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Abstract

Some three dimensional scene analysis programs pair data surface patches (e.g.
as extracted from range data) to model surface patch features. From the correspon-
dences, a variety of rotation and translation constraints on the model instance can
be deduced, depending on the assumptions behind the correspondences. This paper
elaborates some of the constraints and their associated assumptions for planar, cylin-
drical, conical and generic surface patches. For example, if one knows that a planar
model patch must overlap a planar data patch, then this constrains the alignment of
the model surface normal and the possible translations of the model patch. The con-
straints are expressed algebraically for patches that are: nearby, touch, contained, or
registered. The constraints are used to estimate object position, given a single patch

correspondence. Examples of their use and evaluation are given.

Keywords: three dimensional scene analysis, position estimation, geometric reasoning

1 Introduction

Fisher and Orr [10] have been investigating the use of algebraic constraints as a represen-

tation of partial position constraints, much as Brooks did in his ACRONYM system [3].



This research is being undertaken as part of the IMAGINE II scene analysis system ([8],
[9]), which is currently concerned with surface-based object recognition.

The data primitives in the matching are surface patches, which can be obtained by a
variety of techniques for segmenting range data (e.g. [2], [4], [12], [13]). These processes
result in data patches with consistent curvature signs. Objects are defined using the SMS
models [7], which allow hierarchical object representations, with surface patches being one
of the primitive features.

The model matching process is not described here, but makes correspondences between
single (and multiple) model and data surface patches. With these correspondences, it
is possible to estimate the position of the object containing the patches (assuming the
correct model has been chosen and the correspondences were made correctly) or reject the
correspondences as inconsistent.

A key element of the geometric analysis is formulating algebraic constraints between a
rotated and translated model and the observed surface patches. The constraints attempt to
define or refine the set of allowable positions for the object consistent with the observed data
patches. For example, pairing a planar data patch with a planar model patch immediately
constrains the rotations allowable, because the transformed model normal #,, must be

aligned with the data normal #,, within an angular observation error ¢. Hence,
Ty, - ig > cos(e)

is a constraint on the rotation component of the position T (here expressed as a prefix
transformation on the model normal #i,,.) We assume throughout this paper that all surface
patches are oriented (i.e. they have an outside face with which the normal is associated).

There are a variety of constraints on both the rotation and translation, depending
on the assumptions made about the relationship between the model and data patches,
such as whether the patches overlap or one is contained in the other. The generation of
the constraints is the responsibility of the matching program, which then depends on the
constraint analysis program for solving them. Each model-to-data correspondence may
introduce several constraints; moreover, there may be several correspondences that each
add their own constraints. Altogether, an analysis may generate many constraints which

then have to be solved to generate a single position estimate.
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As there are a variety of model and data surface patches, there are a variety of con-
straints that can be generated. This paper presents and discusses the algebraic position
constraints that we have identified and are using, under a variety of assumptions about

the correspondence. In particular, we present:
e the descriptions of the model and data surface patches,

e the geometric constraints deducible from the model-to-data patch correspondences,

and

e a few examples of applying the theory and solving the resulting constraints in our

geometric reasoning networks.

These are described individually in sections 2 through 6.

It should be noted that the types of constraints described here differ from those de-
scribed by Grimson and Lozano-Perez [11], who identified a set of geometric constraints
that pruned the search space of model-to-data correspondences, whereas here we
give constraints that limit the spatial location and orientation of the object. Their
constraints are also useful, and we use them in our model matching process that leads to

the generation of the constraints identified below.

2 Data Surface Patch Types And Descriptions

In this paper, we assume that the features extracted from the image data are surface
patches, characterized by their curvature and extent. These patches will be suitable for
direct correspondence with the SMS model features presented in the next section.

There are four types of data surface features considered here: planar, cylindrical, conical
and generic patches. We now describe the features and how they are characterized.

The planar patch (see Figure 1) is flat and has bounded extent. By considering the
patch boundary, it is possible that a data patch might only be paired with a model patch in
one way, and we would like to exploit as much information as possible. However, we would
also like to use a simple scheme that can be used with all patches, irrespective of shape.

Hence, we represent planar patches by the bounding width (w4(4)) at each orientation
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Figure 1: Planar Patch Descriptions

() (see Figure 2) for our position constraints, which can lose some of the information in
irregular patches. (The experiments reported here used 360 equal spaced orientations.)
This width is a measure of the maximum extent of the surface in each direction. The
orientation ¢ = 0 is chosen arbitrarily, and each width measure has an error range of
+6,, associated with it. Additionally, we use the position () of the center-of-mass (with
the isotropic error range =), the direction 74 of the surface normal at that point (with
angular error +¢) and an arbitrary direction @, in the patch (observed with angular error
+5).

The cylindrical patch (see Figure 3) is a patch on the surface of a cylinder and has
bounded extent. We simplify the patch by bending a rectangular bounding patch onto the
infinite cylinder containing the actual patch, where the sides of the bounding patch are
either parallel to the axis of the cylinder or are parts of circular cross-sections through the
cylinder. The measurements taken from the patch are the length of the patch along the
axis (I3 with error £&), the angular width of the patch across the axis (64 with error o)
and the cylinder’s curvature (14). No error is associated with the curvature, because the
constraints assume that the correct patch correspondences have been made, and hence the
model curvature (x,,) can be used.

Additionally, we use the position of the central point (P4 with error £%), the direction
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Figure 2: Width Bounding of An Irregular Figure at One Orientation

of the surface normal at that point (7y with error +¢) and the direction of the cylinder’s
axis (@ with error £3). Here, the central point is defined by the mean value of the radial
coordinate expression for the surface.

If only a fragment of a cylinder patch is observed or the observed patch is part of a
noise-corrupted patch with a different shape, then it may be misclassified. Hence, we also
include the bounding dimensions of the patch when flattened onto a plane (wa(¢) with
error +6,) and arbirtary axis (@, with error £4,,). The projection plane is that tangential
to the surface at py.

The conical patch (see Figure 4) is a patch on the surface of a cone and has bounded
extent. We simplify the patch by bending a wedge-shaped bounding patch onto the infinite
cone containing the actual patch, where the sides of the bounding patch are either rulings
down the sides of the cone or are meridians around the cone. We use the patch center
position (§z with error +4) the direction of the surface normal at point gy (3 with error
+¢) and the direction of the cone’s axis (@; with error £3). The patch center is defined
as the point in the patch that has the mean value (over the patch) of (kpf, k), where h is
the distance from the cone tip of the projection onto the cone axis and 8 is the angular
position of the point around the axis.

The measurements taken from the patch are the length of the patch along the axis (I4

with error +6;), the maximum angular width of the patch across the axis (64 with error
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Central point (center of mass): py distance error (isotropic): 4
Normal at py: fig angular error: €
Curvature axis: a4 angular error: I}
Curvature: Kgq

Enclosing cylinder length: lg distance error: &
Enclosing cylinder angular width: 64 angular error: o
Enclosing flat patch width: wa(@) distance error: by
Flattened patch axis: dpq  angular error: B.

Figure 3: Cylindrical Patch Descriptions

+0), the cone’s curvature at the point () (x4 with error +a) and the radius rate of change
(pa) (i-e. radius = py * distance_from_tip). No error is associated with the radius rate,
because the constraints assume that the correct patch correspondences have been made,
and hence the model radius rate (p,) can be used.

The cone model primitive includes the position of the tip of the cone (), if visible. Also,
the minimum (Kming) and maximum (Kmezd) curvatures of the cone are known. Similarly
to the cylindrical patch, we also take bounding dimensions of the flattened conical patch
(wa(@) with error £6,) with axis (@,q with error £4,,).

The generic patch (see Figure 5) is a patch on the surface of a generic surface curved in
two directions and has bounded extent. We simplify the patch by bending a ‘rectangular’
bounding patch onto the infinite surface containing the actual patch, where the sides of the
bounding patch are formed by intersecting planes perpendicular to the curvature directions
(at the nominal central point). We use a patch center (p; with error £7), the direction of
the surface normal at that point (Z; with error +e¢) and the directions of curvature at the

central point (@) and (@4 with errors +f; and +f.). The measurements taken from the



Cone tip: tq

Central point (center of mass): py distance error (isotropic): 4
Normal at py: fig angular error: €
Cone axis: ay angular error: I}
Curvature at py: Kq distance error: «a
Radius rate: Pd

Enclosing cone length: ly distance error: &
Enclosing cone angular width: 84 angular error: o
Maximum Curvature: Kmazd

Minimum Curvature: Kmind

Enclosing flat patch width: wq4(¢) distance error: bu
Flattened patch axis: pd angular error: Bo

Figure 4: Conical Patch Descriptions
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Figure 5: Generic Curved Patch Descriptions

patch are the linear widths (wy4, w24 with errors +6; and +6,) and angular widths (614, 624
with errors +0; and %0;) of the patch about the central point, and the curvatures (x4,
- Kaq) at the point. Here, the generic patch has no perfect mapping to a flattened bounding
patch; however, since the flattened patch is used only when the curvatures are close to
zero, we will use the patch defined by the orthographic projection onto the plane passing
through the center of mass with normal 7;. This patch has cross-section widths wa(P)

with error 46, and axis @,4 with error £,

3 Model Surface Patch Types And Descriptions

The constraints given in the following sections are designed for use with the surface primi-
tives of the SMS object representation system [7] which form the basis for the IMAGINE
II system [8] currently being developed. We briefly describe SMS and then define the
information used in this paper.

SMS is a geometric modeling system, based on multiple, alternative representations



(curve, surface or first and second-order volumetric primitives). The models need not have
all features specified, and the features are usually represented in a subcomponent hierarchy.
The features may have parameterized sizes and properties (e.g. surface curvatures) and
there may be partially or fully unconstrained degrees-of-freedom in the reference frame
transformations. The models also record (1) multiple levels of scale-based representation
in a simplification hierarchy and (2) viewpoint dependent visibility information.

The goal of SMS is to represent the visual aspects of an object that characterize its
identity, rather than describe its shape. Hence, the modeling approach aims to provide
representations that closely correspond to reliably extractable image features.

Following ACRONYM (3], all numerical values can be symbolic variables or expressions,
as well as constants. This has been used for a class of generic model representation, by
allowing size variation amongst the recognizable objects. Variables are defined as either
local or global in a model and are bound by a dynamic scoping mechanism. Each SMS
model can include a set of constraints on the variables, which are expressed in algebraic
form.

SMS provides several types of model surface primitives, of which five types are con-
sidered here: planar, cylindrical, full cylinder, cone and generic patches. One use of the
surface primitives is to provide model features that can be directly matched to data sur-
face patches, which is the use assumed in this paper. The intent is to provide model
features that closely correspond to extractable data features to reduce the representation
transformation ‘distance’.

The model surface patches are characterized similarly to the data patches (as described
in section 2) except that they are represented with a m subscript instead of a d subscript.
Not all of the shape information is currently modeled explicitly in the SMS scheme, but
all are straightforward and trivial extensions.

In addition to the four data patch primitive shapes, a full cylinder primitive exists,
which represents cylindrical surfaces that extend completely around the object, and hence
has no orientation about its axis. The description of the cylinder (see Figure 6) is similar
to the cylindrical patch. We simplify by bounding the actual feature with a section of
cylinder cut perpendicularly to the axis. The measurements taken from the cylinder are

the length (I,,) of the patch and the cylinder’s curvature (k). Additionally, we use the
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Curvature axis: G
Curvature: Km
Enclosing cylinder length: (1
Enclosing flat patch width: W (d)
Flattened patch axis: Qo

Figure 6: Cylinder Descriptions

position of the patch center (p,), and the direction of the cylinder’s axis (&,). Here,
the patch centre is defined to be the intersection of the axis with the plane perpendicular
to the axis that divides the mass of the cylinder in half. We also include the bounding

dimensions of the hemi-cylinder when flattened onto a plane (wn(¢)) with axis (a,n).

4 Constraints From The Different Patch Pairings

For us, the key data type in geometric reasoning for high-level computer vision is the
position. It represents the relative spatial relationship between two visual features (e.g.
world-to-camera, camera-to-model, or model-to-subcomponent). Positions are represented
using a 3-vector representing for relative translation and a unit quaternion (4-vector) for
relative orientation (of the form (cos(0/2), sin(6/2)@) for a rotation of § about the axis
).

The key geometric relationships concern relative position and have two forms — ezact
and partsally constrasned. An example of an exact form is: let object A be at global position

(F4,24), (rotation 74 and translation £4) and object B be at (up,tap) relative to A. Then,
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the global position of B is:
(FB,%8) = (raB * TA,TaB *ta * r'ip + taB)

where * is the quaternion multiplication operator and “ ' ” is the quaternion inverse
operator.

A partially constrained position is given by an inequality constraint, such as:
ta: > 50

This means that the z component of A’s global position is at least 50. Such a constraint
might arise from some a priort scene knowledge, or from observation of a fragment of a
surface.

Other relationships concern vectors or points linked by a common transformation, as
in TV, = ¥, or the proximity of points or vectors:

| P — Pa| <

Complications arise because each data measurement may have some error or uncer-
tainty, and hence the estimated values may also have these. Alternately, a variable may
be only partially constrained in the model or by a priorsi scene information. Hence, each
numerical quantity is represented by an interval [1] of possible values.

Each type of model-to-data surface feature pairing is given in the subsections below.
There are constraints given for each type of pairing, because, for example, the model-based
scene analysis program might decide that the curvature of a particular data patch is small,
and hence the data patch might be mis-classified as planar. Alternatively, a planar patch
might have a small curvature estimated because of noise. The decision about the pairings is
the responsibility of the scene analysis program, which then determines which constraints
are generated. Hence, constraints for all possible patch matchings are elaborated below.

In each of the subsections below we examine several patch relationships. The main
consideration is the extent to which we can constrain their relative position based on a
priori knowledge. For example, if we are observing rigid man-made identical objects then
we can assume that the observed data patch will be a subset of the corresponding model
patch. This is our assumption A3, and there are both stronger and weaker assumptions

considered. The assumptions (from weak-to-strong) are:
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A1 Both model and data patches are part of a larger surface of bounded size R (e.g. the

whole surface fits inside a sphere of radius R/2), but the patches need not overlap.
A2 The model and data patches must touch or overlap.
A3 The data patch is a subset of the model patch.

A4 The centroids of both the model and data patches correspond to the same point.

Note that each assumption is stricter than its predecessor and so any constraint that
applies when A1 holds also applies when, for example, A3 holds. Other assumptions can
be developed, such as “The data patch would have exactly the same shape as the model
patch if it were completely unobscured and no noise were present.”. These seem to generate
more complicated, somewhat heuristic constraints, or require substantial image processing
to extract the information needed to set up a simpler constraint.

The choice of which assumption to apply is currently up to the model matching software.
In our matching investigations, we typically use either assumption A2 or A3, depending
on whether rigid man-made or more free-form objects are used.

The position constraints are expressed algebraically, using the prefix transformation
T applied to some model feature (e.g. surface normal), and showing the relation the
transformed model feature must have with observed data features. Where possible, both
rotation and translation constraints are specified. Also some constraints are not as tight
as they could be to simplify their formulation.

In general, the constraints are of two forms, with rotation constraints of the form:
TUym-Ua2>T7

meaning the transformed model vector #,, lies within an angular range of a data vector

v;. Translation constraints are usually of the form:
(TPm — Pa) € I(7)

meaning the vector distance between the transformed model point and a given data point
lies within the interval vector [1]. Both 7 and I(F) are constants. The vectors @, and
Pm are usually constants given in the model, and ¥; and p; are usually observables. The

transform T is usually the desired unknown (i.e. the unknown position).
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I(7) is defined here by:

F=(rzryrs)
Then:
I(A ={(zv2):lz <l r: LIy I<Iry Ll 2 <] 7 [}

In other words, I(7) is the rectangular solid of R3® with principal diagonal corners ¥ and

—F. The interval vector expression I(&) + I(b) is defined to have the value:
{¢+d:ceI(@),de I(b)}
Note that this means that the uncertainity intervals are aligned with the coordinate axes,
which may introduce unnecessary uncertainity at times.
The translation constraints depend on the overlap assumptions and are all based on

displacements in three orthogonal directions determined by the surface normal (Zs), the

elongation axis (d@;) and the cross product (&) of the two:
5 fig X Gg
€4 ===
ll7a x |
If assumption A4 holds, then all translation constraints are of the form:

(TPm — Pa) € I(9)

and are not listed further below. (4 is the isotropic error on the observed point 5s).

4.1 Planar Data Patch

We assume that the observed data patch curvatures are low enough that it is classified as
being planar. It might actually be part of, for example, a cylindrical model patch if the
width across the axis were small enough, or if the data segmentation process produced
tessellated surfaces.

Each of the subsections below gives the constraints that can be generated assuming
the planar data patch is paired with a model patch of the given shape. The main rotation
constraints are based on aligning normals and elongation axes. The translation constraints

are largely based on proximity and distance between the designated points on the surface.
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4.1.1 Planar Data Patch - Planar Model Patch

The first rotation constraint relates the surface normals, within the observed angular error
of ¢, assuming Al:
Ty, - fig > cos(e)
If A3 holds, we can relate the surface orientations, because the bounding widths may
limit the possible rotations of the planar model patch about the data patch. This constraint
limits the rotation of the model surface in the plane of the data surface, such that it still

fits around the observed data patch:

Let:
wm($) = bounding width (see Figure 2) of model surface
at orientation ¢
wa($) = bounding width of the data surface at orientation ¢
0 = {0: Vo(wmn(d — 0) > wa(p) — b,} is the set of possible
rotations of the model that can fit around the data
d@n = the nominal unit vector in the plane of the model surface

(at orientation ¢,,)

@; = average orientation of @, over {1 (at orientation ¢;)
If size(?)/2 + B < 7 then:

T@,, - @4 > cos(size(0)/2 + B)
If more than one interval of angles exists in {), then each interval creates an independent
alternative constraint.

We illustrate this rotation constraint with an example. Assume that we have the model
and data patches given in Figure 7. For the sake of simplicity, assume that the figures both
lie in the plane of the paper, so that their surface normals point facing the viewer. The
nominal model direction vector (&, is shown along with the patch width (w,,(0)) assuming
that the vector corresponds with orientation ¢,, = 0. The data patch width (wa(4)) is

shown for another orientation ¢4 = 7 /4.
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Figure 7: Plane-Plane Constraint Example

A sketch of the two functions w,,(¢,,) and wy(@4) is shown next. Suppose that wn,(0) =
100, wm(7/4) = 50 and wp(r/2) = 30. Let wi(¢s) = 50 and 6§, = 0. From a casual

inspection of the two functions, Q is approximately (0,%]. This implies that the second

rotation constraint is approximately:

Tam - Gy > cos(% + B)

If assumption A4 holds, then a similar constraint can be developed, except where w(¢)

refers to the cross-section width about the patch centers.

All translation constraints have the form:

(TPm — Pa) € 1(ARy) + I(B&,) + I(Cey) + 1(7)

where the constants A, B and C depend on the specific assumptions as given below.

If assumption Al or A2 holds, then the orientation of @; is arbitrary, and is chosen to
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correspond with angle ¢4 = 0. Let:
M = ming(wm(4))

N = mazy(wm(4))
U = mazy(wm(d)) over ¢ — ¢m + ¢a € N

V =mazy(wn (¢ + 7/2)) over ¢ — ¢ + g € N

Asmp. A B C
Al | e/B*+C? | R—}(M +wa(¢a)) — 6.) | R — (M +wa(a+ 7/2) — 6,)
A2 evVBZ + C? (N + wa(g) + 6.) (N + wy(da + 7/2) + 6,)
A3 || eV/B?+C? 3(U —wa(da) + 8.) 3V —wa(da + 7/2) + 6,)

Then, these values imply that the example above produces the following constraint
parameters: M = 100, N = 30, U = 100, V = 50 and hence B = %(100 — 50 + 0) = 25,
C = (50 — 15 +0) = 17.5 and A = 30.5¢.

4.1.2 Planar Data Patch - Model Cylinder

This case assumes that the observed data surface has a low curvature or has been tesselated.
In any case, the scene analysis program has decided that the data surface should be
paired with a cylindrical model feature. One characteristic of this case is that there is no
curvature-based constraint on the orientation of the data axis about the complete cylinder.
Another characteristic is that the origin of the model feature lies on its axis, rather than
on its surface.

The only rotation constraint is given by the elongation of the patch, when compared
to the axis of the cylinder. If A3 holds, we can relate the model and data elongation axes,
within the observed angular error of §. This constraint limits the rotation of the model
surface in the plane of the data surface, such that it still fits around the observed data

patch:
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Let:
wm(#) = boundary width (see Figure 2) of the flattened model
surface at orientation ¢
wa(¢) = boundary width of the data surface at orientation ¢
1= {0:V(wm(d — 8) > wi(¢) — b,)} is the set of possible

rotations of the model that can fit around the data

-

dn = the vector in the flattened model surface corresponding to the
cylinder axis (at orientation ¢,,)

@y = average orientation of &, over ) (at orientation ¢4)
If size(2)/2 + B <  then:

T@, - a4 > cos(size()/2 + B)

If more than one interval of angles exists in {2, then each interval creates an independent
alternative constraint.

The translation constraints have the form:
(TPm — Pa + ér‘id) € I(A7g) + I(Bdy) + 1(Ccy) + I1(7)
where the constants A, B and C depend on the specific assumptions as given below. Let:
M = miny(wn(9))

N = mazy(wm(d))
U = mazy(wm(d)) over ¢ — ¢y + ¢4 € 0

V = mazy(wn(¢ + 7/2)) over ¢ — ¢ + ¢4 €0

17



Asmp. A B C "

Al (| e/B?+C? | R—1(M +wa(da)) — 6.) | R — 2(M + wa(da + 7/2) — 6,)

A2 | e/B*+C? 3(N + wi(da) + 6.) 3(N + wa(da + 7/2) + b.)
i A3 €y B? + Ci %(U — wd(:ﬁd) + 5“,) %(V — wd(qﬁd + 7(/2) -+ 5w)

4.1.3 Planar Data Patch - Cylindrical Model Patch

This case exploits the plane-plane case of Section 4.1.1, but uses some substitutions from
the cylindrical model features. The assumption is that the data is cylindrical, but noise
has caused it to appear to be planar. This means that the curvature axis is not inferred,

so only the boundary constraints can be used. The following substitutions are used:

Model Cylindrical Patch Feature | Corresponding Plane Model Feature

—

Qpm Qm

) ()

4.1.4 Planar Data Patch - Model Cone

This case exploits the plane-plane case of Section 4.1.1, only using some substitutions from
the conical model features. The assumption is that the data is conical, but noise has caused
it to appear to be planar. This means that the curvature axis is not inferred, so only the

boundary constraints can be used. The following substitutions are used:

Mode!l Cone Feature | Corresponding Plane Model Feature
u a’;ﬂl Em
| el wm(9)

4.1.5 Planar Data Patch - Generic Model Patch

This case exploits the plane-plane case of Section 4.1.1, only using some substitutions from

the generic model patch features. The assumption is that the data is generic, but noise
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has caused it to appear to be planar. This means that the curvature axes are not inferred,

so only the boundary constraints can be used. The following substitutions are used:

" Model Generic Feature { Corresponding Plane Model Feature

Il 5 & ||
|| Wm(4) wm(4) ||

4.2 Cylindrical Data Patch

We assume that the observed data patch curvatures are such that the patch is classified as
cylindrical. It might be part of, for example, a generic model patch if the portion across the
second axis were small enough, or if the data segmentation process produced unexpected
results.

Each of the subsections below gives the constraints that can be generated assuming
the cylindrical data patch is paired with the model patch of the given shape. The main
rotation constraints are based on aligning normals and curvature axes. The translation
constraints are largely based on proximity and distance between designated points on the

surface.

4.2.1 Cylindrical Data Patch - Planar Model Patch

This case exploits the plane-plane case of Section 4.1.1, assuming that the observed data
cylindrical patch is a noise-corrupted planar patch. The data observations taken for the
cylindrical patch are not directly usable for the planar patch, so the flattened boundary is

used instead. The following substitutions are used:
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Data Cylindrical Patch Feature | Corresponding Plane Data Feature
fipd a1
wa(¢) wa(¢)
bu )]
B g

4.2.2 Cylindrical Data Patch - Cylindrical Model Patch

The first rotation constraint relates the curvature axes, within the observed angular error

of 3.

Two independent constraints are generated for the two possible orientations of the elon-

gation axis ay.

A second constraint relates the surface normal vectors, depending on the surface rela-
tionship assumptions (i.e. how much the patches overlap affects how closely the normal’s
can be related). This constraint limits the orientation of the model surface relative to the

cylindrical data surface. If 7 < 7, the following constraint can be added:

where:

Ta@,, - a; > cos(f)

T - fig > cos(7)

Assumption

T

Al

Rk,, — %0,,;— %04+e

A2

3(0m +83) +o0+e

A3

%(Om—04)+a+e

ll

A4

€

The translation constraints depend on the overlap assumptions, given that the data
match must lie somewhere along the cylinder of which the model patch is part. All are

based on displacements in three orthogonal directions determined by the surface normal
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(74), the cylinder axis (@;) and the cross product (&;) of the two. Then, the position

constraints have the form:
(TPm — pa + ERy) € I(ARiy) + I(Baa) + I(Cé&) + I(7)
A=FE +e/B%+ C?

where the constants B, C and E depend on the specific assumptions as given below.

Asmp. B C E
Al | R—3(n+1ls+8) - L
A2 Hlm+1la+ &) Lsm( (0 + 84) + 0)) 2—:;(1 — cos(3(0m + 0a) + 0))
A3 Hlm—la+ &) ,‘—m—.fsm(;(ﬂ,,l — 64) + o)) ?:_...'(1 — cos(3(0m — 0a) + o))

4.2.3 Cylindrical Data Patch - Model Cylinder

The rotation constraint relates the curvature axes within the observed angular error of §:
Ta,, - @ > cos(B)

Two independent alternative constraints are generated for the two possible orientations of
the elongation axis a;.

The translation constraints depend on the overlap assumptions, given that the data
patch must lie somewhere along the model cylinder. All are based on displacements in
three orthogonal directions determined by the surface normal (), the cylinder axis (@)

and the cross product (;) of the two. Then, the position constraints have the form:
o1 r . . .
(TPm — Pa + :_c_nd) € I(AR,) + I(Bay) + I(Céy) + I1(F)

where the constants A, B and C depend on the specific assumptions as given below.

Asmp. || A B C
Al (| e/B*+C? |[R—L(lm +1a+8) in(e) + Rsin(B)
A2 | eVBT+C?| i(lm+laté) ( ) + 3(lm + la) sin(B)
A3 || eV/BT+C?T| Yim—li+8) in(€) — 2(Im + la)sin(B)
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4.2.4 Cylindrical Data Patch - Model Cone

If we could not estimate the cone’s rate of radius change, we could use the reduced con-

straints by treating it as if it were a cylinder. The following substitutions are needed for

using the constraints of section 4.2.2:

" Model Cone Feature | Corresponding Cylinder Feature
| (Rmazm + Kminm) /2 Km

G G

O O

ln I

4.2.5 Cylindrical Data Patch - Generic Model Patch

If we could not estimate the generic patch’s second curvature magnitude, we could use the
reduced constraints by treating it as if it were a cylinder. The following substitutions are

needed for using the constraints of section 4.2.2. Here there are two possible substitutions

for the two axes.

Model Generic Feature (f = 1 or 2) | Corresponding Cylinder Feature
Kim o
Gim am
Oirm b
W(3—i)m ln

4.3 Conical Data Patch

We now assume that the observed data patch curvatures are such that it is classified as

being conical.

Each of the subsections below gives the constraints that can be generated assuming the

conical data patch is paired with the model patch of the given shape. The main rotation
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constraints are based on aligning normals and curvature axes. The translation constraints

are largely based on proximity and distance between the designated points on the surface.

4.3.1 Conical Data Patch - Planar Model Patch

This case exploits the plane-plane case of Section 4.1.1, assuming that the observed conical

data patch is a noise-corrupted planar patch. The data observations taken for the conical

patch are not directly usable for the planar patch, so the flattened boundary is used in-

stead. The following substitutions are used:

Data Cone Feature | Corresponding Plane Data Feature
4 aq
wa(4) wa (@)
b ]
B g

4.3.2 Conical Data Patch - Model Cylinder

We assume that noise has caused a portion of a cylinder to be observed as conical patch.

The following substitutions are used in the constraints of section 4.2.3:

Data Cone Feature | Corresponding Cylindrical Patch Feature
ay aq
ly lg
B B
) )]

4.3.3 Conical Data Patch - Cylindrical Model Patch

We assume that noise has caused a cylindrical patch to be observed as conical. The fol-

lowing substitutions are needed for using the constraints of section 4.2.2:
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Data Cone Feature | Corresponding Cylindrical Patch Feature
@y N ag
04 ¥
l ¥
B
6 )]

4.3.4 Conical Data Patch - Model Cone

The first rotation constraint relates the cone axes, within the observed angular error of 3:
Té@, - @3 > cos(f)

Here, only one constraint is generated, because the orientation of the cone axis can be
deduced from the data.

A second constraint relates the surface normal vectors, depending on the surface re-
lationship assumptions. This constraint limits the rotation of the model surface around
the conical data surface, and is similar to the cylinder-cylinder constraint, except that the
normals are not diametrically opposed when on opposite sides of the cone. The constraints
are of the form:

Ty, g 2>T

where:

Assumption T ' "
=1
Al s
A2 ﬁ(cos(%(ﬁm +03) + 0 + €) + p%)
A3 i (cos(3(0m — 0a) + 0 + €) + o)
A4 o1 (cos(€) + o)

24



The translation constraint is simpler, in that it does not depend on the overlap as-
sumptions, because the tip of the cone is a fixed point deducible from both the model and
data. The constraint is based on displacements in three orthogonal directions determined
by the surface normal (1Z;), the cone axis (@;) and the cross product (&;) of the two. Then,

the position constraint has the form:

- E E
(Ttm — Pa+ \'i_ﬁd + P @y) € I(Any) + I(Ba,) + I(Ces) + I(7)

d PmKd
E=p% +1
where the constants A, B and C are:
| A B c
BE_ E | oF E , BE
n a\/-E-i_ PmKd % + Pm 9’6: + PmKd

4.3.5 Conical Data Patch - Generic Model Patch

We assume that noise has caused a generic patch to be observed as conical. Because we
cannot align the features properly, we treat this case as if it were a cylinder-cylinder case.
The two curvatures of the generic patch mean that two possible substitutions are allowed,
but one might be eliminated because of incompatibility of curvature signs or magnitudes.

The following substitutions are needed for using the constraints of section 4.2.2:

Model Generic Feature (£ = 1 or 2) | Corresponding Cylindrical Feature
Kim Km
Gim Gm
Oim Om
W(s—i)m Im
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Data Cone Feature | Corresponding Cylindrical Feature
dy - aq
64 04
la lq
& &
B B
o

4.4 Generic Data Patch

We assume that the observed data patch curvatures are such that it is classified as being
generic; that is, it has two non-zero curvatures. The curvatures may be either positive or
negative. The data patch might be part of, for example, a cylindrical model patch if the
portion along the axis were small enough that the noise gave the impression of curvature.

Each of the subsections below gives the constraints that can be generated assuming the
generic data patch is paired with the model patch of the given shape. The main rotation
constraints are based on aligning normals and curvature axes. The translation constraints

are largely based on proximity and distance between the designated points on the surface.

4.4.1 Generic Data Patch - Planar Model Patch

This case exploits the plane-plane case of Section 4.1.1, assuming that the observed generic
data patch is a noise-corrupted planar patch. The data observations taken for the generic
patch are not directly usable for the planar patch, so the flattened boundary is used in-

stead. The following substitutions are used:

Data Generic Feature | Corresponding Plane Data F eature]l
Gpd a4
wa(4) wa(¢)
6w 4 i
B g |
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4.4.2 Generic Data Patch - Model Cylinder

Perhaps a cylinder was observed as a generic patch because of noise, but we use constraints
derived from treating it as if it were a cylinder. The following substitutions are needed

for using the constraints of section 4.2.3. There are two possible substitutions for the two

generic patch axes.

" Data Generic Feature ({ = 1 or 2) | Corresponding Cylinder Feature
iq ay
W(3-4)d la
B p
LR )]

4.4.3 Generic Data Patch - Cylindrical Model Patch

Here, a cylindrical patch was observed as a generic patch because of noise, but we use
constraints derived from treating it as if it were a cylinder. The following substitutions
are needed for using the constraints of section 4.2.2. There are two possible substitutions

for the two generic patch axes.

Data Generic Feature (i = 1 or 2) | Corresponding Cylinder Feature
diq Gq
0ia b4
W(s—i)d lq
B B
5; &
o; o

27



4.4.4 Generic Data Patch - Model Cone

We assume that noise has caused a conical patch to be observed as generic. Because we
cannot align the features properly, we treat this case as if it were a cylinder-cylinder case.
The two curvatures of the generic patch mean that two possible substitutions are allowed,
but one might be eliminated because of incompatibility of curvature signs or magnitudes.

The following substitutions are needed for using the constraints of section 4.2.2:

|| Data Generic Feature (¢ = 1 or 2) | Corresponding Cylindrical Feature
;g dq

" 054 b4

" W(s-i)d la
i

| i
5,' ' 61

Model Cone Feature | Corresponding Cylindrical Feature "
';'('Cmazm + K'mi'nm) Km

Em Zim
Om O
b I

4.4.5 Generic Data Patch - Generic Model Patch

There are three rotation constraints that relate the curvature axes and the observed nor-
mal. Because there are two directions of curvature, it is possible for there to be four
distinct orientations for the surface (2 pairings and 2 orientations of the curvature axes) at
approximately m/2 rotations about the normal. However, it may be possible to eliminate
two of the pairings by showing that the signs or magnitudes of the corresponding curva-
tures are incompatible. In the constraints given below, it is assumed that the pairings have

already been made.
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The first constraint relates the surface normal vectors, depending on the surface rela-

tionship assumptions. If , < 7, the following constraint can be added:
Ty, - ig > cos(ry)

where:

Assumption m
Al R&ym + Riam — 3(01m + 014 + B2 + 024) + €
A2 %(01'" + 614) + %(921;; +033) + 01+ 02+ €
A3 3(01m — 014) + 3(O2m — 023) + 01+ 05 + €
A4 ]

The second constraint relates one curvature axis, depending on the surface relationship

assumptions. If r, < =, the following constraint can be added:
TGy - G1a > cos(72)

where:

Assumption T2
Al Rism — 3(82m + 024) + By
A2 3(O2m + 0240) + 02 + By
A3 3(O2m — 034) + 02 + Bu
A4 b

The third constraint relates the other curvature axis, depending on the surface rela-

tionship assumptions. If 73 < 7, the following constraint can be added:
T @am - G24 > cos(3)

where:
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"_Aﬁumption T3
AL | Rium— (01 + 012) +ﬂzJJ
A2 3(01m + 614) + 01 + B,
A3 3(01m — 012) + 01 + B2
A4 P2

The translation constraints depend on the overlap assumptions, given that the data
match must lie somewhere along the generic surface of which the model patch is part.
All are based on displacements in three orthogonal directions determined by the surface
normal (74) and the two curvature axes (@4, @24). Then, the position constraints have the
form:

(TPm — Pa + Dity) € I(ARy) + I(Ba,g) + I{Caza) + I(7)

where the constants A, B, C and D depend on the specific assumptions as given below.

Asmp. A

|

Al ||D+e\/m

K2m

A2 "D+e\/m'—2

—=8in(3(02m + 824) + 02)

A3 | D+evBTRCE

;'};'Sin(%(02m — 023) + 03)

Asmp. C

Al .’i

A2 :,1:31'"(%(91,;‘ + 014) + 01)

A3 | -sin(3(0im — 6014) +01)

|| Asmp. H D

Al E ;%’; ;;1:)
A2 z,;l,m (1 — cos(3(61m + 614) + 01)) + 55— (1 — cos(5(02m + 624) + 02))
A3 o (1 — c0s(3 (b1 — 61d) + 1)) + (= cos(3(02m — 024) + 02))
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5 Evaluation Of The Constraints In A Value-Passing
Network

We [10] have been using a value passing network based on interval arithmetic [1] to solve
the constraints, though other representation and solution techniques are possible, such
as the symbolic algebra technique of Brooks [3] or the statistical techniques of Durrant-
Whyte [6]. The networks are created from an underlying algebraic description of three-
dimensional geometric relations and transformations. These networks implement the five
key visual geometric reasoning functions: locate (calculate position from model-to-data
pairings), predict (predict data position from model and estimated position), transform
(composition of reference frame transformations), inverse (invert a transformation) and
merge (reconcile two or more transformations) [14]. The networks also produce tighter
bounds than simply using symbolic algebra and have greatly improved efficiency (over e.g.
ACRONYM’s constraint manipulation system (3], which used a symbolic algebra technique
to estimate bounds on all quantities).

The construction and evaluation of these networks was described in [10], but a quick
overview is given now. The computation implemented by an algebraic network is given by
a set of algebraic equalities and inequalities (determined by the problem being solved).

The basis of the network is the propagation of updated bounds, through functional
units linked according to the algebraic problem specification. A simple example is based
on the inequality:

ALB-C

By the SUP/INF calculus (e.g. [3]), the upper bound of A is constrained by:
SUP(A) < SUP(B) — INF(C)
as are the lower bound of B and upper bound of C:
INF(B) > INF(A) + INF(C) SUP(C) < SUP(B) — INF(A)

Thus, one can use the value of SUP(B) — INF(C) as an estimated upper bound for A,

etc. These relationships are used to create the network for this single inequality, which is
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Figure 8: Small Constraint Network Example

shown in Figure 8. As new bounds on B are computed, perhaps from other relationships,
they propagate through the network to help compute new bounds on A and C.

There are two advantages to the network structure. First, because values propagate,
local improvements in estimates propagate to help constrain other values elsewhere. Sec-
ond, these networks have a natural wide-scale parallel structure (e.g. 1000+) that might
eventually lead to extremely fast evaluation.

For a given problem, the networks can be complicated, particularly since there may be
both exact and heuristic bounding relationships. For example, the network expressing the
composition of two 3D reference frame transformations to give a third contains about 2000
function nodes (of types ‘+’, ‘=%, ‘¥, ¢/°, ‘sqrt’, ‘max’, ‘>’, ‘if’, etc.). Though the network
is formulated for parallel evaluation, simulated serial evaluation is also fast, because small
changes are truncated to prevent trivial propagations, unlike other constraint propagation
approaches (e.g. [5]). Convergence is guaranteed (or inconsistency detected) because
bounds can only tighten (or cross) and there must be a minimum change for propagation
to occur.

The creation of the networks is time-consuming, requiring a symbolic analysis of the
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algebraic inequalities. Fortunately, there is a natural modular structure arising from the
types of problems encountered during scene analysis, where most geometric constraints are
of the type described above. Hence, it is possible to pre-compile network modules for each
relationship, and merely connect a new instance of the module into the network as scene

analysis proceeds. To date, we have identified and implemented network modules for:

SS - two scalars are close in value

PP - two points are close in location

VYV - two vectors point in nearly the same direction

DOTS3 - the dot product of two 3-vectors exceeds a scalar

DOTS3N - the absolute value of the dot product of two 3-vectors is less than a scalar

UNITS3 - enforcing a unit 3-vector constraint

UNIT4 - enforcing a unit 4-vector constraint

TP - a transformation links a pair of points

TV - a transformation links a pair of vectors

TV2 - a transformation links two pairs of vectors

TT - a transformation maps from one position to a second position
by a third relative position

P2V - a vector can be defined by two points

QW34 - a quaternion is equivalent to an axis and an angle

For example, the UNIT3 module is defined by the following constraints between the

components of a vector (pz, py,P:):

pi = (1—p} —p})/pi

| pi |< /1 -2 —p}
| pi |[< 1.7321— | pi | — | px |

| pi |< 1.4143— | p; |
lpi|I€1
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Rigid Subcomponent Hierarchy Corresponding Geometric Network

A T,_a

Ta-B TT| | TT—Ta-c

T,-8 Ty—c

Figure 9: A Simple Geometric Reasoning Network

The first two relationships are exact, and the last three give correct, but weaker bounds on
the given quantities. The weaker bounds are useful because (1) it is.not always possible for
the network to use the exact bounds (e.g. when dividing by an interval containing zero)
and (2) the initial bounds are sometimes so unconstrained that the weaker relationships
provide better bounding. Other weaker bounds and formulations of the relationships are
possible, and could be included in a network module.

We now include a simple example of network use. Suppose subcomponents B and C are
rigidly connected to form object A. Given the estimated positions of the subcomponents in
the global coordinate system, T,_p and T,_¢, and the transformations between the object
and subcomponent coordinate systems, T4_p and T4_¢, then we can estimate the global
object position, T,_4, using two instances of the “T'T” module listed above. Figure 9 shows
this network. Notice that each subcomponent gives an independent estimate of T,_4, so
that the network keeps the tightest bounds on each component of the position. Any tighter
resulting bounds then propagate back through the modules to refine the subcomponent

position estimates.
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6 Examples

A great many constraints can be derived using the results presented so far, and it is not
useful to present experiments demonstrating all of them. Instead, this section will present

results from the four main patch pairing relationships:
1. planar model patch to planar data patches,
2. cylindrical model patch to cylindrical data patches,
3. conical model patch to conical data patches and
4. generic model patch to generic data patches

for both assumptions A2 (overlap) and A3 (data subset of model).

The experiments will involve the estimation of the reference frame of a single data
patch, given its observation, and applying the constraints given in section 4.

The experiments start with a known model surface normal (7, = (0,0, —1)), axis (@n
or @, = (1,0,0) for the generic patch) and central point (5, = (0,0,0)).

We then randomly pick a rotation quaternion (distributed uniformly over the 4-dimensional
unit sphere) and a translation (each component distributed uniformly over the range +100).
Using this position (Pi,.), we transform the input features to derive some scene features:
1is, 4, and p,.

The scene features are then corrupted with randomly generated noise to generate the

observed features: fig, @3 and ;. The corruptions were uniformly distributed subject to:
1, - fig > cos(e)
d, - @3 > cos(f)
(% — Pa) € I()
The observed features were then paired with the modeled features, to derive the geo-
metric position constraints, based on the results of sections 4.1.1, 4.2.2, 4.3.4 and 4.4.5.

The constraints depended on the assumptions made and the extent of the patches. Here,

we used assumptions A2 and A3, as discussed in the experiment details below.
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Figure 10: Geometric Reasoning Network For Estimating Position

The constraints were input into a geometric reasoning network [10] set up for evaluating
these constraints. Figure 10 shows the network for the plane-plane, cylinder-cylinder
and cone-cone experiments described below. (The generic-generic network is similar, but
slightly more complicated.) This network implements a SUP/INF interval bounding of all
components of the position, as a function of the intervals bounding the inputs. The inputs

for this network are:

e each component of the model vectors 7i,,, @ and p,, extended to form intervals with

width 0.0001 (a small value, as each quantity needs to be an interval)
e the data vectors iy and @y extended to form intervals with width 0.0001,

e the estimated position p; extended to form a larger interval according to the trans-

lation constraints given in Section 4 and
e the rotation dot product constraints dot, and dot, given by the rotation constraints
T#,, - ig > dot,
Ta,, - a; > dot,
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The main component of the network is the “TV2” module near the center. This module
relates the input and output vectors according to the position P (near the bottom left)
and is defined and created from the algebraic relationships between the input and output
vectors. Similarly, the translation component of P is estimated by the “TP” module that
relates the model and observed feature points. There are also two “DOT3” modules that
implement the rotation dot product constraints. The vectors n; and a; are intermediate
results. Finally, there are several “UNIT3” and “UNIT4” modules that enforce unit 3-

vector and 4-vector constraints on the various vectors. |

This sets up the network for estimating the position P. We then evaluate the network
and extract the estimate position.

The relationship between the true position and the estimated position provides the sta-
tistical output described below. All the reported results below are based on 100 randomly
generated trials of the particular experiment. The data from the same 100 trials was used
for each value of the percentage overlap parameter, to compare the results.

The first experiment is for the model plane - data plane case. The following parameters

were used (where p is a percentage parameter described below):

Model Value Data Value Data Uncertainity
wm (4) * | wa(9) pwm () | b 1.0
oy (0,0,-1) | 724 transformed | € 0.1
Gm (1,0,0) | @4 transformed | 8 0.1
Prm (0,0,0) | pa transformed | 4 1.0

* - the test figure was a rectangle of length 100 and width 30

The experiment was run using assumptions A2 and A3 and the parameter p was allowed
to vary from 1.0 to 0.1 in steps of 0.1. This allowed the exploration of the constraint
obtainable because the patch was limited in its ability to rotate relative to the model
patch. In general, we can see below that as the size of the data patch tends to zero,
the two assumptions give nearly the same results, as is expected (because the effective
translation constraints become the same).

In all experiments, the true object position was contained within the estimated interval

position, so the constraints appear to be correct. There is then the question of how tight
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the constraints are, and this is the main point of the experiments.

Five statistics were extracted from the experiments:

1. the number of times that the rotation had at least two independent constraints and

hence was fully constrained (though subject to error).

2. the mean angle between the input and output quaternion vectors (a measure of how

well the rotation was estimated, and ideally should be zero).

3. the mean width of the interval of possible values for a component of the rotation
quaternion (a measure of how tight the estimates are). The geometric mean is used

because it is a measure of the size of the volume of the uncertainity.

4. the mean distance between the input and estimated translation (a measure of how

well the translation was estimated, and ideally should be zero).

5. the average width of the interval of possible values for a component of the translation
(a measure of how tight the estimates are). The geometric mean is used again because

it is a measure of the size of the volume of the uncertainity.

More precisely, the error measures are defined by:

Let:
Angle = 7{,— N, cos‘l(zio;Qm + duigui + 32:‘42.‘ + as.“ls.‘)
Quat Width = (& SN width(Do:) * width(Dy;) * width(Dy) * width(Ds;))
Dist = £ TN, \/(tz — v20)? + (b — vys)? + (8 — v5)?
Dist Width = (& SN, width(Ty)  width(Ty:) * width(T))3
where

gji is the j** component of the i* true scalar rotation quaternion §
d;i is the mean value of the j** component (D;;) of the
ith estimated rotation interval quaternion D;

d;; is the unit-quaternion normalized value of d;
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Table 1: Plane-Plane Parameter Estimation Statistics for Assumption A3

[ p (%) | Constr. [ Angle | Quat. Width | Trans. [ Trans. Width |

100 100 | 0.23 0.69 1.01 3.82
90 100 | 0.27 0.74 1.01 12.74
80 100§ 0.31 0.77 1.01 22.76
70 100} 0.41 0.89 1.01 32.80
60 100 | 0.46 0.956 1.01 44.52
50 100 | 0.53 1.04 1.01 b6.83
40 100 | 0.77 1.26 1.01 72.26
30 100 | 1.07 1.48 1.01 92.86
20 O 1.42 1.62 1.01 100.28
10 0| 1.42 1.62 1.01 107.20

Table 2: Plane-Plane Parameter Estimation Statistics for Assumption A2

[ (%) ]Constr. [ Angle | Quat. Width | Trans. | Trans. Width |

100 0| 1.42 1.562 1.01 182.89
90 o 1.42 1.562 1.0 176.03
80 O 1.42 1.62 1.01 169.17
70 0| 1.42 1.62 1.01 162.31
60 o 1.42 1.62 1.01 166.44
b0 0o 1.42 1.62 1.01 148 .67
40 0] 1.42 1.62 1.01 141.69
30 0| 1.42 1.62 1.01 134.81
20 0 1.42 1.62 1.01 127.92
10 o 1.42 1.562 1.01 121.02

t.; is the mean value of the x-component (T%;) of the i** estimated
translation interval vector T:
v, is the x-component of the i** true translation o

width(X) is the width of scalar interval X

The results of the experiment for assumption A3 are shown in Table 1, where the angle
is expressed in radians and the translation is in arbitrary units. As the shrinkage percentage
was increased, the rotation and translation errors increased, as expected, because the model

patch was freer to move about the data patch. At 20% there was a dramatic increase in
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the errors, because the patch size was small enough that it could rotate freely within the
model patch, and hence only one direction vector was effectively constrained (the surface
normal). The mean translation error was constant and mainly resulted from the isotropic
error on the observed central point.

When assumption A2 was used, the results in Table 2 were obtained. Here, only one
rotation constraint was obtained (that of the aligned normals). This explained the con-
stant large rotation error. As before, the translation error was constant and small. The
translation error range started larger, because of the larger area over which the model sur-
face could move and still have overlap with the data surface. However, unlike the previous
case (i.e. using assumption A3), as the percentage of the observed surface decreased, the
translation error also decreased, because the model surface had to overlap with the smaller
data surface.

When the experiments were run for the cylinder-cylinder case, the experimental setup
was similar to the plane-plane case, except here the axis is always well constrained, whereas
the normal is not so. A model cylinder patch of length 100, radius 20 and angular width
1.0 was used. The linear length and angular width were reduced by fixed percentages and

the position estimated. The error tolerances were:

Model Value Data Value Data Uncertainity
ln 100 | 4 100p | & 1.0
0, 1.0 | 6,4 10p | o 0.1
Km 0.05 | not used not used | not used not used
fim  (0,0,-1) | 7ig transformed | € 0.1
in (1,0,0) | @; transformed | 8 0.1
Pm  (0,0,0) | B4 transformed | ~ 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
3 and 4.

Under assumption A3, the surface normal was progressively less constrained, whereas

the axis was always estimated well. Since the normal was always partly constrained,
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Table 3: Cylinder-Cylinder Parameter Estimation Statistics for Assumption A3

[ p (%) | Constr. | Angle [ Quat. Width [ Trans. | Trans. Width |

100 100 | 0.36 0.79 1.02 .75
90 100 | 0.42 0.89 1.03 12.256
80 100 | 0.46 0.94 1.04 18.64
70 100 | 0.48 0.97 1.06 26.02
60 100 | 0.50 1.02 1.10 31.40
50 100 | 0.566 1.07 1.16 37.79
40 100 0.61 1.12 1.25 44.18
30 100} 0.64 1.17 1.37 b0.66
20 100 | 0.69 1.22 1.863 66.95
10 100 | 0.77 1.26 1.72 63.33

Table 4: Cylinder-Cylinder Parameter Estimation Statistics for Assumption A2

Lp (%) | Constr. | Angle [ Quat. Width [ Trans. | Trans. Width |

100 100 1.13 1.48 5.563 132.41
90 100} 1.12 1.48 5.10 126.27
80 100 1.11 1.47 4.68 120.10
70 100 | 1.09 1.47 4.27 113.89
60 100 | 1.07 1.46 3.88 107.64
b0 100 | 1.04 1.44 3.561 101.38
40 100 1.01 1.42 3.16 96.08
30 100 | 0.99 1.41 2.82 88.77
20 100 ] 0.95 1.38 2.561 82.42
10 100 | 0.84 1.32 2.22 76.08
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this meant that there was no catastrophic breakdown in rotation estimation as the patch
became small, but the mean and interval errors increased smoothly as the data patch size
decreased.

Under assumption A2, the rotation was still always constrained, though not as well as
under assumption A3, because the axis is observable and the normal is partly constrained.
Here, the rotation errors smoothly decreased as the data patch became smaller, (as this
reduced the allowable range of the surface normal), but were worse than under assumption
A3. The translation errors decreased - as the smaller patch sizes meant a smaller range of
allowable positions, given the overlap assumptions.

When the experiments were run for the cone-cone case, the experimental setup was
similar to the cylinder-cylinder case. The linear length and angular width were reduced

by fixed percentages and the position estimated. The error tolerances were:

Model Value Data Value Data Uncertainity
I 100 | I4 100p | & 1.0
0. 1.0 | 64 10p | o 0.1
Prm 0.333 | not used not used | not used not used
Km 0.03 | kq 003 | x 5.0
fim (0,0,-1) | fig transformed | ¢ 0.1
dmn (1,0,0) | @4 transformed | 8 0.1
pm  (0,0,0) | Pa transformed | 4 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
5 and 6.

Under assumption A3, the surface normal was progressively less constrained, whereas
the axis was always estimated well and produced results comparable to the cylinder-
cylinder case shown in Table 3. Since the normal was always partly constrained, this
meant that there was no catastrophic breakdown in rotation estimation as the patch be-
came small. Because the cone tip could be inferred from the normal, axis and observed

curvature, the translation estimates were independent of patch size. The tip position error
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Table 5: Cone-Cone Parameter Estimation Statistics for Assumption A3

[ p (%) | Constr. | Angle [ Quat. Width | Trans. [ Trans. Width |

100 100 | 0.31 0.76 | 11.1% b3.83
90 100 | 0.41 0.88( 11.11 63.83
80 100 | 0.45 0.92 | 11.11 63.83
70 100 | 0.b2 0.99 | 11.11 563.83
60 100 | 0.59 1.03| 11.11 63.83
50 100 | o0.61 1.06 | 11.11 63.83
40 100} 0.64 1,10 11.11 53.83
30 100 | 0.66 1.14 | 11.11% 63.83
20 100 { 0.70 1.18 | 11.11 63.83
10 100} 0.75 1.21 | 11.11 63.83

Table 6: Cone-Cone Parameter Estimation Statistics for Assumption A2

| p (%) | Constr. | Angle | Quat. Width [ Trans. | Trans. Width |

100 100 | 1.07 1.44 | 11.11 63.83
90 100] 1.06 1.43 ] 11.11 b3.83
80 100} 1.02 1.41 11.11 63.83
70 100 | 1.01 1.40| 11.11 63.83
60 100} 0.99 1.39 | 11.11 63.83
50 100 | 0.97 1.37 1 11.11 63.83
40 100 | 0.94 1.36| 11.11 63.83
30 100 | 0.91 1.32 | 11.11 53.83
20 100 | 0.87 1.30] 11.11 63.83
10 100 | 0.82 1.26 | 11.11 53.83
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was moderate (largely because of errors in the observed curvature).

Under assumption A2, the surface normal was still always constrained, though not as
well as under assumption A3. Here, the rotation errors smoothly decreased as the data
patch decreased, but were worse than under assumption A3. Results were comparable to
the cylinder-cylinder case errors shown in Table 4. As under assumption A3, the translation
errors were constant.

When the experiments were run for the generic-generic case, the experimental setup
was similar to the plane-plane case, except in one respect: a second curvature axis was
estimated, and this allowed the introduction of two additional TV2 rotation constraint
modules into the network (altogether pairing: 4:@14, fl4:@2q and @y4:d24).

As before, the angular widths were reduced by fixed percentages and the position esti-

mated. The error tolerances were:

Model Value Data Value Data Uncertainity
01m 1.0} 614 1.0p | o1 0.1
Oz 1.0 | 8,4 1.0p | o, 0.1
Kim 0.05 | not used not used | not used not used
Kam 0.10 | not used not used | not used not used
fim  (0,0,-1) | g transformed | € 0.1
Gim . (1,0,0) | @14 transformed | £y 0.1
dym  (0,1,0) | @24 transformed | B; 0.1
pm  (0,0,0) | Pa transformed | 4 1.0

The same statistics were obtained as for the plane-plane case and the experiments were
run for both assumptions A2 and A3. The results for the experiments are shown in Tables
7 and 8.

As with the cylinder-cylinder case under assumption A3, the surface normal was pro-
gressively less constrained, whereas the axis was always estimated well. The third axis
constraint did not produce better rotation estimates than with the cylinder-cylinder case,
because here the axis correspondences could not be made so accurately. The translation

estimates also increased smoothly, but were better than those of the cylinder case, largely
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Table 7: Generic-Generic Parameter Estimation Statistics for Assumption A3

 p (%) | Constr. | Angle | Quat. Width | Trans. [ Trans. Width |

100 100 | 0.40 0.80 0.99 5.29
90 100 | 0.48 0.91 1.01 6.98
80 100 | 0.54 1.00 1.06 8.69
70 100 | 0.64 1.13 1.12 10.43
60 100 | 0.67 1.21 1.24 12.18
b0 100 0.75 1.30 1.39 13.96
40 100 | 0.84 1.38 1.60 16.74
30 100 | 0.94 1.45 1.85 17.863
20 100 | 0.98 1.48 2.16 19.33
10 100 | 1.06 1.62 2.60 21.12

Table 8: Generic-Generic Parameter Estimation Statistics for Assumption A2

” p (W) I Constr. ] Angle l Quat. Width | Trans. | Trans. Width “

100 100 1.13 1.64 8.37 39.29
90 100 1.13 1.63 7.71 37.83
80 100 | 1.13 1.63 7.08 36.32
70 100} 1.13 1.62 6.47 34.77
60 100 | 1.13 1.62 5.87 33.18
10) 100 | 1.13 1.61 5.30 31.564
40 100 | 1.13 1.61 4.76 29.86
30 100 | 1.13 1.60 4.26 28.16
20 100} 1.12 1.69 3.76 26.42
10 100 1.11 1.68 3.31 24.67

because of the different radii and the curved surface allowed less spatial separation than
along the cylinder.

Under assumption A2, the errors again smoothly decreased as the patch size decreased,
but were worse than under assumption A3, as was expected. The rotation mean error and
range were roughly constant, whereas the translation error and range decreased substan-

tially as patch size decreased.

45



7 Discussion

The paper identified several geometric constraints for estimating surface positions, given
information about the shapes of the patches and the relationships between the model and
data patches. The constraints were specified for what we felt were the most important
patch shapes and model-to-data relationships. The experiments of the last section showed
both that the constraints are valid, and how well they perform.

We would like to now discuss some of the implications of the constraints and experi-
ments.

For simplicity and uniformity, we mainly used properties from a width bounding of the
patches. Clearly, there are some boundary shapes (such as with a long, narrow protrusion)
where this uniform bounding loses information. Other types of bounding could be devel-
oped; however the use of the width did allow a precise statement of the range of allowable
rotations. Moreover, most of the patch types currently used in our scene analysis were
fairly compact, so this bounding approach is appropriate.

We considered only four generic model-to-data patch relationships. Other relationships
undoubtedly exist, especially in restricted scenes, and constraints similar to the above can
be specified.

It is possible that tighter constraints could be developed for the cases. For exam-
ple, the position constraints generally treated the three axis directions independently, and
then transformed the bounds relative to these to bounds in the three coordinate direc-
tions. There is likely to be some dependence between the factors, allowing tighter position
estimates.

The estimation of the patch orientation is not always accurate. This stems from three

problems:

1. the axis constraints are not particularly strong, so the overall orientation is dramat-

ically affected,

2. the TV2 rotation estimation module is not particularly effective when estimating

rotations from inputs with substantial variation and
3. each stage of the TV2 rotation estimation process increases the size of the output
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intervals, so that modest errors are amplified in the output.

The result of these problems is that there are many rotation estimates where the precise
direction of the rotation cannot be determined (i.e. determined to be § or —g) and hence
the output rotation intervals are large.

It is our belief that the position constraints from individual patches are generally weak.
While some features are strong and reliable, such as the normals on planar surfaces or
curvature axes on strongly curved surfaces, many other direction vectors are weak, and
do not greatly constrain object position. Work in progress shows that using constraints
from pairs of surfaces (e.g. two normals) gives better position estimates. For example,
the vector between two distant, highly curved features gives much more reliable data than
the surface normals on either. Adding a third vector also considerably strengthens the
estimation process, because the results affect each other by value propagation.

Though our interval-based position estimation process may not be ideal, the position
constraints presented in this paper hold, irrespective of the process used to estimate the

position parameters from the constraints.
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