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This paper tries to estimate and formulate the relationship between zero thresholds of Gaussian curva-
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1. Introduction.

As the fundamental properties of surfaces [DeCA76], Gaussian curvature X and mean curvature H play
an important role in surface perception, segmentation and recognition. By using the signs of curvatures
K and H surfaces (or their points) can be classified exactly into eight types [BESL86].

However, the situation of surface classification in practice is not as good as in theory. As the sur-
face curvatures are related to the second order derivatives, they are sensitive to noise, especially, for
those curvatures around zero. How to treat the zero curvatures therefore becomes a critical problem.
So far, the zero thresholding of curvatures has been discussed by many papers, where the thresholds are
empirically imposed in the processing [BESL86][Y ANGES].

An empirical imposition might be feasible for single scale processing. However, this tactic is no
longer appropriate for scale space processing [CAI87a,b,88a,b] due to the scale effects (including the
reduction of noise, the distortion of surface and the changes of significant features at different scale lev-
els). This suggests the complicated situation of the K and H thresholding in scale space [WITK83].

The thresholding problem could be addressed in two aspects. One aspect is how to give surface
features an explicit scale-based thresholding, rather than an empirical imposition at individual scale
level. [PONC87] have shown how to formulate the scale space behaviour of the curve primitives, such
as, step, roof, smooth join, shoulder and bar, and use these results to set thresholds in edge detection.
The other aspect is how to find possible inter-relationship between zero thresholds of different surface
features, rather than to impose some isolated therefore perhaps casual values on different thresholds.
This aspect becomes increasingly significant since the combinations of the signs of Gaussian and mean
curvatures has been more and more frequently used in the surface segmentation. In this paper, we try
to estimate and formulate the relationship between zero thresholds of Gaussian and mean curvatures so
that once a threshold is fixed the other can be automatically produced by this formula.

2. An example of improper thresholding of zero K and H

There are nine combinations of the signs of K and H as shown below:
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Figure 1. Surface shapes from the signs of X , H.

However, only eight of them can be used to classify surfaces. The rest one "K>0 and H=0" is an
impossible case for surface type. From the definition of K and H in differential geometry, we have

K = Cl'Cz

H = 3(C+Cy (1)
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where C,; and C, are principal curvatures of surface. So, H=0 implies Cy = —C,, which leads to K<O.
Thus, "K>0 and H=0" is a "phantom” type in theory.

Note that a strict zero is rarely met in computation. Small numbers will be seen as zero in com-
putation if they are less than a given zero threshold. It is thus possible that an improper thresholding
may therefore lead 1o the "phantom" case. When this happens, the surface is usually nearly flat We
now give a simulated example.

Suppose the given object is a plastic basin as shown in Figure 2.a. Its surface is composed of a
conic wall patch and a planar bottom.
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Figure 2. A plastic basin and its shape under a weak perturbation.
The principal curvatures of the wall patch are 0.0 and 5.0, and both principal curvatures of the bottom
patch are zero. According the KH sign classification the shape type of the wall will be "valley” and the
shape type of the bottom patch will be "flat". The basin surface can be easily classified by setting
small zero thresholds for K and H, say,

e = ey =107 2

But when the bottom is under perturbation, its curvatures may change slightly as illustrated in Figure
2.b. For example, the principal curvatures now become C; = C, = 9x10™*. As both curvatures are
close to zero, the bottom patch can still be classified as the flat type by a proper zero thresholding.
From (1), the Gaussian curvature XK of bottom patch will be much smaller than its mean curvature H, so
it seems reasonable to get a planar patch by setting a zero K threshold which is much smaller than the
zero H threshold, say,

gg= 10", gy = 107 (3)

However, this will be an improper thresholding. Although the shape of the wall patch can be
correctly classified as a "valley" type, the shape type of the bottom patch we shall get is not a "flat”
type "K=0 and H=0" but the "phantom" type "H=0 and K>0" because the curvatures of the wall patch
satisfies

H=9%x10" < ¢y , K=8.1x10"7 > gg @)
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In fact, whenever K > 0, we have the following inequality:

K = CCy = IC,HCy! € [F(CHIC)] = [5(Cy + C))? = H? )

Hence, once a zero threshold € is set up, the thresholds €¢ and €y should satisfy the inequality below
to guard against the noisy perturbation around K = 0 and # = 0.

ex 2 &} ©6)

Setting £4¢2107% corresponding to €4=10"2 may produce the right result as is expected.

The experimental results are shown as the KH sign images in Figure 3, where the whole back-
ground is a plane, the wall of the basin is a conic patch and the bottom of the basin is a plane under no
perturbation or a shallow pit shape under a weak perturbation. For the convenience to compare the
shape type of the basin bottom with that of the background in the KH sign image, a portion of the wall
patch has been cut off.

(a) ®) (©)

@ (o)

Figure 3. Experimental results of the zero thresholding for the basin surface classification.
Figure 3.a shows the correct classification result of the basin surface under no perturbation, where the
shape type of the basin bottom is classified as the same to that of the background by using the thres-
holding (2). This is the result we want to get when the basin is under a weak perturbation. Figure 3.b
shows the cosine-shading image of the basin surface under a weak perturbation, where the basin bottom
is different from the background due to the shallow pit shape. Figure 3.c shows the shallow pit shape
can be detected by using the thresholds:

£g = 8.5x1077, gy =107 (7
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Figure 3.d shows the "phantom" classification result of the basin surface under a weak perturbation,
where due to the improper thresholding (3) the basin bottom has the "phantom” shape type which is not
only different from both the background and the wall but also different from the "pit" shape type shown
in Figure 3.c. Figure 3.e shows the expected classification result of the basin surface under a weak per-
turbation, where by using the proper thresholding (6) the basin bottom returns to the same shape type o
the background as shown in Figure 3.a.

It might be attractive to use thresholds as in (7) because they can partition surfaces and detect
weak perturbations as well. Unfortunately, this is only possible for some very simple and simulated
cases as the above example. In the presence of noise situation is more complicated for the real data of
unknown objects, where a proper thresholding compatible with (6) will be meaningful and feasible to
work.

3. Estimation to the relationship between zero thresholds ex and €y

The above inequality (6) is a brief formula, but it only considers the planar surface case and does
not implies any effect of scales. There is a more complex and appropriate relationship between the
zero thresholds €5 and e for all eight surface types.

Suppose that the principal curvatures have small perturbations &, in C, and &, in C,. They intro-
duce perturbations Ey in H and Eg in K respectively:

_ (C+)) + (C+ED Y &+ &

Fh 2 g 2 ; ®
Ex= (CrHE)CHE) - C1Cy = (Ci&a + CE) + Ei62 )
For simplicity, let &, = &, = &, therefore
Ey=§ (10)
Eg = (C+Cpt + & (11
Thus, Ex and Ej are now related via H as below {:
Ex=2H-Ey + E}, (12)
Set [E4t = €y, then
\Egl < 2WHley + e (13)

Hence, 10 guard against the perturbation, the zero threshold of the Gaussian curvature K should
satisfy the following inequality:

€x 2 suplEgl = 2lHey + €% (14)

Otherwise, for instance, an exact K = 0 plus the perturbation Ex will be beyond the zero band [-gx , €kl,
thus may lead to an incorrect surface classification.

T This result implies that the perturbation introduced in K might have a larger amplitude than that in H when H>-15, and a

much larger amplitude when H>5.
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Comparing with (6), there is a term containing H in (14), which introduces the scale effects via
the mean curvature H changing over scales. By (14), the value of €4 can be automatically derived from
ey. If the value of e is set for the whole surface S, we may have

ex=¢eh+2 m?xIHI-eH (15)

Where, it is no surprise that e¢ >> &4 when m?xIHI > 5. As for the case H = 0, we get € > €%, just as

in (6). Hence, we can use (15) to explain why people impose a zero threshold on Gaussian curvature
which is usually larger than the zero threshold of mean curvature. For example, [BESL86] once used
gy = 0.015 and e, = 0.06 as the zero thresholds of Gaussian curvature and mean curvature.

In scale space, when the smoothing scale increases, the surface becomes more and more smooth.
Note that the high curvature points on a smooth surface are always in a small number even though
including some false high curvature points produced by noise. Also note that the aim of setting e and
€y is to properly treat those zero curvature points. Setting H an average value over the whole surface
may be feasible in the scale space processing. The following formula is thus suggested:

Ex=E4+2 AvegagelHI-eH (16)

The experimental results of surface segmentation using this formula in scale space processing can be
found in [CAI88a].

4. Summary

This paper formulates the relationship of zero thresholds of Gaussian curvature and mean curvature.
Once a proper zero threshold & has been chosen, the zero threshold ¢ will be given automatically by
this formula, which is particularly convenient for scale space processing, where any zero threshold
empirically imposed on K and H at a certain scale is no longer appropriate at other scales.
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