Actually, the CT data is a quite di�cult testsince the intensity values are quantised, and soft tissue boundaries are not easily detectable. Asigma value of 1:0 was selected for the Canny smoothing parameter, giving the desired level ofdetail in the area around the eye.5 Circle �ndingAs mentioned above, the feature exploited for the localisation of the eyes is the approximatecircularity of the eye sections. For this, the Hough Transform (HT) is used. This selection isbased on the HT performance with incomplete or corrupted data. In general there are severalinherent problems in HT applications, namely storage requirements and time complexity. Lo-calising the feature by �nding the bounding box loosens the space and time constraints. Otherproblems to overcome are:� The eye sections are only approximately circular. In the �rst or the last slices that containeye sections, even this approximate circularity is lost.� There is context interference i.e. a dense mesh of non-circular curves around the feature.Since the HT deals with each pixel separately, it is vulnerable to this interference6 .� There are many other approximately circular features present in the edge image. Semi-circular bones give a non fragmented edge when the Canny operator is applied and con-5The exact size of the subframes depends on the pixel dimension of the data set. The program partitionsthe frame using millimetre dimensions. The correspondence of these dimensions in pixels is calculated using thepixel dimension6Sometimes termed in relevant literature as the \connectivity" problem4



sequently sharp peaks in the parameter space of the HT. Also, the eye boundary is frag-mented and in parts erroneous.These problems are addressed in the design of an HT procedure. Design decisions haveto be made on the two major components of the HT: the voting scheme and the search ofthe parameter space. The standard theoretic framework is to view the HT as imaging usingsignal processing terminology [1]. Here, we view the HT as a search problem and the votingas an heuristic evaluation of the model existence in a speci�c location. The informedness ofthe selected heuristic (voting scheme) is important in this framework, and can describe moreaccurately the quality of the voting scheme than the Signal to Noise �gure [5].5.1 Voting SchemeThe standard HT with line voting and the use of directional information was chosen:1. Using a standard HT with a 3 dimensional accumulator is more appropriate for the com-plicated images since the voting \encodes" more information in the parameter space (com-pared to the 2-1 method [8]).2. Line voting using directional information (every point votes in the parameter space acrossthe normal to the tangent) increases the informedness of our voting and many spuriousvotes are saved. At the same time we could characterise it as a cost e�cient approximationof more elaborate schemes (Bayesian approach, template voting etc). Drawing a line ismuch more e�cient than drawing a surface.The geometry of the line is displayed in Figure 3. In part (a) of this �gure, a pointO(X;Y; Z) on acurve votes in the parameter space along the line de�ned by the points (X1; Y1; Z1); (X2; Y2; Z2).The calculation of their coordinates is as follows:X1 = X +Radmin � cos(�); Y1 = Y +Radmin � sin(�); Z1 = RadminX2 = X + Radmax � cos(�); Y2 = Y +Radmax � sin(�); Z2 = Radmaxwhere � is the orientation of the tangent at point O(X;Y; Z) (measured as an o�set from thevertical direction, as shown in Figure 3), and Radmin; Radmax are the range of radii that weare looking for. The Bresenham algorithm is used for drawing the line in the 3 dimensionalparameter space. The parameter space over the whole image can be seen in Figure 4. The 3dimensional space is projected onto a plane and the histogram of the image is equalised so evenweak peaks can be seen. The existence of many peaks is the most conspicuous characteristic.From the histogram in the same Figure we select two threshold values and display the parameterspace after thresholding with these values. The results (Figure 4 (d) and (e)) do not give onlythe desired two peaks for the eyes. Threshold selection also cannot be based just on absolutevalues because the eye peaks are smoothed in other slices where the eye segment is not verycircular. The peaks though are always locally distinct as dense voting areas. The HT representsapproximate circularity with these dense areas in the parameter space. Thresholding regardsonly absolute peak values and thus loses important information. In fact the search procedure isan important element of the system since it can be used to compensate for error and inaccuraciesof the voting stage.5.2 Searching the Parameter Space: the Converging Squares Algo-rithmSearching the parameter space is the important last part of the circle locating stage. As wenoted above, the HT has evaluated heuristically the \circularity" of various segments in theimage. This evaluation is not only related to the absolute peak values but also to the densityof votes in the area. As noted above, one method to incorporate local area information is tosmooth the HT. O'Gorman and Sanderson in [6] present a method for locating peaks in many5
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Figure 3: Calculation of line vote parametersdimensions called the converging squares algorithm. The method (originally used over pixelintensities for object location) is cited as a method of searching the parameter space in [4].The purpose of the algorithm is to �nd the maximum density region's peak with a compu-tationally e�cient method. There are no constants de�ned so the algorithm is equally validto all slices7. The algorithm is general and can be extended to N dimensions. O'Gorman andSanderson calculate the computational complexity of the algorithm and report the method to befaster than smoothing and search for maxima. Finally, the most important reason for selectingthe converging squares algorithm is that, since it searches for density as well as for peak value,it is a more reliable search. It interprets correctly the heuristic evaluation of possible modellocations, performed by the HT.The converging squares views the 2 dimensional image as iteratively decomposable to smallersize squares. The decomposition of the image continues until the most dense 3 � 3 square hasbeen located. Then the biggest value in this square is returned as the peak of the region.The HT procedure implemented locates the eyes successfully in the majority of the sliceswhere the eye segment is circular. The algorithm performs adequately in all 5 data sets. Theprocessing time for a slice is a fraction of a second. Most importantly, the method is more7If a threshold value was determined the procedure becomes data-dependent since the actual HT results arenot appropriate for thresholding as noted in previous paragraph.6



successful in the correct peak localisation than the maximumvalue method. Comparative resultsof the converging squares algorithm and the maximum value search are in Figure 5.It is clear from Figure 5 that the converging squares is enhancing the HT robustness in circledetection. The maximum value search performs well only in the case of a privileged slice (e.g.slice #7 in Figure 5). In slices #8,#9 sharper peaks lead maximum value to be incorrect, wherethe converging squares still locates the feature.6 Hypothesis GenerationCircle �nding is successful in locating the feature when it exists, but at the same time \unsuc-cessful" to give a reliable evidence of the feature's absence from the image. In the data there arealso present minor circular features other than the eyes. These features are going to be pickedout together with the eyes. The number of votes with which a circular feature is supported ateach particular slice is a measure of the feature's validity. It is not enough however to decide theexistence of eyes, based on just that. The segments we want to locate have low contrast and theedge detection stage is not expected to give very good boundary description. The HT managesto locate these segments with the use of the converging squares algorithm, but records the resultonly with the peak value. Therefore the number of votes suggesting a circle somewhere in theimage is not an appropriate criterion to perform thresholding. Also, even if this is feasible, itwould introduce a heavily data dependent parameter, the threshold value.We can view this as a three dimensional segmentation problem. The new \image" to besegmented consists of a series of triplets (x; y; slicenumber). These triplets de�ne points in a3 dimensional space. We want to locate the parts of this 3D cluster which imply the existenceof spherical/cylindrical/quadric surface in the 3D data. In other words �nd the approximatelylinear cluster. The new data to be processed is visualised in Figure 6. The data plotted here isthe result of the circle �nding stage for the left eye in data set 1. The z axis represents the slicenumber and the x; y the location of the centre given by the circle �nding stage.In part (b) of the same �gure the range of z containing the slices 6 to 10 is magni�ed. Inthese slices the eye is present and the circle �nding stage gives valid results. As a consequencethere is this small linear cluster.Since this classi�cation task is a high level decision, the issues of robustness and generalityare here of even greater importance. The solution must conform with the following :� No assumptions for the nature of the data. That is, more than one spherical feature mightbe present (and actually are present).� No assumptions for the correctness of the circle �nding stage can be made. A methodthat would track this cluster along the z axis trying to �nd linear segments (somethinglike corner detection) would overestimate the reliability of the circle detection stage. Oursolution should permit the circle detection stage to fail in one or two slices where it wouldbe normally expected to �nd the eye.� Verify in 3D the results and improve as far as possible the accuracy of the circle �ndingmethod.The �rst two restrictions are so limiting that they reject any solution that would discarddata. What is suggested to be done instead is hypothesise the eye location. The only criterionwe can securely apply to the data is its relation with the context (e.g. circle �nding results inadjacent slices). Thus our problem is turned into a pattern recognition problem.6.1 ISODATA clusteringFor the reasons noted above the selected method for clustering is the ISODATA unsupervisedclustering algorithm[7]. The circle �nding stage will result in a set of vectors of the followingformat: 7



< x , y , slice number z, radius r, number of votes n >where x,y refer to centre location of a circle with radius r found at slice z by the convergingsquares with n votes. From this information we select only the <x,y,z> part to use as inputto the ISODATA module. What we want the ISODATA to perform with the clustering is thegeneration of hypotheses about the existence of spherical/quadric surfaces in the data. TheEuclidian space in which the ISODATA8 clusters the results is appropriate for centre locationhypothesis generation. For this, the radius is excluded from the ISODATA input. The number ofvotes n, is excluded because it is not very reliable information and possible errors are ampli�ed.This is used later, for hypothesis assessment and to check the correctness of circle �nding andclustering.The ISODATA requires several parameters to supervise the clustering (M;ND ; �2axis; dmax).In more detail, the M parameter de�nes the minimum population of a cluster. The desirednumber of clusters expressed by ND is used by the algorithm to decide whether to do clustersplitting or cluster merging in order to increase or decrease the number of clusters respectively.The �2axis parameters are given in order to determine when and where (i.e. on which axis shouldthe two new centres have di�erent coordinates) a cluster should be split. Clusters whose centreshave distance less than dmax are merged into one new cluster. Descriptions of the algorithm canbe found in pattern recognition textbooks (e.g. page 218 in [7]).In the data sets provided by the circle �nding stage the ISODATA converges after 3 to 7iterations. This is of course related to the nature of the data. The z axis value increases mono-tonically at all circumstances since all measurements belong to di�erent slices. Theoretically,the ISODATA does not converge always. A maximum iterations constant in the implementationcode makes ensures termination.7 Hypothesis Re�nementTo state the new problem briey, the clustering stage gives valid circles that include the eye,but also gathers erroneous results from adjacent slices where the eye does not exist. There areseveral reasons why this happens:� The clustering task of ISODATA searches among di�erent clustering combinations thatminimises the total dispersion (sum of each cluster dispersion). This is not automaticallyequivalent with picking only the desired circles. The algorithm, in order to converge, mayclassify incorrect points (vectors produced by the circle �nding stage) together with thecorrect results.� No matter how we may set the parameters of the ISODATA that describe the desiredsolution, it is impossible to exclude the case where the erroneous vectors conform to ourstatistics. The di�erence with the previous case is that the points are classi�ed togetherwith the correct results, not because this is comparatively the best solution, but becauseour description of the solution is not detailed enough to exclude them.The results can be �ltered using our high level knowledge for the desired solution. The HTcan be used for a second time here, as a �lter set to remove erroneous data. In this case theinput is < x; y; z > vectors and the output is the sphere centre coordinates Xc; Yc; Zc that best�ts these points. We consider the range of sphere radii which the eye could have. The HTprocedure can be simpli�ed if we consider the x; y as known. The x; y coordinates accuracy issatisfactory. For this reason we can just have a two dimensional parameter space Z;R.We can get the Z coordinates of the possible spheres containing the cross section data x; y; z; rfrom: Z = z � p(R � fslice)2 � (r � fpixel)2fslice8Although ISODATA could be possibly modi�ed in order to use some other norm than the Euclidian distance8



where fslice; fpixel are factors to translate distances between slices or pixels to millimetres. Usingthis simple formula the new HT casts votes to a two dimensional accumulator. The number ofvotes each point casts is the actual number of votes with which this point was suggested by thecircle �nding procedure minus the distance of this point from the original centre of the cluster.After this, a search for maximum value will give the Z coordinate of the sphere best �tting thedata. Using this sphere we delete all the points of the cluster that are not inside the sphere.As it is clear, the HT in this case is not used for the actual estimation of the model'sparameters. It is used only as a criterion for rejecting points. The method performs well withall �ve data sets. In cases that the clustering is correct, the big size of the sphere makes surethat all the cluster members are included and nothing is rejected. Otherwise members that donot �t with the rest are rejected.8 Shape FittingFinally at this stage we know accurately the centre coordinates of the eye. For drawing theresults (and possibly for modelling the eye as well) it is possible to use an ellipsoid model. Thiswill ensure that the eye is included in a prede�ned volume. For this reason we assume an eggshaped ellipsoid surface surrounding the eye (elongated along the z axis). The ellipsoid model iscloser to the natural shape of the eyes9. We want each intersection of our ellipsoid with planesparallel to the x; y plane to be circles so the ellipsoid's equation becomes:x2R2 + y2R2 + z2c2 = 1x2 + y2 = R2 � (1 � z2c2 )The c parameter is a security parameter that ensures that we do not omit parts of the eye(not detected at all by the circle �nding because there was not any circular feature) e.g. weknow that the eye is going to be present in 6-8 (24mm-32mm) slices so we set c as 4 to coverall cases. The R parameter could be taken to be the biggest radius of the cluster members (andprobably multiplied by a factor to ensure that the eye is included).The results in Figure 7 showcircles of radius R2 � (1� z2c2 ) superimposed on the raw data.9 Results and ConclusionThe system outlined above was implemented in C++. The system locates the eyes with satis-factory accuracy in all �ve data sets in less than 1.5 min running on a SUN Sparcstation 1+(including I/O). The results of all �ve data sets can be seen in Figure 7. The circles drawnthere are the cross-section of the estimated ellipsoid with each slice. The x; y axis localisationof the eyes is very accurate. The z dimension of the ellipsoid �tted is such that the whole eyeis included in it. The primary goal is to protect the eyes from radiation, so to ensure that theeye is completely contained within the ellipsoid found is important. There are no data depen-dent parameters determining the operation of the system. All the parameters hardcoded in theprogramme are model dependent. This is the system's knowledge about the eyes as a generalgeometric shape. Minimal assumptions are also made about the nature of the data (e.g. onemajor object present, patient's head orientated towards the top side etc. ). These assumptionsare used for the signi�cant relaxation of the computational task to be performed.The system conforms with all problem constraints mentioned in the speci�cations section,being especially robust and quick. It is therefore a reliable alternative solution to manual orinteractive segmentation, and it can save valuable time for the human operator.9Although more demanding in computational terms and for this note used so far9
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Figure 4: (a) Input Slice (b) Parameter Space projected onto one plane (c) Histogram of b (d)b Thresholded at T=10 and (e) T=20 and (f) a 3 Dimensional Plot of b11
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Figure 6: (a) Plot of x; y; z results for data set 1 and the left eye and (b) Magni�cation of (a)at z axis containing valid results within z=6 to 1013
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Figure 7: Results of the system applied to the �rst data set
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