
Statistical models of pedestrian behaviour

in the Forum

Barbara Majecka

s0675480

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2009

Abstract

This dissertation describes an MSc project for which the purpose was to develop a

system that could be used for automated surveillance. The main novelty is the use of a

vertical camera. The project investigates whether such a system can effectively detect

moving objects, track their trajectories, and use these to recognise anomalous events.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Barbara Majecka

s0675480)

iv

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 System objectives . 3

1.3 The Forum . 3

2 Background 5

3 System overview 7

3.1 Detection . 7

3.2 Tracking . 8

3.3 Modeling and Recognition . 8

4 Detector 9

4.1 Introduction . 9

4.2 Comparison of methods . 9

4.2.1 Background subtraction . 10

4.2.2 Constant background updating 11

4.2.3 Background subtraction using chromaticity coordinates 13

4.2.4 Background division using chromaticity coordinates 14

4.2.5 Principal Component Analysis 15

4.3 Implementation . 18

4.3.1 Fetching a new image . 18

4.3.2 Obtaining a binary image . 19

4.3.3 Labelling an image . 20

4.3.4 Writing out frame information 24

4.3.5 Shell Script . 24

4.4 Testing . 24

v

5 Tracker 27
5.1 Specification . 27

5.1.1 Merging and splitting . 28

5.1.2 Disappearing . 30

5.1.3 People as separate blobs . 30

5.2 Design . 31

5.2.1 The core algorithm . 31

5.3 Implementation . 42

5.4 Evaluation . 42

6 Model of normal behaviour 49
6.1 Overview . 49

6.2 Building the model . 50

6.2.1 Removing bad trajectories 51

6.2.2 Fitting splines . 52

6.2.3 Gaussian mixture model . 52

6.2.4 Recognition . 53

6.3 Evaluation . 55

7 Conclusion and future work 59

Bibliography 61

vi

Chapter 1

Introduction

1.1 Motivation

Visual surveillance has become widely used in both criminology as well as in sociol-

ogy. In 2005 the number of CCTV cameras had reached four million in the UK alone

[4]. These cameras can be used to gather sociological and marketing information by

observing the behaviour of people and their interactions with each other and with their

surroundings. However, the main use of surveillance systems is to provide a safer envi-

ronment through detection or even prevention of dangerous situations and crimes. The

former consist of suicide attempts, accidents, and situations in which help is required

(e.g. if a person has collapsed); the latter could involve assaults, fights, thefts or bur-

glaries. The effectiveness of such cameras has been confirmed by the Police Research

Group [1] which reports, for example, that after installation of CCTV cameras in New-

castle, the number of burglaries fell by 56%. According to the same source, CCTV

also contributed to the decrease ! in criminal damage (34%) and non-motor vehicle

theft (11%) in this city.

Unfortunately, in order to ensure good coverage of the public spaces which should

be monitored, the surveillance systems often need a large number of cameras, reaching

even a hundred [7]. Due to the fact that one operator can watch at most four screens at

a time [2], successful surveillance requires a lot of human resources. To make things

worse, only a small fraction of video footage can actually be watched because operators

tend to focus only on some cameras; they take necessary breaks; and they simply suffer

from boredom which decreases their level of attention [7]. All this makes the manual

surveillance systems vulnerable to errors and omissions. Therefore it is beneficial to

improve visual surveillance by automating some of the tasks performed by operators.

1

2 Chapter 1. Introduction

In particular, abnormal or suspicious behaviour should be detected and the operators’

attention directed to it.

The robustness of surveillance systems is extremely important - they should not

ignore any anomalous events. At the same time, the number of false alerts should be

kept to a minimum because flooding operators with numerous false positives would

have similar detrimental effects to the case of no automation at all. These issues have

provoked extensive research in this field which has resulted in a large number of differ-

ent techniques for representing video footage, modeling behaviour, training detection

systems and detecting anomalous events (e.g. [3, 5, 6, 8, 9, 12, 14, 16]). All of these

techniques aim to improve the performance of the surveillance systems but they still

have to address the same basic problems caused by the nature of the raw scene images.

Due to the side view of the cameras, these problems include the possibility of occlu-

sions (caused by parts of the background as well as other people) and merging silh!

ouettes of tracked people [3]. The side view cameras are also unable to provide a full

coverage of the monitored space. This often makes it necessary to use complicated

integration techniques in order to construct a complete representation of behaviours of

tracked people [8]. These algorithms are prone to errors.

The problems described above can be avoided, and therefore more reliable systems

can be developed, by using top view cameras, provided that these cameras can cover

the whole monitored area. This coverage could be achieved either by mounting the

cameras sufficiently high or by using cameras with wide-angle lenses. Despite its

advantages, this idea has not been investigated. So far the only systems that used

perpendicular cameras were dedicated to counting people and were not appropriate for

detection of abnormal behaviour. Adaptation of these systems would be very difficult

because they either cover a very small, specific area of the scene (e.g. entries and exits)

[10] or use techniques which are not capable of analyzing human behaviour [15].

Nevertheless, a system based on a top view camera has to face and solve a set of

challenges. The most important one is the lack of detail on the detected people – most

of the time only their heads and shoulders will be visible. Because the movements

of limbs are barely visible, algorithms that depend on local flow descriptors or that

try to analyze behaviour on the basis of the exact actions performed (e.g. running

across a street) will not be usable [12]. This imposes restrictions on the techniques that

can be used. Therefore, the project investigates whether it is possible to effectively

detect abnormal behaviour using a perpendicular camera. An appropriate system was

developed and its robustness evaluated.

1.2. System objectives 3

1.2 System objectives

The project included design, implementation and evaluation of a system for detec-

tion of abnormal behavior in the Informatics Forum entrance area. It used a camera

mounted near the ceiling pointing vertically downwards towards the ground floor.

The system involves low-level image processing, which produces information about

detected objects. This data is then used by another component to infer trajectories of

the moving objects. The gathered trajectory information is fed into the final compo-

nent, which builds a model that can be used to detect abnormal behaviours.

The system was implemented to preserve robustness under different environmental

conditions, such as changes in lighting levels and in the number of people tracked

simultaneously.

1.3 The Forum

The Forum is one of the University of Edinburgh buildings located on the Central Cam-

pus. It consists of three parts, one of which is allocated to the School of Informatics.

The camera was mounted in this part of the building, on the ceiling, overlooking the

ground floor. An example image obtained from the camera is shown in Figure 1.1. The

image covers most of the main hall. The most significant features of the hall are the

main entrance to the building, lifts, access to the Atrium, access to the second part of

the hall, staircase, reception desk, and the four other exits. The hall is mainly used to

get into and out of the building. But it is attached to the Atrium, which is sometimes

used for events, and people will often gather in the hall before and after such an event.

4 Chapter 1. Introduction

Figure 1.1: The view from the camera. The arrows show exits.

Chapter 2

Background

As mentioned above, automated surveillance has been a very popular research field in

recent years. A vast range of techniques have been developed for different parts of

surveillance systems. In particular, techniques used to represent video footage can be

categorized as based on trajectories, local motion descriptors, or scene-wide motion

patterns (classification according to [13]).

Techniques that fall into the last category represent global changes in a scene and

are used in cases where accurate tracking of individuals is not feasible [16]. This makes

them less interesting for this project because large crowds will not be expected and the

perpendicular view of the camera will allow each person to be treated separately.

Incorporating techniques based on local motion descriptors can provide more pre-

cise information about the types of actions performed by a given target (e.g. running

or fighting [5]). This information, when combined with spatio-temporal data [12], can

give better results in the detection of abnormal behaviour than when simple trajectories

are used. However, local motion is recognised on the basis of the optic flow measured

in a fixed window around a target. Due to the perpendicular view of the camera, as well

as the small size of the targets (about 20 pixels wide), obtaining accurate descriptors

could be very problematic and therefore unreliable.

For this reason, techniques based on trajectories are the most appropriate for this

project. Among them, the simplest are those that form a geometric representation of

the raw trajectory data. In [14], the full trajectories are approximated by cubic spline

curves with seven control points. In this way, each trajectory is represented by the same

number of attributes – the control points and the duration of the object’s existence in

the scene.

A slightly different approach was proposed in [9]. Here, the data for each trajectory

5

6 Chapter 2. Background

is converted into a sequence of 4-dimensional flow vectors composed of 2D position

coordinates of the tracked object and its instantaneous velocity at that position. After

gathering a large set of flow vectors, a clustering algorithm based on competitive neural

networks is applied to obtain a finite set of prototype vectors.

Given the time scale of this project, only one of these two techniques could be

investigated. The geometric representation of trajectories was chosen.

Chapter 3

System overview

The project consisted of four subtasks:

1. detection of moving objects

2. tracking objects

3. modeling normal behaviours and training a classifier

4. recognition of anomalous behaviours

Each of these subtasks was implemented as a separate component of the system.

3.1 Detection

The efficiency of the detection application was crucial because it determined the maxi-

mum capture rate of video footage that could be used by the whole system. The greater

this rate, the more accurate the tracking could be, allowing the detection of anomalous

behaviour to be more successful. In order to allow the frequent capture of live images

and to minimise the amount of data stored, the detection and tracking processes were

carried out separately.

The detection focussed only on the extraction of the basic information, including

bounding boxes and colour histograms of the detected objects. At each new frame, this

information was used to update an appropriate file. Greater efficiency of the detection

process was achieved by implementing it as a multithreaded C++ application.

7

8 Chapter 3. System overview

3.2 Tracking

The files written out by the detection process are used as input for the tracker to infer

trajectories of each object. The tracker needs to deal with different scenarios, including

merging silhouettes of people. Also, it has to cope with imperfect detections. The

trajectories constructed contain sequences of position coordinates of a particular object

together with times at which the coordinates were sampled:

{(x1,y1, time1),(x2,y2, time2), ...,(xN ,yN , timeN)}

The full sequences have different lengths N due to the different lifetimes of objects

within the scene.

3.3 Modeling and Recognition

The trajectories are approximated by cubic spline curves [14] and represented by the

vectors of their control points. These vectors are then clustered, and normality of a new

trajectory is assessed on the basis of its Mahalanobis distance to the nearest cluster. If

this distance is larger than an experimentally determined threshold, then the trajectory

is flagged as anomalous.

Chapter 4

Detector

4.1 Introduction

The purpose of the detector is to segment each image obtained from the camera into

two sets of pixels: foreground and background. The foreground set should contain

only those pixels which belong to tracked objects. Despite the fact that the camera

is fixed in one position, the background is not completely constant throughout a day

(Figure 4.1). The main changes to the background are caused by:

• reflections from the ground

• shadows

• changes in the ambient lighting

The reflections do not always appear in the same places and they strongly depend

on the strength and position of the sun. Shadows in the top right corner are cast by

the staircase and are more visible with artificial lighting. The overall brightness of

the scene depends on many factors including weather, time of day, and use of artificial

light sources and their positions. During the evening, an arbitrary combination of lights

may be switched off, resulting in some parts of the scene being darker than others. All

these factors make segmentation a non-trivial task, and I therefore experimented with

a number of techniques in order to choose the most robust one.

4.2 Comparison of methods

The following techniques have been tested using a selection of four images (Figure

4.2) which represent examples of problematic situations: reflections, shadows, people

9

10 Chapter 4. Detector

(a) 12 am (b) 10 pm

(c) 1 pm (d) 4 pm

Figure 4.1: Four images of the background taken at different times.

wearing clothes in grey colours, artificial lighting and overall darkness.

4.2.1 Background subtraction

The first technique was a simple background subtraction and thresholding over all the

colour channels (red, green and blue) to give three binary images. The overall segmen-

tation was calculated by finding the pixel-wise conjunction of the three images. The

background image (Figure 4.3a) was obtained by calculating the mean image from

50 background images obtained at different times of a day. The threshold was cho-

sen dynamically by smoothing the histogram of pixel values after the subtraction and

choosing the deepest valley between the highest peaks.

This technique performed very badly as shown in Figure 4.3b. Even when the

threshold was chosen manually, the technique was not able to cope with either shadows

or reflections, as shown in Figures 4.3c–4.3d.

4.2. Comparison of methods 11

(a) (b)

(c) (d)

Figure 4.2: Four test images with foreground objects and: reflections, grey clothing

colours, shadows and difficult lighting conditions.

4.2.2 Constant background updating

The problem with the previous technique was the fact that the mean image of the

background did not reflect the actual state of the background at a given time. The

background image BRGB can be updated as a weighted sum of itself and the most

recently captured image IRGB:

BRGB(t) = (1−α) BRGB(t −1) + α IRGB(t) (4.1)

This way, new objects which stay in the scene long enough become part of the

background. This applies not only to physical objects like chairs or tables, but also

to reflections on the ground and shadows. The technique also copes with changes in

overall lighting conditions.

Unfortunately, this method has some problems too. In Edinburgh, natural lighting

12 Chapter 4. Detector

(a) mean background (b) normal subtraction of Fig.4.2c

(c) optimal subtraction of Fig.4.2b (d) optimal subtraction of Fig.4.2d

Figure 4.3: Results of background subtraction using RGB coordinates. Optimal sub-

traction used a manually set threashold.

conditions can change very rapidly, and this can cause shadows and reflections to mate-

rialise quickly – within a second, for example. Therefore I initially set the α parameter

to a high value: α = 0.02. This dealt with changes very well but at the same time

caused people to disappear if they stood in one position for only a couple of seconds

(Figure 4.4). On the other hand, when the parameter value was very small, α = 0.002,

the reflections were classified as foreground and the algorithm was not able to cope

with the lights being switched on or off.

The optimal parameter value could not be determined because it strongly depends

on the time people should be expected to stand in one position. Because people tend to

stop and chat on the ground floor I decided not to impose any limitation and therefore

to disregard this technique.

4.2. Comparison of methods 13

Figure 4.4: Results of background subtraction with constant background updating.

Frame numbers are shown below each image. Approximately 10 frames were fetched

per second. Here: α = 0.02.

4.2.3 Background subtraction using chromaticity coordinates

This technique used chromaticity coordinates instead of RGB components. Each pixel

was represented by two values calculated according to the following normalization

formulae:

chrom1 =
Red

Red +Green+Blue
(4.2)

chrom2 =
Green

Red +Green+Blue
(4.3)

chrom3 =
Blue

Red +Green+Blue
= 1− chrom1− chrom2 (4.4)

The last equation shows that keeping all three values would be redundant. Chro-

maticity coordinates convey information about the pixel colour but not its intensity,

therefore the same object in different lighting conditions should have pixels of similar

chromaticity coordinates.

After representing a new image and the mean background image (Figure 4.3a) in

chromaticity coordinates, computing the difference of these two, and then applying a

manually chosen threshold, the result shows that reflections are no longer problematic

(Figure 4.5a). Unfortunately, in the case of shadows, the result is far from satisfac-

tory. This is particularly visible in the image taken during the night – there are visible

detections in the top right corner, where the staircase casts a shadow (Figure 4.5b).

14 Chapter 4. Detector

Moreover, the choice of threshold is very difficult, since dynamic thresholding is not

possible (the histograms have only one distinctive peak), and a fixed threshold gives

different results under different lighting conditions.

(a) optimal subtraction of Fig.4.2b (b) optimal subtraction of Fig.4.2d

Figure 4.5: Results of background subtraction using chromaticity coordinates. Optimal

subtraction used a manually set threashold.

4.2.4 Background division using chromaticity coordinates

Similar results are obtained when a new image is divided by the background (Figure

4.6). The problem with the shadows still remains.

(a) optimal division of Fig.4.2b (b) optimal division of Fig.4.2d

Figure 4.6: Results of background division using chromaticity coordinates. Optimal

division used a manually set threashold.

4.2. Comparison of methods 15

4.2.5 Principal Component Analysis

In order to take into account differences between the light distribution throughout the

day I have built a model of the background image using the Principal Component

Analysis ([13]). I gathered a set of 50 background images, some of which are presented

in the Figure 4.1. I represented each image as a vector of length L equal to the number

of pixels times number of chromaticity coordinates. From each vector, the mean vector

was subtracted. The normalized vectors were then appended horizontally to each other

to form an LxN matrix:

M = [~x1−~m, ~x2−~m , ..., ~xN −~m] (4.5)

where ~m is the mean vector and N is the number of background images (here:

N = 50). In order to obtain the most significant principal components, the eigen-

decomposition should be carried out on the covariance matrix C = MMT to obtain the

eigenvectors (~vi) together with their corresponding eigenvalues (λi):

C~vi = λi~vi (4.6)

However, the dimensions of the covariance matrix do not allow to do that in Matlab,

therefore I used the technique suggested by [11]. This technique allowed to carry out

the eigen-decomposition on the NxN matrix MT M giving eigenvalues:

λ
′
i = λi (4.7)

and eigenvectors:

~ui = MT~vi (4.8)

This can be derived by multiplying both sides of the equation 4.6 by MT :

MT M(MT~vi) = λi(MT~vi) (4.9)

The required eigenvectors were then retrieved by using the following formula which

ensures that eigenvectors have unit length:

vi =
M~ui

|M~ui|
(4.10)

The chosen K eigenvectors were appended to each other horizontally to form the

matrix V:

16 Chapter 4. Detector

V = [~v1, ~v2, ..., ~vK] (4.11)

which, together with the mean image vector ~m formed the model of the background.

The segmentation of a new image was then possible by projecting this image into

the space determined by the matrix V and then reprojecting it into the original image

space:

−→rep = VVT (−−−→image−~m) (4.12)

A binary image was then created by comparing the two representations of the im-

age against a specified threshold. This way, parts of the image which could not be

explained by the model, were classified as foreground:

(−−−→image−~m)−−→rep > threshold (4.13)

This technique required to choose two parameters: the number of eigenvectors used

in the model and the threshold. The former could not be too large because this would

significantly increase the computation time of the whole detection algorithm. At the

same time, the most significant eigenvectors show the directions of the greatest varia-

tions, so by choosing a number of eigenvectors, we can ensure that different directions

of variability can be represented by the model. The Figure 4.7 shows the distribution

of significance among the 50 principal components. The effect of the first three the

most significant components is presented on the Figure 4.8. The first one changes the

colours of the whole image and represents the changes which take place when the am-

bient light conditions change (Figure 4.8b). The second and the third one deal mainly

with the shadow in the top right corner (Figure 4.8c - 4.8d).

For optimal results, I experimented with different numbers of eigenvectors K. The

results are shown in the Figure 4.10. Here the thresholds were chosen to be th1 =

0.14 and th2 = 0.2 for the first and the second chromaticity coordinate accordingly.

Similarily to the basic background subtraction, the binary image was composed as the

disjunction of both binary images for the two chromaticity coordinates separately. An

additional mask was applied to mask away the staircase (Figure 4.9). The thresholds

were chosen experimentally. These experiments led to the conclusion that just one (the

most significant) principal component is sufficient for a robust segmentation process.

This decision saved a lot of computation time.

4.2. Comparison of methods 17

Figure 4.7: The eigenvalues which show the significance of 50 principal components.

(a) mean background (b) 1st principal component

(c) 2nd principal component (d) 3rd principal component

Figure 4.8: Result of varying the mean image in the direction specified by principal

components. All the images are represented by the first chromaticity coordinate.

18 Chapter 4. Detector

Figure 4.9: The binary mask used to avoid classification of the staircases as foreground.

4.3 Implementation

The main steps in the detector’s algorithm are:

1. Fetch a new image.

2. Obtain a binary image:

(a) Segment using the background model.

(b) Dilate and erode.

3. Label the image.

4. Append frame information to the output file.

4.3.1 Fetching a new image

In order to achieve maximum efficiency in the detector component, I implemented it

in C++, and used a separate thread for fetching and processing images. The detector

uses the libcURL library to fetch images directly into memory without first storing and

then loading them from disk. This allows the fetching of images with a speed of nine

frames per second. The ImageMagick library is used to decompress jpeg images into

bitmaps, which are then preprocessed – the channels are separated – so that they are

ready to be passed to the CImg library. CImg allows easy manipulation of images, but

in the final version of the program this library was used only to contain the array of

pixels: CImg methods are quite general, and I was able to make efficiency gains by

writing code more specific to the needs of this project.

4.3. Implementation 19

(a) only the 1st principal component used on the Fig-

ure 4.2b

(b) the first three principal components used on the

Figure 4.2b

(c) only the 1st principal component used on the Fig-

ure 4.2d

(d) the first three principal components used on the

Figure 4.2d

Figure 4.10: The result of using different number of principal components during seg-

mentation process.

4.3.2 Obtaining a binary image

The background model was built using Matlab and loaded into the C++ program using

the matio library. The binary image produced after the segmentation process is then

further cleaned up. For this purpose I implemented the morphological algorithms of

dilation and erosion. These algorithms are ten times more efficient than those provided

by the CImg library. I experimented with different combinations of erosion and dilation

to achieve the best balance between removing all the noise from the image and merging

blobs belonging to the same object. In the final version of the program I do not erode

first because some foreground objects are detected as many separate pixels. I therefore

perform dilation first which attempts to merge all the disjoint blobs which belong to

the same object. If I had eroded first then objects which were detected as many loose

20 Chapter 4. Detector

pixels could decrease in size or disappear altogether. The whole cleaning algorithm

includes: a double dilation with 3x3 window; a single dilation with 2x2 window; and

an erosion with 3x3 window. Example cleaned images are shown in Figure 4.11. This

algorithm sometimes dilates noise pixels, leaving them in the resulting binary image.

Blobs that do not exceed 75 pixels in size are deleted.

(a) segmented Figure 4.2a (b) segmented Figure 4.2b

(c) segmented Figure 4.2c (d) segmented Figure 4.2d

Figure 4.11: Binary images produced by the segmentation process. Blobs which are

smaller than 75 pixels are shown in brown - they are not written out to files.

4.3.3 Labelling an image

A pixel belongs to a blob if it connects to the blob from one of eight directions. All the

pixels which belong to the same blob are assigned the same value – the blob’s identifier.

This labelling process is implemented as a recursive algorithm. While the whole binary

image is scanned, when an unlabelled foreground pixel is found, a recurvise subroutine

4.3. Implementation 21

(a) (b) (c) (d)

Figure 4.12: People used in the examples of colour histogram analysis.

is called which labels the pixel and calls itself for all the neighbours. The subroutines

return if the current pixel either has already been labelled or belongs to the background.

During the labelling process, these properties of the blobs are updated:

1. size

2. centroid position

3. bounding box:

(a) top left corner position

(b) width

(c) height

4. colour histogram

4.3.3.1 Histograms

In order to produce the colour histograms, each colour channel (red, green and blue) is

divided into four bins. This way the whole histogram is represented using 4∗4∗4 = 64

bins. However, most pixels of the detected blobs fell into the lowest (the darkest) bins.

Observations have shown that most people wear clothes which, from above and from

a distance of 23 metres, appear to be very dark. Also, the detector copes particularly

well with dark parts of foreground objects but sometimes omits their lighter parts (e.g.

white trousers). Figure 4.13 shows distribution of pixel intensity values for one of the

brighest people shown in Figure 4.12b. It shows that even the red component does not

take the highest values and the whole mass of the histogram lies in the lower region.

Therefore I decided to divide the channels into uneven bins. In order to determine

exact values for the bin sizes, I carried out a series of experiments. In each experiment,

I obtained nine images of two people present in the same sequence of frames – person

A and person B. For each of these images, I created a pair of colour histograms, one

for each person. Then, for each histogram of person A, I calculated its Bhattacharrya

distance to the histogram from the previous frame. (This distance was not computed

22 Chapter 4. Detector

(a) red (b) green (c) blue

Figure 4.13: Histograms of the red, green and blue components of the person in Figure

4.12b.

(a) bin sizes: 64, 64, 64, 64 (b) bin sizes: 20, 30, 40, 166 (c) bins: 10, 20, 30, 196

Figure 4.14: Comparison of Bhattacharrya distances between histograms of the same

and different people. The former is shown in red and the latter in blue color. Here the

comparison was carried out between people in Figure 4.12b and Figure 4.12c.

for the histogram from the first frame). Additionally, for each histogram of person B,

I calculated its Bhattacharrya distance to the histogram of person A from the previ-

ous frame. To make it possible to distinguish between two people, the first group of

distances should have small values (comparison of person A to itself) and the second

group should have large values (comparison of person A to person B). I experimented

with different pairs of people and different sizes of the bins. Some of my experiments

are shown in Figures 4.14–4.15.

On the basis of the results obtained, I decided to assign the following sizes to the

bins: 20, 30, 60 and 166. The bins for lower pixel intensity values should be much

smaller because, as discussed above, dark blobs are much more common than brighter

ones. At the same time, it was important to strike a balance between adapting the bins

towards darker people and still being able to distinguish between the brighter ones.

4.3. Implementation 23

(a) bin sizes: 64, 64, 64, 64 (b) bin sizes: 20, 30, 40, 166 (c) bins: 10, 20, 30, 196

Figure 4.15: Comparison of Bhattacharrya distances between histograms of the same

and different people. The former is shown in red and the latter in blue color. Here the

comparison was carried out between people in Figure 4.12d and Figure 4.12c.

(a) bin sizes: 64, 64, 64, 64 (b) bin sizes: 20, 30, 40, 166 (c) bins: 10, 20, 30, 196

Figure 4.16: Comparison of Bhattacharrya distances between histograms of the same

and different people. The former is shown in red and the latter in blue color. Here the

comparison was carried out between people in Figure 4.12b and Figure 4.12a.

24 Chapter 4. Detector

Figure 4.17: Background frame fetched during the night when the lights were switched

off.

4.3.4 Writing out frame information

The detector component produces files containing information about the detected blobs.

These files are then used by the tracker component. To provide the latter with as much

information as possible, I print out all the properties listed above. All data concerning

blobs detected in the same frame are grouped together and preceeded by information

about this frame: the frame number and time since the program was started. This infor-

mation is printed only for those frames within which there were detections. Moreover,

only those blobs which have size above 75 pixels are printed, which serves to eliminate

noise.

4.3.5 Shell Script

A shell script was used to start the detector every day at 7am and stop it at 11pm.

The detector did not run during nights because one eigenvector would not be sufficient

for frames like the one presented in the Figure 4.17. The script also ensured that the

program continued to run during the day: if it found that the program was not running,

it would attempt to start it and report this event by email. This was necessary because

the detector sometimes crashed due to a bug in the ImageMagick library.

4.4 Testing

Figure 4.11 shows the results obtained by the detection algorithm running on the im-

ages shown in Figure 4.2. Only the black blobs are written out to the file - the brown

4.4. Testing 25

Figure 4.18: Probability that a person will be detected as one, many or none blobs.

blobs do not exceed 75 pixels in size.

I gathered performance statistics on the basis of 52 trajectories. Each person was

observed for an average of 56 frames. The images were fetched during different light-

ing conditions and people wore clothes of different colours.

Of the 52 trajectories, only two contained frames where detection failed (no blobs

were detected). In these two cases, the detection failed in 12% and 50% of all the

frames in which the tracked person appeared. Both of these people wore grey and

white clothing which is similar to the background.

There were no false positive detections in any of the 2916 test frames. In 30 of

the 52 trajectories, people were always detected as single blobs. In the remaining 22

trajectories, people were detected as single blobs in 72% of frames.

I also carried out experiments to determine the conditions that cause blobs of sep-

arate people to merge. Among eight sets of trajectories of people walking closely

together (878 frames), only two contained frames in which blobs were merged. Over

these trajectories, 12% and 23% of blobs were merged, respectively. Merging was

more common on the edges of frames, because there, people were seen from a wider

angle and therefore occlusions could take place. The largest distance between the

positions of two people which resulted in them merging was equal to 22 pixels (ap-

proximately 50cm) in the middle of the floor and 32 pixels (approximately 75cm) on

the edge of the scene. However, the largest apparent distance between two people that

were merged (as measured from the extrema of their bodies) was equal to 4 pixels

26 Chapter 4. Detector

(approximately 9cm).

Chapter 5

Tracker

5.1 Specification

The files updated by the detector component are used as input to the tracking process to

infer trajectories from detected objects. Each trajectory is represented by a sequence of

centroid positions together with the time when the object was detected at this position.

The time stamps are important because the positions are not uniformly spaced in time,

and the speed with which the objects are moving is important for detection of abnormal

behaviour. Also note that each object could have a trajectory of a different length due

to the different lifetimes of objects within the scene.

The tracker component makes a distinction between the notions of a person and a

blob:

Person is a tracked real object that appeared in the scene.

Blob is an area of 8 point connectivity labelled as foreground by the detector.

Each person has a unique identity. Deciding which person corresponds to each

blob in a given frame is not a trivial task. There are several problems that the tracker

has to overcome:

1. Several people could merge together when walking side by side, and therefore

they could be represented by a single blob (Figure 5.1).

2. A group of people, represented in one frame as a single blob could split in the

next frame producing multiple blobs (Figure 5.2).

27

28 Chapter 5. Tracker

(a) Actual scenario: two people merge. (b) Failed tracking: the red person is

judged to have disappeared.

Figure 5.1: An example of two people merging. Circles represent blobs (which are

inputs from the detector component). Colours represent people’s identities. Arrows

illustrate how peple move between frames.

(a) Actual scenario: two people, merged in

the previous frame, now split into separate

blobs.

(b) Failed tracking: the blob from the pre-

vious frame is assumed to represent only

one person, while the red person in the cur-

rent frame is judged to be new to the scene.

Figure 5.2: An example case of two people splitting.

3. For some people the detection process could fail completely causing the person

to disappear for a few frames (Figure 5.3).

4. Some parts of a person’s body may not be detected resulting in the person being

represented by several disjoint blobs (Figure 5.4).

5.1.1 Merging and splitting

Due to the perpendicular positioning of the camera, the possibility of occlusions is

minimised, but it is still present. As shown in the previous chapter, these situations

are the most common on the edges of the scene. Therefore, it is possible that people

could enter the scene merged (represented by a single blob) and then split into several

blobs when they come closer to the centre of the floor. Such a situation is depicted in

Figure 5.5. Figure 5.2b shows an undesirable tracking behaviour: the merged people

are recognised as a single person, and a new blob that appears after the splitting is

assigned a new identity with a trajectory starting in the middle of the floor. The tracker

should not allow this; it should try to reason about where the new blob came from

(Figure 5.2a).

5.1. Specification 29

(a) Actual scenario. (b) Failed tracking: the blob that appears in

the second frame is assigned the identity of

the green person. The person who disap-

pears in the second frame and reappears in

the third is assigned a new identity.

Figure 5.3: An example of a person disappearing and another person appearing at the

same time. The dashed line represents a large distance between blobs.

(a) Actual scenario: a sin-

gle person is detected as

separate blobs in the sec-

ond frame.

(b) Failed tracking: the sec-

ond frame is assumed to

contain three people, two

of whom appeared only in

that frame.

(c) Failed tracking: all

three frames are assumed

to contain three people.

In the first and the third

frames the people are

merged together.

Figure 5.4: An example of one person being detected as several blobs.

30 Chapter 5. Tracker

Figure 5.5: A simple scenario of people walking together. Two people enter the scene

merged together. They split, merge, split again, walk far away from each other, and

then merge again before leaving the scene.

Figure 5.5 shows also a situation in which people previously detected as separate

blobs merge together to create a single blob. Their trajectories should be updated

separately: new positions should be appended to both trajectories (Figure 5.1a), not

just to one of them (Figure 5.1b). After they split again, their identities should be

reassigned correctly (Figure 5.5).

5.1.2 Disappearing

The evaluation of the detector component showed that a person may not be detected

in some of the frames in which the person was present. The tracker should be able to

cope with this problem. In particular, it should not terminate a trajectory if the person

has disappeared for just a few frames, and it should identify the person correctly on

their reappearance. It should, however, terminate a trajectory if it decides that there is

a high probability that the person has left the scene.

5.1.3 People as separate blobs

12% of people are represented by the detector as disjoint blobs. This causes several

problems. If these blobs are recognised as separate people then the merging and split-

5.2. Design 31

ting rules will be applied. This way, many redundant trajectories could be produced,

and the component responsible for detecting abnormal behaviour could believe cer-

tain trajectories to be more common than they are. Only one among these trajectories

should be preserved.

5.2 Design

The tracker keeps a list of all the people currently being tracked. It updates their

trajectories one frame at a time by processing the file provided by the detector. Because

one person can be represented by multiple blobs and one blob can represent multiple

people, an M-to-N relationship has to be preserved in the program. Therefore, at every

frame, a list of detected blobs is kept, and for each blob is stored a list of the people

represented by it.

5.2.1 The core algorithm

The high level algorithm is illustrated by Pseudocode 1.

5.2.1.1 Step 1: Assigning people to blobs

The Pseudocode 2 illustrates the first step of the high level algorithm.

For each person still in the list of tracked people, the tracker tries to find the corre-

sponding blobs in the current frame. It calculates the expected position of each person

and the radius of the circle wherein the person could potentially be detected. Only

those blobs that lie within this predicted area are taken into account. If there is more

than one blob, their relative probabilities of representing the given person are calcu-

lated and the blob of the highest probability is chosen. The centroid position of the

blob is then added to the trajectory of the person. However, if the predicted area does

not contain any blobs, the person is assumed to disappear for this particular frame and

their trajectory is not updated.

This algorithm allows for the assignment of multiple people to the same blob,

thereby coping with merging scenarios. In this case, trajectories of all the merged

people are extended by the centroid of the same blob. If, in fact, the people did not

merge and the blob just happened to be the most probable for all of them, this mistake

can still be corrected in the second step of the algorithm (subsection 4).

32 Chapter 5. Tracker

Pseudocode 1 The tracking algorithm (high level).

FOR EACH frame IN file

blobs = frame.getBlobs()

//-- step 1 --//

FOR EACH person IN people

updateCorrespondence(person, blobs)

END

//-- step 2 --//

unassignedBlobs = blobs.getUnassignedBlobs()

FOR EACH blob IN unassignedBlobs

correctCorrespondence(blob, people)

END

//-- step 3 --//

removeAndPrintPeopleWhoDisappeared()

//-- step 4 --//

updateHistograms()

END

5.2. Design 33

Pseudocode 2 Step 1: Assigning people to blobs.

FOR EACH person IN people

predictedPosition = person.getPredictedPosition()

radius = person.getPredictedAreaRadius()

//-- look for most probable blob --//

FOR EACH blob IN blobs

IF blob.isInArea(predictedPosition, radius)

probabilities.add(blob, blob.getProbability(person))

END

END

chosenBlob = getMostProbable(probabilities)

//-- person -> blob --//

IF (chosenBlob != NULL)

assign(person, chosenBlob)

END

END

34 Chapter 5. Tracker

5.2.1.1.1 Position prediction. Every time a new point is added to a trajectory, the

person’s instantaneous velocity v is calculated at that point. Its magnitude is estimated

on the basis of the last two points in the trajectory:

|vn|=
∣∣posn−posn−1

∣∣
timen− timen−1

where n is the index of the point at which the velocity is calculated. The direction, on

the other hand, is estimated using the last four points instead of just two:

vn = |vn|
posn−posn−3

|posn−posn−3|

In this way, I minimise the error caused by the “jumping” centroid point. This

error is especially noticeable when different parts of a person’s body are detected at

each frame causing their position, as described by the centre of mass of all their pixels,

to change significantly. At the same time, by choosing a small number of previous

points, I still allow for rapid changes in the trajectory. This is important for detection

of behaviour abnormalities.

For the trajectory with just one point, the initial velocity is set to 0. If the trajectory

has fewer points than four, the direction is determined using all the available points.

Having the instantaneous velocity of the last point in the trajectory, the expected

position is estimated as follows:

p̂osn = posn−1 +vn−1 (timen− timen−1)

The smaller is the time difference, the more accurate the prediction. After a longer

time, the predictions could be inaccurate, and I therefore allow a person to disappear

only for four frames (i.e. no more than 500ms).

5.2.1.1.2 Radius. The position prediction is not always accurate, therefore the pre-

diction area should be large enough to allow for those errors, but at the same time

small enough to avoid mistakes with other blobs. I chose the radius on the basis of the

previous instantaneous velocity of the considered person (Pseudocode 3).

In order to estimate the optimal values of the parameters MAX_SPEED, MIN_RADIUS

and FACTOR, I carried out a statistical analysis of the error between the predicted and

the actual positions. The results are shown in subsection 5.2.1.1.3. I experimentally

determined the maximum speed at which a person can walk: MAX_SPEED = 26 pixels

per 100ms. Before the actual velocity of a person is known (i.e. when there is only one

5.2. Design 35

Pseudocode 3 Choosing the radius.

IF (trajectory.hasOnlyOnePoint())

radius = MAX_SPEED * time + DIAMETER

ELSE

radius = velocity * time * FACTOR

IF (radius < MIN_RADIUS)

radius = MIN_RADIUS

END

END

point in their trajectory), the maximum velocity is assumed. Additionally, the radius is

increased by the diameter of a human blob due to the fact that the centroid can “jump”.

For simplification, DIAMETER is chosen to be 30 pixels. If the velocity of a person

is known, the radius is chosen to be FACTOR = 6 times longer than the distance from

the last position to the next predicted position. However, it should never be smaller

than MIN_RADIUS = 30 pixels (the approximate diameter of a person). The last two

values were chosen on the basis of the statistical analysis discussed in the subsection

5.2.1.1.3.

5.2.1.1.3 Correspondence probability. The Bhattacharrya distances from the pre-

vious chapter show that there is a clear distinction between the people based purely

on their colour histograms. However, the detection quality of some people varies from

frame to frame, e.g. some lighter parts of their clothing might not be detected in several

frames. This causes their colour histograms to differ, which:

1. increases the Bhattacharrya distance between a person and the same person in

the previous frame, and

2. raises the likelihood of confusing the person with another.

Also, some people might simply wear very similar clothes, which additionally in-

creases the difficulty of distinguishing them. Therefore, I have avoided relying purely

on the colour histograms hnew, and have also used the error of position prediction

errnew to estimate the probability of a blob representing a particular person Pi. Using

Bayes’ theorem:

36 Chapter 5. Tracker

p(Pi|hnew,errnew) =
p(hnew,errnew|Pi)p(Pi)

p(hnew,errnew)
(5.1)

I assume that:

∀i, j p(Pi) = p(Pj) (5.2)

∀i, j p(hi,erri) = p(h j,err j) (5.3)

p(hnew,errnew|Pi) = p(hnew|Pi)p(errnew|Pi) (5.4)

Prediction error. I define the error in position prediction as the distance between

the predicted and the actual positions. I computed a histogram of error values for the

position predictions of 25 people, which totalled 4059 samples. I chose the bins to have

a width of one pixel. The numbers in each bin were divided by the number of samples;

using this maximum likelihood approach I obtained a likelihood measure for each

bin. I then tried to fit different continuous distributions to this discrete distribution.

The results are shown in Figures 5.6a–5.6b. Since the error values are positive, the

Gaussian distribution was fitted to the error distribution plus its reflection about zero.

Then the values of the Gaussian were multiplied by two and shown only for positive

error values. The multiplication was necessary to ensure that the distribution would

still integrate to one after removing half of it. I computed the negative log likelihood

for each fitted distribution. The exponential distribution proved to be the best fit:

p(errnew|Pi) = λe−λerrnew

λ = 0.2762

I also checked whether normalisation of the error with respect to the distance be-

tween the predicted and the actual position could improve the choice of distribution.

Intuitively, the longer are the distances between detections, the greater are the errors in

the predicted positions. However, as shown in Figure 5.7, the distribution looks more

ragged and does not resemble well any standard distribution. This could be due to

the fact that the error depends more on the “jumps” of the centroid (the detection of

different fragments in each frame) rather than the distance.

Histograms. I approximate the probability distribution of the colour histograms

for a particular person by the 64 dimensional Gaussian distribution:

p(hnew) =
1

(2π)n/2|Ki|
e−

1
2 (hnew−hi)T K−1

i (hnew−hi)

5.2. Design 37

(a) Gaussian fit: NLL = 11.319×103 (b) Exponential fit (λ = 0.2762):

NLL = 9.340×103

Figure 5.6: The distribution of prediction errors.

Figure 5.7: The distribution of prediction errors normalized by the traversed distance.

Each colour histogram is a vector of 64 elements. This means that in order to cal-

culate the covariance matrix Ki it is necessary to gather at least 65 samples of colour

histograms belonging to the particular person. This, however, would only be possi-

ble after a person has been detected in at least 65 frames, which would take at least

7 seconds. In order to compute the probability after just one frame, I assumed that

the covariance matrix does not differ significantly for different people. I calculated

a common covariance matrix by taking the mean of covariance matrices calculated

individually for 100 people.

The validity of the assumption was then tested by the following experiment. For a

person A (Figure 5.8a), I calculated the mean histogram and its covariance from a set

of 91 detections. Then, I took a set of 50 detections of A, and 50 detections of another

person B (Figure 5.8b), and calculated the probability that each of these histograms

belonged to person A. I did this using the covariance matrix calculated for person A

38 Chapter 5. Tracker

(a) person A (b) person B

Figure 5.8: The two people used in the experiment of comparing histogram probabilities.

as well as using the general covariance matrix common to all people. None of the

people used in the experiment were used to compute the general covariance matrix.

Each colour histogram was normalised by dividing each bin by the number of pixels.

The results are shown in the Figure 5.9.

5.2.1.2 Step 2: Assigning blobs to people

The second step of the tracking algorithm is illustrated by Pseudocode 4.

All the blobs which have not been assigned identities in the previous step are added

to a list of remaining blobs. There are three possible reasons why a blob was left out:

1. It could be one of the products of the splitting of a group of people.

2. Its corresponding person could have been wrongly assigned to a blob already

representing a different person.

3. It could represent a new person in the scene.

For each such blob I find the most probable corresponding identity. The same

probability measure is applied as in subsection 5.2.1.1.3. If the blob does not lie within

the prediction area of any person, then the blob is recognised as a new person which is

then added to the list of people.

If such a person does exist, then it is checked whether this person was recognised

by the previous step as merging with another person, i.e. whether the person was

assigned to the same blob as another person. This would mean that there is a strong

possibility of an incorrect assignment, which now should be corrected. Such a scenario

is presented in Figure 5.10.

The last option deals with the case when the blob lies within the predicted area of

a person who was assigned to a different blob, and no other person was assigned to the

same blob. Then it is assumed that the remaining blob represents a person who was

previously merged with the known person (Figure 5.11). A new person is created and

5.2. Design 39

(a) individual covariance (b) individual covariance (magnified)

(c) general covariance (d) general covariance (magnified)

Figure 5.9: The results of experiment of comparing probabilities of a histogram of per-

son A belonging to the person A (shown in blue) and to the person B (shown in red). The

blue bars are semi transparent to show the height of the red bars hidden underneath.

The Figures 5.9a – 5.9b show the results when the individaully computed covariance

matrix was used. The Figures 5.9c – 5.9d show the results when the covariance matrix

was computed on the basis of the samples from 100 people.

40 Chapter 5. Tracker

Pseudocode 4 Step 2: Assigning blobs to people.

remainingBlobs = blobs.getUnassignedBlobs()

FOR EACH blob IN remainingBlobs

//-- look for most probable person --//

FOR EACH person IN people

predictedPosition = person.getPredictedPosition(interval)

radius = person.getPredictedAreaRadius(interval)

IF blob.isInArea(predictedPosition, radius)

probabilities.add(person, blob.getProbability(person))

END

END

chosenPerson = getMostProbable(probabilities)

badAllocation = wasBadlyAllocated(chosenPerson)

//-- blob -> person --//

IF badAllocation

correctBadAllocation(blob, chosenPerson)

ELSE

IF (chosenPerson != NULL)

newPerson = chosenPerson.getCopy()

ELSE

newPerson = new Person()

END

assign(newPerson, blob)

END

END

5.2. Design 41

(a) input for step 1 (b) input for step 2 (c) step 2 completed

Figure 5.10: An example case of wrong correspendence made in the step 1.

(a) input for step 1 (b) input for step 2 (c) step 2 completed

Figure 5.11: An example case of not recognising splitting scenario by the step 1.

added to the list of people. Since both of these people walked together, they should

have the same trajectories. Therefore the previous trajectory of the known person is

copied to the new person and the current centroid position is added to the latter.

5.2.1.3 Removing People

A person can be removed from the list of people and their trajectory printed out to the

output file on two conditions:

1. The person disappeared for five frames, or

2. The person disappeared for one frame and their expected position is now outside

the scene.

The error in position prediction accumulates with every frame. Therefore, a bal-

ance had to be found between allowing a person to disappear and keeping the predic-

tion area as small as possible. The number of frames during which a person is allowed

to disappear was chosen experimentally. The prediction area is kept to a minimum to

avoid problems with cases in which two people enter and leave the scene at the same

time using the same entrance.

Before the trajectories are printed out to the file, the tracker tries to eliminate re-

dundant trajectories. They appear when one person is detected as disjoint blobs.

42 Chapter 5. Tracker

If two trajectories started and ended at exactly the same position and time, and ad-

ditionally the largest distance between corresponding points in these trajectories does

not exceed a threshold of 100 pixels, then only one of them is printed out. The lat-

ter condition is used to make sure that all trajectories are printed out in the situations

depicted in Figure 5.5.

5.2.1.4 Updating histograms

After the process of identity allocation is complete, I update the histograms hi of those

people who are not merged with others. This way, after the people split again, their

individual histograms can be used for identity reassignment. The update takes the form

of a weighted average:

hi,n =
α hi,n−1 +β hi,new

α+β
(5.5)

where α = 2 and β = 1.

5.3 Implementation

The tracker was implemented in Java. The main structure of the program is illustrated

by the class diagram shown in Figure 5.12. The general covariance matrix of colour

histograms was built using Matlab and loaded into the Java program using the jmatio

library.

5.4 Evaluation

The evaluation of the tracker was carried out on the basis of 15 different situations

with multiple people present in the scene at the same time. The statistics gathered are

presented in the Tables 5.1 - 5.3.

Additional evaluation was carried out in situations when there was only one person

in the scene. For all of those cases single, full trajectories were produced.

The algorithm copes with redundant trajectories quite well. It has a very high

effectiveness in preserving a full trajectory. The cases when the trajectories are split

represent situations in which a person disappeared for more than four frames. The

biggest problem caused identity reassignement. However, people usually walk alone

and merging does not happen too often. And even though resolution of this problem

5.4. Evaluation 43

% people # people # trajectories

full 95.12% 39 39

split 4.88% 2 6

total 100% 41 45

Table 5.1: The table shows the numbers of cases when a person’s trajectory is split into

fragments.

trajectories before # trajectories after % trajectories preserved

real 45 45 100%

redundant 34 2 6%

total 79 47 59%

Table 5.2: The table shows the number of redundant trajectories which were produced

because a person was represented by several blobs.The table shows their number

before and after the atomatic removal of similar trajectories.

people # merging and splitting # correct identity reassignment % failure rate

2 1 0 100%

3 4 3 25%

total 5 3 40%

Table 5.3: The table shows the failure rate of the identity assignment.

44 Chapter 5. Tracker

would be necessary for the developement of a commercial system, the tracker produced

a vast majority of good trajectories with the sufficient robustness.

A set of example trajectories was plotted in Figure 5.14. They tend to have a form

of straight lines in the center of the floor and take a curvy forms next to the lifts.

5.4. Evaluation 45

Figure 5.12: Class diagram of the Tracker component.

46 Chapter 5. Tracker

Figure 5.13: An example scenario. Three people walking closely together. Three other

people present in the scene. The grey areas represent blobs. Each frame is rep-

resented by a different gray shade. Trajectories of each person are represented by

different colours.

5.4. Evaluation 47

Figure 5.14: A set of trajectories. Some tracked objects were allocated the same colour

due to the display purposes.

Chapter 6

Model of normal behaviour

6.1 Overview

The purpose of the third component was to build a model of normal behaviour based

on a set of collected trajectories, and then use this model to determine whether a new

trajectory represents a potentially abnormal behaviour. The trajectories provided by

the Tracker component were approximated by cubic spline curves and then divided

into three parts:

1. training dataset was used for training the model (section 6.2.3);

2. validation dataset was used to choose the most appropriate parameters for the

process of recognising anomalous trajectories (section 6.2.4);

3. test dataset was used to evaluate the robustness of the component (subsection

6.3).

A Gaussian mixture model was fitted to the trajectory data. Trajectories were then

allocated a probability score which determined the likelihood of them being generated

by the model. This was used to assess their normality.

Both the validation and evaluation processes required a manual judgement of tra-

jectory normality. This assessment is subjective, and so it is difficult to develop a set

of rules for making the decision. In most cases, a simple elimination technique was

used – a trajectory was classified as normal if it met the following criteria:

• it represented an action with a clear goal (e.g. going from one exit to another)

49

50 Chapter 6. Model of normal behaviour

(a) normal (b) abnormal

Figure 6.1: Example trajectories chosen for the evaluation.

• the goal was achieved in an efficient way (e.g. the trajectory was close to a

straight line).

Note that these were rough guidelines only: there were normal cases that did not

meet the second criterion. Two of the trajectories and their classifications are shown in

Figures 6.1.

6.2 Building the model

The training dataset produced by the tracking component contained trajectories which

represented both normal and abnormal behaviours. The trajectories of the former type

could be selected manually. However, the model building requires a large number

of such trajectories - at least a few thousand - making the purely manual approach

impractical. Instead, each step of the model building also attempted to automatically

remove those trajectories which were clearly abnormal.

The following subsections explain the steps in the model-building process.

6.2. Building the model 51

6.2.1 Removing bad trajectories

The detector and tracking components are not 100% accurate, so the files produced

by the tracker could contain bad trajectories. Some of these may be recognisably

incorrect, such as those falling into the following classes:

• Trajectories which start or end outside the marginal area of the scene. The

marginal area is shown in Figure 6.2. These trajectories could be produced if

the detector did not detect a person in the initial or final frames. Also, the tracker

could fail to notice that two people split and classify one of the resulting blobs as

a new person in the scene. If they split outside the marginal area, the new person

would appear out of nowhere.

• Trajectories shorter than 30 points. These could represent spurious detections.

• Trajectories which start and end in the area next to the lifts (Figure 6.2). They

are produced by people waiting for a lift, therefore their shapes are characterised

by a high level of randomness.

The preprocessing stage ensures that all these trajectories are not used when build-

ing the model by removing them from the training dataset.

Figure 6.2: The marginal area (green) shows the region where trajectories have to start

and end. The red area shows the region next to the lifts where the trajectories were

removed.

52 Chapter 6. Model of normal behaviour

6.2.2 Fitting splines

Trajectories have different numbers of points which makes it difficult to compare them.

In order to represent them using the same number of attributes, each trajectory was

approximated by a cubic spline curve with 11 control points. The fitting algorithm and

its implementation were provided by Rowland R. Sillito [14].

Figures 6.3 – 6.4 show results of using different numbers of control points. All co-

ordinates are normalised and can take values between zero and one (proportion of the

length or width of the scene). Seven control points are sufficient to approximate a nor-

mal trajectory with high accuracy. However, abnormal behaviours tend to have more

changes in path direction, and therefore more control points are needed to approxi-

mate them accurately. Figure 6.4 shows the results of fitting a spline to an abnormal

trajectory using different numbers of control points. The approximation which uses

only seven control points loses some of the trajectory features which make it appear

abnormal. On the other hand, using too many control points can result in overfitting

and make the resulting approximating splines sensitive to noise. This noise is most

often caused by jumping centroids which is particularly visible in cases when people

merge and split several times.

The representation using splines makes a distinction between two trajectories which

have exactly the same positions but opposite starting points. Both of them have the

same set of control points, however in a different order. This distinction can be im-

portant when determining whether a behaviour is abnormal, therefore it should be

preserved.

Finally, I used the spatial approximation of the trajectories, i.e. the splines approx-

imate the shapes and do not take into account the speed of particular fragments of the

trajectory. Otherwise, 11 control points would not be sufficient to represent accurately

the trajectory of a person who traversed a large distance, stopped and stayed in one

position for some time, and then continued to one of the exits, after which they disap-

peared. Due to the fact that the person spent most of the time standing in one position,

the spline fitting algorithm would focus on this part of its trajectory, which resulted in

a poor representation of the actual path (Figure 6.5).

6.2.3 Gaussian mixture model

A Gaussian mixture model was fit to the data using the Netlab toolbox for Matlab. I

set the initial number of components to K = 200 and the covariance structure of each

6.2. Building the model 53

Figure 6.3: A cubic spline with 11 control points fitted to a normal trajectory. The irreg-

ularities in the trajectories are caused by ’jumping’ centroids.

component to be diagonal. The centres of the model were initialised by 100 iterations

of the K-means algorithm. Their priors were calculated using the maximum likelihood

approach: they were set to the proportions of datapoints belonging to the clusters. The

model was trained using the Expectation Maximisation (EM) algorithm for 100 cycles.

The centres of the resulting mixture model are shown in Figure 6.6.

The model was fit to all 8382 trajectories including those which were in fact ab-

normal. Therefore, the model was not the best possible representation of normal be-

haviour. However, the abnormal trajectories tended to be assigned very low probabil-

ities. Therefore I decided to use this initial model to preprocess my training dataset

by removing from it all the trajectories which the model deemed to be highly unlikely.

I removed 5% of the trajectories from the dataset which was then used to retrain the

model. The number of components was chosen to be K = 50.

6.2.4 Recognition

The abnormality of a new trajectory is determined on the basis of the probability as-

signed to it by the Gaussian mixture model. When this value does not exceed a chosen

54 Chapter 6. Model of normal behaviour

Figure 6.4: A cubic spline with 11 control points fitted to an abnormal trajectory.

False True

Positive 15% (8) 85% (42)

Negative 15% (18) 85% (102)

Table 6.1: Validation results of the Gaussian mixture model with 50 components and

the threshold set to 109.

threshold then the trajectory is classified as abnormal (positive). The Receiver Operat-

ing Characteristic curve was plotted for different threshold values, as shown in Figure

6.8. The validation dataset contained 120 normal trajectories and 50 abnormal ones.

The threshold which gives the optimal ratio of false positives to false negatives is:

threshold = 109.

An appropriate balance between false positives and false negatives was required.

Too many false positives could distract CCTV camera operators, reducing the utility

of the program. On the other hand, it is very important to ensure that the program

minimises failures to detect abnormal behaviours.

The classification performance on the validation set is shown in table 6.1.

6.3. Evaluation 55

Figure 6.5: Comparison of spatial and temporal cubic spline fitting.

6.3 Evaluation

The evaluation set consisted of 50 abnormal trajectories and 120 normal ones. The

results are presented in Figure 6.9. Some of the misclassified trajectories are shown

in Figure 6.10. The Gaussian mixture model had problems with abnormal trajectories

that were quite similar to normal ones (Figure 6.10a). Also, some trajectories that were

classified as abnormal turned out to be combinations of normal ones. This is due to an

occasional mistake in tracking: if a person leaves the scene and another person enters

at the same time and in the same place, this new person is assigned the identity of

the person leaving. This produces a trajectory which looks abnormal but is actually a

concatenation of normal paths (Figure 6.10b).

56 Chapter 6. Model of normal behaviour

Figure 6.6: The centers of the Gaussian mixture model with 200 components.

Figure 6.7: The centers of the Gaussian mixture model with 50 components.

6.3. Evaluation 57

Figure 6.8: The Receiver Operating Characteristic curve for the Gaussian mixture

model with 50 components. X axis: False Negative rate. Y axis: False Positive rate.

False True

Positive 15% (8) 85% (42)

Negative 10% (12) 90% (108)

Figure 6.9: Evaluation results of the Gaussian mixture model with 50 components and

the threshold set to 109.

(a) false positive (b) false negative

Figure 6.10: Example misclassified trajectories.

Chapter 7

Conclusion and future work

The process of detecting people proved to be a non-trivial task. Difficult lighting con-

ditions, as well as the need for an efficient algorithm, led me to investigate different

techniques for image segmentation. The use of chromaticity coordinates plus Principal

Components Analysis produced a detection quality sufficient for the purposes of this

project. However, it would need to be improved if it were to be used in a commercial

system. This is because poor detections, such as people represented by several blobs,

had a negative impact on the performance of other components.

This problem could be avoided by applying an additional segmentation step, with

a lower threshold, in the areas around the initial foreground detections. Other seg-

mentation techniques could also be investigated. The Tracker could try to merge blobs

which lie sufficiently close to each other. In order to do this, it could compute the prob-

ablity of a set of blobs composing a given person. This would require improvements

in the representation of colour histograms. For example, the number of bins could be

increased and their dimensions could be different along each colour channel.

Despite the limitations of the detector, the majority of the trajectories produced

by the first two components represented real paths. The results for the detection of

anomalous behaviour illustrate that a system with a perpendicular camera could be

useful in a practical situation. It would be able to eliminate those trajectories that are

clearly normal, and therefore point the CCTV operators to those cameras which show

potentially anomalous behaviour.

The methods with which I experimented could be supplemented by additional com-

ponents - for example, a module that could flag trajectories whose cubic spline approx-

imations are not accurate. Such a trajectory could be produced, say, by an inebriated

person. It was not possible to do this in the current system due to the fact that trajecto-

59

60 Chapter 7. Conclusion and future work

ries contained relatively rapid changes in the blobs’ centroid positions, and these could

be confused with genuinely erratic trajectories. Another possible extension would be

to make use of a person’s movement speed.

The current application would be most useful for cases in which statistical analysis

of pedestrian behaviour is desirable - for example, for finding the most popular routes

or checking which areas are the most visited.

Bibliography

[1] B. Brown, Police Research Group. CCTV in Town Centers: Three Case Studies,

1995.

[2] E. Wallace and C. Diffley. CCTV making it work - CCTV control room er-

gonomics 14-98, 1998.

[3] B. Bennett, D. Magee, A.G. Cohn, and D.C. Hogg. Using spatio-temporal conti-

nuity constraints to enhance visual tracking of moving objects. In 16th European

Conference on Artificial Intelligence, pages 922–926, 2004.

[4] Liberty CCTV, 2005. http://www.liberty-human-rights.org.uk/issues/3-

privacy/32-cctv/index.shtml.

[5] A. Datta, M. Shah, and N. Da Vitoria Lobo. Person-on-person violence detec-

tion in video data. In 16th International Conference on Pattern Recognition,

volume 1, pages 433–438, 2002.

[6] H. Dee and D. Hogg. Detecting inexplicable behaviour. In BMVC, pages 477–

486, 2004.

[7] H. Dee and S. Valestin. How close are we to solving the problem of automated

visual surveillance? Machine Vision and Applications, 2007.

[8] S. Dockstader and A. Tekalp. Multiple camera fusion for multi-object tracking.

In IEEE Workshop on Multi-Object Tracking, 2001.

[9] N. Johnson and D. Hogg. Learning the distribution of object trajectories for event

recognition. Image and Vision Computing, 14:583–592, 1996.

[10] J.W. Kim, K.S. Choi, B.D. Choi, and S.J. Ko. Real-time vision-based people

counting system for the security door. In International Technical Conference On

CircuitsSystems Computers and Communications., 2002.

61

62 Bibliography

[11] Y. Li. On incremental and robust subspace learning. In Pattern Recognition,

pages 1509–1518, 2004.

[12] N. Robertson and I. Reid. A general method for human activity recognition in

video. Computer Vision and Image Understanding, 104:232–248, 2006.

[13] R.R. Sillito. Phd thesis.

[14] R.R. Sillito and R.B. Fisher. Semi-supervised learning for anomalous trajectory

detection. In BMVC08, 2008.

[15] T. Teixeira and A. Savvides. Lightweight people counting and localizing in in-

door spaces using camera sensor nodes. Distributed Smart Cameras, pages 36–

43, 2007.

[16] T. Xiang and S. Gong. Video behavior profiling for anomaly detection. IEEE

Trans. Pattern Analysis and Machine Intelligence, 30:893–908, 2008.

