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Abstract

This research explores the construction of Time-Lapse Videos from cluttered con-

secutive images. It is focused on the analysis of the evolution of a construction project

(The Informatics Forum). A capture process of 3 years produced a large image database

which provides the basis for this work. Images were affected by different artifacts such

as environmental and lighting changes, pedestrians, machinery and vehicles. Mecha-

nisms have been developed to automatically render the images and reduce these ad-

verse elements from the scenes to produce more ’truthful’ videos which more accu-

rately describe the building construction, thus contrasting with traditional techniques

which only use captured raw images spaced at fixed intervals to produce the output

video.

Reduction of noise, jitter removal and normalization of color levels are the methods

employed in the preprocessing stage to clean the image database and provide a suit-

able starting point for the implementation of the time lapse video creation algorithms.

Groups of images captured on the same day are processed to produce the frames of

the final video which represent the background of the scene. Foreground elements and

sudden weather transitions are removed. Two different methods to solve this are eval-

uated in this research. First, a multivariate median filter is employed as a deterministic

approach to solve the ’day image’ generation and processing. Then we employ a fil-

ter based on non-parametric kernel density estimation and a neural network classifier.

Results show improvements on the time lapse videos. A visible reduction of the fore-

ground elements and a higher stability in the image colors present a smoother version

of the building construction.

i



Acknowledgements

I would like to thank my supervisor Bob Fisher for his unconditional guidance

during the entire project. Our weekly meetings and email discussions really helped me

clarify ideas and explore different alternatives to solve the problems. Special thanks to

my family who have been supporting me at every stage of my personal and professional

career despite being thousands of miles away.

I am also grateful to my two sponsors, Colfuturo and the Alban Programme, which

gave me the opportunity to continue my studies for a pleasurable and challenging year

in Edinburgh. Finally I want to thank my friends Tony who helped to proofread this

work and Sandhya with whom I discussed ideas related to the project and spent many

hours in the labs finishing assignments.

Supported by the Programme Alban, the European Union Programme of High Level

Scholarships for Latin America, scholarship No. E07M403765CO.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jorge Luis Reyes Ortiz)

iii



Table of Contents

1 Introduction 1
1.1 Time-Lapse Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Case Study: The Informatics Forum. . . . . . . . . . . . . . . . . . . 2

1.3 Problem Description and Objectives. . . . . . . . . . . . . . . . . . . 4

1.4 Outline of the Research. . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 9
2.1 Time-lapse video analysis . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Video Summarization . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 TLV in Cellular Biology . . . . . . . . . . . . . . . . . . . . 12

2.1.3 TLV applied in Construction . . . . . . . . . . . . . . . . . . 12

2.2 Background modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Image Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Image Preprocessing 21
3.1 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Jitter Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Statistical Cross-correlation . . . . . . . . . . . . . . . . . . 24

3.2.2 Cross-correlation Matrix . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Image Stabilization. . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Jitter Removal Results . . . . . . . . . . . . . . . . . . . . . 30

3.3 Illumination Change Normalization . . . . . . . . . . . . . . . . . . 31

3.3.1 Histogram Based Techniques . . . . . . . . . . . . . . . . . . 33

3.3.2 Grey World Assumption . . . . . . . . . . . . . . . . . . . . 40

4 Image Processing 47
4.1 Traditional Time-lapse . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.2 Deterministic Approaches . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Multivariate Median Filter. . . . . . . . . . . . . . . . . . . . 50

4.2.3 Multivariate Median Results . . . . . . . . . . . . . . . . . . 52

4.2.4 Multivariate Median of Temporally Neighboring images . . . 55

4.3 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Non-parametric Kernel Density Estimation . . . . . . . . . . 57

4.3.2 Neighborhood Classification . . . . . . . . . . . . . . . . . . 60

4.3.3 Foreground Detection and Removal using Temporally Neigh-

boring images . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Illustrative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Video Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions. 81
5.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Further Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Weather Classification . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Background Model . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.4 Grey World . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 87

v



List of Figures

1.1 Time-lapse video example . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Construction process sequence. . . . . . . . . . . . . . . . . . . . . . 3

1.3 Frames from three consecutive days of the Informatics Forum. . . . . 4

1.4 Multivariate median time-lapse video example. . . . . . . . . . . . . 6

1.5 TLV reconstruction stages . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Factored time lapse video. . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Video synopsis and indexing. . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Motion-based background model. . . . . . . . . . . . . . . . . . . . 15

2.4 Network camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Image acquisition process difficulties. . . . . . . . . . . . . . . . . . 17

2.6 Image Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Conservative Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Jitter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Cross-correlation values for color images . . . . . . . . . . . . . . . 25

3.4 Cross-correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Cross-correlation matrix interpolation. . . . . . . . . . . . . . . . . . 28

3.6 Horizontal and vertical shift of Corinthian camera . . . . . . . . . . . 29

3.7 Jitter correction process . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Jitter correction results . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Color changes due to the weather and camera . . . . . . . . . . . . . 34

3.10 Automatic White Balancing Problems . . . . . . . . . . . . . . . . . 34

3.11 Michelson contrast measure for Ionic images . . . . . . . . . . . . . 35

3.12 Image stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Image equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 Corresponding pixels method . . . . . . . . . . . . . . . . . . . . . . 41

3.15 Validity of GWA in Forum Images . . . . . . . . . . . . . . . . . . . 43

vi



3.16 Grey world assumption example . . . . . . . . . . . . . . . . . . . . 44

3.17 Improved Grey World Assumption . . . . . . . . . . . . . . . . . . . 46

4.1 Traditional time-lapse . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Multivariate median example. . . . . . . . . . . . . . . . . . . . . . 51

4.3 Median methods comparison . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Temporary foreground removal . . . . . . . . . . . . . . . . . . . . . 53

4.5 Ghosting. Moving objects. . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Ghosting. AWB and weather changes. . . . . . . . . . . . . . . . . . 54

4.7 Semi-stationary objects . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Multivariate median of consecutive days. . . . . . . . . . . . . . . . . 56

4.9 Non-parametric kernel density estimation results . . . . . . . . . . . 59

4.10 Neighborhood cases at three times . . . . . . . . . . . . . . . . . . . 60

4.11 Cross correlation histograms. . . . . . . . . . . . . . . . . . . . . . . 64

4.12 Probability density functions for 7x7 neighborhoods . . . . . . . . . . 65

4.13 Naive Bayes Classifier confusion matrix. . . . . . . . . . . . . . . . . 66

4.14 Naive Bayes Classifier tested on synthetic data. . . . . . . . . . . . . 67

4.15 Naive Bayes classifier in real data . . . . . . . . . . . . . . . . . . . 68

4.16 3D scatter plot of 5 cases samples. . . . . . . . . . . . . . . . . . . . 69

4.17 Neural network confusion matrix . . . . . . . . . . . . . . . . . . . . 70

4.18 Eigenvalues of image neighborhoods after scaling and PCA. . . . . . 72

4.19 Distribution of foreground image samples in Euclidean Space. . . . . 73

4.20 Foreground and background model confusion matrix . . . . . . . . . 74

4.21 Foreground Detection and Removal using Temporally Neighboring im-

ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.22 Comparison between processing methods. . . . . . . . . . . . . . . . 77

4.23 Deterministic processing approach . . . . . . . . . . . . . . . . . . . 79

4.24 Probabilistic processing approach . . . . . . . . . . . . . . . . . . . 80

5.1 Processing of sunny images . . . . . . . . . . . . . . . . . . . . . . . 85

vii



List of Tables

2.1 Camera Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Image database characteristics . . . . . . . . . . . . . . . . . . . . . 19

3.1 Conservative smoothing statistics. . . . . . . . . . . . . . . . . . . . 23

3.2 Jitter Removal Results . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Neural network specifications for 5 neighborhood cases classification 69

4.2 Neural network specifications for FG and BG detection . . . . . . . . 74

4.3 Time-lapse video characteristics. . . . . . . . . . . . . . . . . . . . . 79

viii



Chapter 1

Introduction

1.1 Time-Lapse Video.

In image and video processing, Time-lapse video (TLV) is a visual technique in which

frames from an image sequence are captured at a lower rate than when they are played

back. It is a useful tool to visualize events that change imperceptibly slowly. This tech-

nique has been widely used in different fields; Motion of celestial bodies, cloudscapes,

growth of plants, and observations of natural phenomena have been its classical topics.

Nowadays, the application of time-lapse photography has been extended to several

areas such as video surveillance, the evolution of construction projects, scientific stud-

ies of natural phenomena and visual effects in cinematography. Recent improvements

in technology have made the creation of time lapse videos easier by introducing low

cost digital video cameras, software applications for video editing and webcam remote

access through the Internet.

The generation of time-lapse can be improved if different elements related to the

scene and the observer are taken into account. For instance, when a person observes

a rapid still image sequence (with rates above 15 frames/second), the human eye will

perceive it as an integrated moving image, the flicker between images becomes unde-

tectable and the brain has the illusion of smooth motion. These features are exploited

in video technology. We can create the same effect with time-lapse images when they

are played back at the frame rates stated before.

Unfortunately, if some of the changes that appear in the scene lack continuity or

have periodic occurrence, then the results do not look realistic and give the effect of

a motion scene that is difficult to comprehend. Examples of these scenes are time-

lapse videos of crowded outdoor locations during a long period of time (e.g. weeks).

1



Chapter 1. Introduction 2

Short term events are pedestrians and passing vehicles, longer events are day and night,

weather changes and stationary cars.

One of the big challenges of a Time-Lapse Video is to preserve the most important

events occurring in a scene whilst undesired elements can be omitted. Many of the

time-lapse videos are produced in controlled environments where factors such as the

scene illumination, the position or motion of the camera are very stable. This helps

to create realistic effects and diminish the amount of video processing. An example

of these videos is the capture of images of flowers opening indoors without being

affected by wind, sun, rain, etc. The resulting TLV can be a smooth depiction of the

flowering transition in just a few seconds (refer to Figure 1.1 for an example). In

contradistinction to the previous case, some other TLV are produced with data affected

by different noise sources which have to be considered and removed during the video

rendering. This research deals with these artifacts to produce improved time-lapse

videos of the evolution of a construction project.

Figure 1.1: Example of a time-Lapse video. A bunch of lilies opening over a period of

about two hours in just eight seconds. Video source [GBTimelapse, 2007].

1.2 Case Study: The Informatics Forum.

The University of Edinburgh has captured still images of its new Informatics Forum

over the past three years at a frequency of 1 frame/minute. These images can be linked

together to produce a time-lapse video of the building construction over the entire

project execution. Images from the building were obtained from three different cam-

eras. An example of the construction process at five different times is depicted in

Figure 1.2.

A traditional technique to make a TLV would take a set of images from the database

partitioned at fixed time intervals. The risk of doing this is the effect of random ap-

pearance of moving objects in the scene such as people and machinery, combined with

the evident differences in the weather and illumination during the entire construction.

This approach results in a visually complex and distracting time-lapse video. Figure
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(a) (b) (c)

Figure 1.2: Image Sequence of the construction process taken from three cameras: (a)

Doric. (b) Corinthian. (c) Ionic.
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1.3 shows an example of three consecutive frames from a traditional time-lapse video.

Note that several elements have been removed or added to the scene; additionally the

light conditions have evidently changed from one day to another.

Figure 1.3: Three consecutive frames of a traditional time lapse video. The detail de-

picts a sample of variations between them.

Generally, short term events can appear as noise in the rendered video because its

duration takes only very few frame rates. Hence, if the intention of the video is to create

a smooth progression of events, then it is required to analyze the video data and remove

the elements that are not required for a better video representation. Additionally, strong

environmental changes such as snow, rain and fog which are already part of the image

data can also be made less marked in the final video. All these modifications allow for

a better understanding of the visual information for an observer.

1.3 Problem Description and Objectives.

This research investigates the construction of Time-Lapse Videos from cluttered con-

secutive images. We aim to produce novel mechanisms to automatically render the

image data of the evolution of a construction project. This required developing deter-

ministic and probabilistic approaches that make use of prior knowledge of the data to

analyze the information from a time-lapse image database.

The end result is to create videos containing the most representative elements of

the construction progress; the building will be partially isolated from the external vari-

ations such as weather conditions and moving objects. We have available data for one

particular case which is the Informatics Forum and this will be the focal point of our

research. Even though this approach can be applied to different fields, the utilization

of specific knowledge on this case might not allow the generalization of the procedures

here implemented for the creation of all types of TLV.
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These are the main objectives in this research:

• Develop methods for producing time-lapse videos that improve the visual repre-

sentation of the evolution of a construction project given a set of cluttered images

from the Informatics Forum.

• Construct a technique to automatically create the most likely scene background

of an entire day where temporary elements such as moving objects and lighting

changes are removed.

• Investigate approaches to preprocess the raw image data and remove artifacts

such as jitter, lighting and color changes that affect the image processing.

• Evaluate and compare the results of the implemented methods to make decisions

about their effectiveness and applicability.

This research developed a series of techniques for time-lapse video generation.

They have dealt with different elements that affect the scene such as Jitter, Color un-

balance, unnecessary Foreground, weather changes, etc. These mechanisms require the

processing of large amounts of image data to finally produce short frame sequences.

Their evaluation is depicted in this document. An example of the steps to produce time-

lapse video using the deterministic approach (multivariate median filter) is shown in

Figure 1.4. It depicts how from the initial image dataset we obtained the last sequence

of frames for video rendering. Note that some objects present in the images of the first

row are removed. In addition, the image colors of consecutive frames are normalized

after preprocessing.

To provide a better understanding of the techniques employed in this research, a

multimedia library containing the time-lapse videos is available online at the following

url [Reyes and Fisher, 2008]:

http://groups.inf.ed.ac.uk/vision/BUILDING/REYES VIDEOS/.

1.4 Outline of the Research.

Previous work related to the production of time-lapse videos has been analyzed to have

a clear understanding of the state of the art in this area. It has been focused on the idea

of the persistence of intrinsic elements on the images and the possibility of extracting

representative video segments or features from the data. This analysis is delineated in
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(a)

(b)

(c)

(d)

Figure 1.4: Multivariate median time-lapse video example (3 frames). (a) Raw images.

(b) Preprocessed images (Noise reduction, Jitter Correction and Color balance). (c)

Multivariate median filter applied on images from the same day. (d) Multivariate median

of temporally neighboring images.
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Chapter 2 together with a brief depiction of the data acquisition process. The latter

reveals how the images from the Informatics Forum were captured (hardware) and

stored (software and database).

Once the images were available for our use, we realized that these had several

unfavorable elements that could be improved to finally obtain better results during the

image processing stages. For instance, a clearly visible vibration between consecutive

frames (jitter) and an alteration of the true color values of some images due to defects

in the capture devices. Mechanisms such as noise reduction, jitter removal and color

normalization that reduce the artifacts on the raw images before the TLV construction

are described in detail in the image preprocessing chapter (3).

At that point we assumed that the images were clean and ready for the processing.

One fundamental idea of our video construction process is that images that represent

each day (day image generation) are obtained initially using the available data and then

processed to create the final videos (day image processing). This concept is applied to

three different approaches for TLV production. We start with the implementation of the

traditional method which was produced for comparison purposes. Then, a determin-

istic method based on median estimations in a three-dimensional space of the video

images is implemented. And finally we experimented with a probabilistic approach

which applies a kernel density estimator in day image generation and two classifiers

(Naive Bayes and neural networks) for posterior day image processing. The explana-

tion and evaluation of these methods is presented in Chapter 4. A general overview of

the complete reconstruction process is depicted in Figure 1.5. This shows how the raw

data go through the different phases till the final video is produced.

As a final point, we conclude showing the contribution of this work and analyze the

difficulties found during the experimentation. Additionally, some improvements of the

implemented techniques are proposed as future work. This can be found in Chapter 5.
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Figure 1.5: Reconstruction stages for the generation of time-lapse videos.



Chapter 2

Background

The computer vision community has worked the problem of playing back video at

faster frame rates than their original capture speeds. Some areas have been focused in

the interpretation of this data to extract relevant information. Time-varying imagery

deals with the problem of dynamic scene analysis and the processing of sequences of

images to retrieve information that can not be obtained independently from each frame.

Video summarization looks for short elements in video data to best represent the entire

data set. For instance, a film can be condensed in a very short time but a non-linear

sampling allows grabbing groups of sequential frames instead of having rapid changes.

In this section a description of the current research in time-lapse video analysis is

depicted. Additionally, a description of the image acquisition process is presented.

This includes details in relation to the hardware utilized during the registration and a

depiction of the image database that has been employed to produce time-lapse videos.

2.1 Time-lapse video analysis

The concept of intrinsic image model was introduced by [Tappen, 2005] where inher-

ent characteristics of the images such as illumination and surface perception can be

extracted from visual data. The scenes can be expressed for instance in terms of the

combination of these characteristics. This concept was extended by [Weiss, 2001].

They use time-lapse video to estimate a single reflectance image with multiple illumi-

nations in a static scene. Some other researchers have applied these intrinsic image

ideas in different fields.

The reflectance and illumination images are extracted from surveillance video in

[Matsushita et al., 2003]. Similarly to our study case, this work deals with changes in

9
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illumination conditions due to weather and time of day. These artifacts make the pro-

cessing task more difficult when video surveillance systems are employed in outdoor

locations. They use techniques for image normalization to remove shadows and color

changes from the images. Differently to our approach they work with a static back-

ground and image data at higher frame rates, hence this allows to create a model of the

scene and subsequently apply object tracking algorithms for robust video surveillance.

In [Koppal and Narasimhan, 2006], a technique is proposed for scene analysis to

cluster an image into regions with similar light changes according to the surface nor-

mals of the scene points. This is done after using smoothly moving light sources in

the scene with unplanned patterns and analyzing the derivates of the reflectance distri-

butions on the images. Pixels with similar color intensity variation are considered as

part of surfaces with similar normals. Similarly, in [Sunkavalli et al., 2007] Sunkavally

developed a method called Factored Time-Lapse Video to obtain time lapse video from

outdoor and clear sky scenes. He obtained plausible results after separating the light

sources and shadows from the video data. He estimated the shadows for all the pixels in

the image using time-varying intensity profiles. The whole sequence (spatio-temporal

volume) was factored in a skylight image, a sunlight image, two basic curves that de-

scribe the temporal characteristics of skylight and sunlight and a shift image that rep-

resent the offset of each pixel respect to the basic curves. Figure 2.1 shows an example

of image decomposition in their factors using this method. This last two researches

differ of our model because even though the sun is the main light source falling on the

Informatics Forum images and it always has a known motion pattern, It is influenced

by the clouds or weather. Hence a real motion model cannot be always applied to this

particular application; also, as it will be described in Section 2.4, the number of frames

that we have available for the processing is not the adequate amount for this purpose.

Finally, the background is constantly changing at unpredictable locations.

(a) (b) (c) (d)

Figure 2.1: Factored time-lapse video [Sunkavalli et al., 2007]. The spatio-temporal

volume (a) is separated into: (b) Sky component and (c) Sun component, which is

modulated by. (d) The shadow volume.
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In [Bennett and McMillan, 2007] Bennett presents a method for generating time

lapse videos from video-rate footage. They use a non-uniform sampling method based

on dynamic programming to process the source data into the time lapse video. They

are able to retain, remove and resample events based on the user requirements such as

the visual objectives and specified video duration. Depending on the desired effect and

type of output, they use different metrics for the optimization. The non-linear sampling

is combined with a virtual shutter to create longer time exposures by employing several

images. In our method for generating Time-lapse videos, only uniform image sampling

is considered for the rendering which means that consecutive frames of the final set are

spaced by the same time interval. A non-uniform sampling can be considered if it was

desired to visualize parts of the video at different reproduction speeds. Our raw data

is not video footage but for the generation of each frame of the final video, we have to

analyze a subset of images. Something similar takes place in this approach.

2.1.1 Video Summarization

In [Smith and Kanade, 1997] Smith worked with multimedia video summarization.

Short representative video segments retain the essential information from the input

videos. With the increasing size of collections of video databases, tools are required

to evaluate in short times the contents of these libraries. They propose a method to

produce videos which are synopses of the original. This is done by analyzing the

video and audio information with image and language understanding techniques such

as motion analysis, scene segmentation to detect changes, object detection (faces, text,

etc.).

Another approach related with video summarization is the generation of video syn-

opsis. This is a tool developed by [Rav-Acha et al., 2006] used for browsing and in-

dexing long time-lapse videos. It provides a short representation of the events that

occur in a long period of time by showing activities that occurred at different times si-

multaneously. The final output provides a compact video representation and preserves

the essential activities of the original video. Foreground, which is detected by a mea-

sure of activity on the images, is isolated and immersed in the same spatio temporal

volume with other foreground elements that happened in different instances in con-

tradistinction to the conventional video abstraction. An example of this method is the

summarization of the event events occurring in an airport. Refer to Figure 2.2.
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(a) (b) (c)

Figure 2.2: Video synopsis and indexing. Airport surveillance video. (Taken from

[Yael Pritch and Peleg, 2008]) (a) Typical image. (b) Image from Synopsis video. (c)

Video Synopsis at a smaller duration (more collisions between elements).

2.1.2 TLV in Cellular Biology

Cellular biology is another area where this technique has been applied. Time-lapse mi-

croscopy imaging provides an important method to measure the cycle progression and

morphology of cells. When this analysis is required in large populations of cells, it is

unreasonable to use a manual analysis of the data. In [Yang et al., 2006] an automated

mechanism to study large volumes of time-lapse microscopy images is proposed. This

is based on Mean-Shift [Comaniciu and Meer, 2002a] and Kalman Filter methods for

a robust cell movement and division tracking. These measurements are important in

understanding for instance drug effects on cancer cells.

Additionally, in [Althoff et al., 2006] an in vitro cell migration analysis is de-

scribed. This was focused on the creation of a mechanism to differentiate neural

stem/progenitor cells. A Hidden Markov Model is a powerful tool to describe stochas-

tic non stationary processes such as cell migration.

2.1.3 TLV applied in Construction

In [Ferguson., 2007], a classical video recovery algorithm was employed by Ferguson

to generate a time-lapse video of the building. It was based on a temporal median fil-

tering method. Only video data from a fixed time day interval was chosen for the anal-

ysis. The results obtained with this approach showed the appearance of a phenomenon

called ghosting where shadows of the foreground were immersed in the rendered video.

Additionally, the images were blurry and the light conditions kept changing. This pre-

vious work will be used as reference for the evaluation of this project. A detailed

explanation of this approach can be found in Section 4.2.1.



Chapter 2. Background 13

Time-lapse images can be utilized in the detection of the status of a construc-

tion process. In [Abeid and Arditi, 2002] time-lapse imagery is linked with dynamic

scheduling of construction operations. They use a time-lapse technique to visualize

the construction performance in a short period and also make daily registration of the

progress from a user interface. Then the events and activities are associated with the

image data. The disadvantage of this approach is that requires human supervision. On

the other hand in [Lukins et al., 2007] a fully automated method for measuring the

progress of a construction is proposed and depicted with a simplified test case. Based

on image processing techniques and advanced reconstruction tools, they compare a vir-

tual 3D model of a building with the current project status to determine the feedback

of the progress. This research can be applied in project management to enable better

control and efficiency in the project execution.

2.2 Background modeling

Other work has been focused on the background and foreground analysis. This consists

in the separation of the visual information in two basic elements. The moving objects

in a scene (foreground) can be detected by comparing each frame with a model of the

scene background. Several elements that have to be considered to create this model;

they include illumination changes and non-stationary background such as moving trees

branches or waves in the sea, etc. Another important alteration that can take place in

the background is the addition of new elements that modify the geometry in the scene

(such as new structures in a building). These changes are initially foreground but then

the background model has to be capable of incorporate them. This is called dynamic

background generation.

A conventional method to estimate background is pixel intensity in terms of a prob-

ability density function (pdf); this is usually modeled as a Gaussian distribution. The

background probability for a new pixel in new observations is estimated based on this

distribution and a threshold. This model can be adapted to smooth changes in the

environment. This basic method has been used in [Wren et al., 1997].

Some scenes cannot be modeled with a simple Gaussian distribution. For instance,

pixels located near tree branches in an image cannot be defined as a single Gaussian

because they can change from the light blue sky to the green leaf color. Hence for

this a mixture of distributions (usually Gaussian) can be used to model each pixel.

In [Grimson et al., 1998] a mixture of Gaussians distributions is used to model the
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color pixel variations in an outdoor scene. It is relatively complex to determine the

exact number of Gaussians required for each particular pixel. Many researchers use a

predefined number as the maximum number of Gaussians to describe each particular

background pixel. These distributions are weighted according to their appearance.

In [Lee, 2005] three Gaussians were used to model the background.

Sudden illumination changes were not considered in the previous approaches. For

instance, in [Taycher et al., 2005] a HMM model has been used to model states of the

environment in an outdoor scene. These states represented light levels such as cloudy

and sunny skies.

In [Elgammal et al., 2002] Elgammal reconstructs a robust statistical model of the

background based on a non-parametric kernel density estimation for outdoor visual

surveillance. This does not assume a probability density function but it is estimated

in terms of the most recent observations from the data. They model complex natu-

ral scenes including changing light conditions, shadows and small movements in the

background. A similar method is implemented in [6]. Additionally in [Mittal and

Paragios, 2004] Mittal uses another non-parametric approach to model scenes with

dynamic behavior in the background. Their model measures the optical flow in the im-

ages and it uses this as a feature of the background. For instance, they are able to detect

foreground objects in a beach where the waves constantly appear (as part of the back-

ground). They compare their technique with several methods such as Gaussian mixture

and basic non-parametric approaches. Figure 2.3d shows an example of this method in

a beach scene and is compared with a Gaussian mixture and a non-parametric model,

note that the waves do not appear in the motion-based model (Figure 2.3).

In our approach is required to remove foreground elements and replace them with

the most likely representation of the background model. In contrast to previous models,

we deal with a highly dynamic background and the estimation of a truth model with

a small amount of data has not a straightforward solution. Nevertheless the methods

here implemented depict a plausible representation of the scene background.

The process of foreground removal implies the emergence of empty zones in the

images that have to be filled with data from the neighboring regions in space and time.

This can be done for instance by placing the data of the previous day in these zones

or utilizing a set of nearby images. Both approaches are taken in consideration in this

project. Another possible solution to the occluded background infilling is the use of a

non-parametric method for texture synthesis similar to the one proposed in [Efros and

Leung, 1999]. This process grows an image from an initial seed and preserves its local
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(a) (b) (c) (d)

Figure 2.3: Motion-based background example and comparison with two techniques

(source [Mittal and Paragios, 2004]): (a) Original images. (b) mixture of Gaussians

model. (c) non-parametric model. (d) Motion based background model).

structure. The seed in this case would be the data surrounding the foreground, then

this data is modeled as a generalized markov chain in two dimensions to determine its

probability distribution and predict samples of occluded regions.

2.3 Hardware

Corinthian, Doric and Ionic are the names of the network cameras that have been

installed in Appleton tower (the building next to the Informatics Forum) to register the

project evolution. They have been located deliberately to capture most of the details of

the construction. The cameras utilized in the project have a similar appearance to the

one shown in Figure 2.4a. Their localization in the building is depicted in Figure 2.4b.

These devices have an Ethernet network interface which makes them flexible for

installation. Additionally, they have a resolution of 1.2 Megapixels which is suitable

for high quality video and image capture. In our case only images were stored but from

an internet address [Blunsden, 2008], live feeds were available during the construction.

The most relevant specifications of the cameras are shown in Table 2.1 and a complete

description of their characteristics can be found in [axi, 2006].

We had some difficulties with the image acquisition process that affected the qual-

ity of the images. These are described as follows:

• Doric and Ionic cameras have been moved manually in different occasions. This

was done essentially to provide a wider view of the construction once it was



Chapter 2. Background 16

(a) (b)

Figure 2.4: (a) Network camera 3/4 view. (b) Localization of the cameras in Appleton

Tower. 1. Ionic, 2. Corinthian, 3. Doric.

Feature Detail

Model Axis 207

Resolution 1280x1024 pixels

Sensor RGB CMOS

Lens 3.6 mm (0.5 m - infinity)

Frame rate 12fps

Table 2.1: Network Camera Specifications
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detected, when the construction was already in progress, that higher floors of the

building were not going to be visualized by the cameras. As will be mentioned

later, in Section 3.2.3.2 this will create a difficulty on the jitter correction process.

Corinthian camera was never manually adjusted but its stability was affected by

external factors which produced on it a high vibration. In the Jitter Removal

Results Section 3.2.4 it will be shown that the vibration of this camera is more

than the other two. In Figure 2.5c two images, one before and other after the

adjustment, are blended to illustrate the change on the viewpoint of the camera.

• Some images had a focusing problem. There is not really an alternative to solve

this issue thus some regions of the final video will have blurred sections. An

example of this is the top right region of the Corinthian camera as depicted in

Figure 2.5a which looks more blurred than the rest of the image. These cameras

are suitable for objects located at infinite, but this one had a defect.

• The cameras were affected by dust on the windows of the building. This created

some dark and blurred images. There was not a simple method to clean the

windows because of their high location.

• Finally, Appleton Tower was disturbed by strong winds during February 2008.

This affected the stability of the windows and obliged the installation of a pro-

tection mesh to prevent any accident. The mesh covered the entire building

including the places where the cameras were installed. Figure 2.5b shows an

image of the mesh installed. This clearly caused harm to our database; therefore

none of the images from this period were taken for the processing.

(a) (b) (c)

Figure 2.5: Difficulties during image acquisition process. (a) Blur in image portion from

Corinthian camera. (b) Mesh for strong winds protection. (c) Manual adjustment of the

camera. (Note the incorrect overlapping of images before and after the adjustment)
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2.4 Image Database.

The capture of images from the Informatics Forum has been a process of approximately

2.5 years. This was a completely automated process and little human supervision was

required. It was necessary occasional inspection of the cameras and servers operation

to verify their continuous operation. Most of this maintenance could be done remotely

through an internet connection and access to the university Linux system except for

manual adjustments to the position of the camera that required physical intervention.

The result of this capture process generated an very large amount of image data, and

this is essentially the input of our project.

Images were stored at a rate of 1 frame per minute (fpm). This created approxi-

mately 600 daily images and 3000 weekly images taking into account the capture time

was from 8:00 am to 6:00 pm and only weekdays. However, not all the images were

suitable for the processing because their lightness was low depending on the time of

day; hence they were not entirely clear. They are dark early in the morning and at the

end of the day. Due to this cause, we are going to take only the brightest images from

each day for the processing. This was done heuristically by using images taken close

to noon; this is the period from 11:00 am to 2:00 pm. The frame rate was also reduced

to 0.1 fpm which is equivalent to 6 images per hour.

Additionally there is a linear relationship between the number of images utilized

and the computational cost. Therefore, a reduction of the number of frames was then

convenient to produce results in a suitable amount of time. It is important to remark

that even though cameras have same frame rate, there is not exact synchronization

between them. The images do not have the same timestamps.

Table 2.2 specifies the most relevant characteristics of the images from the database.

Note that the average size of the images from the database is about 185 Kb. In

contrast, there was a big size difference between the images. When the construction

started the image size was around 170kb, only a small amount of elements were on the

scene, it consisted mostly of unoccupied terrain. Then in the middle of the construction

process, several elements were taking part of the scene and the image size increased

to a maximum of 320 Kb. Finally when the building façade was completed the image

size was reduced again to approximately 100Kb due to the redundancy of windows

and walls.

The image capture process had some gaps during the construction. This was gen-

erally because of problems with the server and/or the network cameras. This does not
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Feature Units
Database

Total Employed

Capture Time hr 8–16 11–14

Frame rate fpm 1 0.1

Resolution Mpx 1.2 1.2

Number of Images units 824.070 30.097

Image Size (Avg) Kb 185 185

Storage space Gb 143 5.58

Table 2.2: Image database characteristics.

necessarily affect the results of the video but taking into account that these have been

occurring at different times for the three cameras the final videos will be out of phase

to some extent. Figure 2.6 shows a plot of the available data from the database for the

three cameras. Note that there is not available data for the days with zero value, in-

cluding weekends. These last are not clearly visible because the resolution of the plot.

The last 100 days are not available for processing because these are the ones affected

by the mesh installed on Appleton Tower.
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(a)

(b)

(c)

Figure 2.6: Image Database. Available data - blue, missing data - white. (a) Doric. (b)

Corinthian. (c) Ionic.
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Image Preprocessing

The input of the entire video reconstruction process is the image database from the

Informatics Forum. These images have various artifacts such as noise, jitter between

consecutive frames and problems with the color gain. In this chapter, the methods that

have been developed to preprocess the data are described. Their main objective is to

reduce effects on the raw images that can be harmful for the good performance of the

image processing. These are described as follows:

• Noise Reduction: Capture devices and the compression process introduce noise

in the images. This is decreased by applying non-invasive image filters that do

not affect the image quality.

• Jitter Removal: The vibration of the cameras was a distinctive factor during the

entire project. This was induced by motion sources near the hardware location.

A method to align the frames and reduce this effect is implemented.

• Color Adjustment: Several images have incorrect color gains. Even though

they are taken in similar conditions, many differences are noticeable between

each other. This is mostly related with two factors: 1. The variety of weather

changes during the project execution and 2. The mechanism utilized by the cam-

era to adjust the gains of the visual input to produce good quality color images.

This last is called Automatic White Balancing (AWB).

3.1 Noise Reduction

Raw data is affected by a variety of noise sources. Most of them are related with the

electronic circuitry of the cameras (CCDs), dust on the lenses and also the artifacts

21
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produced by jpeg compression. Before working with the images, we evaluated the

possibility of reducing this noise to improve the results of the experiments. Different

filters were tested on the image to check their effectiveness. We tried initially with

linear filters such as convolution using a Gaussian kernel of different window sizes

but it was found that these smoothing filters blur the images and reduce the detail,

especially in the edges, and this is not very appropriate for this application. As an

alternative, a 3x3 Wiener filter [Washizawa and Yamashita, 2006] was employed. This

filter is based on a statistical approach that depends on the local variance of the images,

increasing the blurring when variance is small and decreasing it otherwise. Among

linear operators this is the one that restores better the signal with respect to the squared

error when it is averaged over the noise and original signal. This method is a commonly

used approach to remove additive noise (Gaussian white noise).

Non-linear filters work using information from neighboring values and make a de-

cision about the central pixel value. For instance, a median filter [Davies, 2004] pre-

serves the image details. The output pixel is the result of applying the median of the

brightness of the pixel window. We have also utilized a non-linear filter for noise re-

duction called conservative smoothing [R. Fisher and Wolfart., 2003]. This method

attempts to make the pixel values consistent with their neighbors, hence it guarantees

that the intensity of the pixels will be always bounded within the neighborhood pixel

intensities. If any of the pixel intensity is outside these bounds the pixel is then shifted

to the highest or lower values of the neighborhood. This filter is very effective for re-

moving spikes and salt and pepper noise from images. The application of conservative

smoothing on the image set is done separately for each color channel. The results of

these two filters on the images are an appropriate combination for preserving image

detail and improving image quality; the non-linear filter is applied first.

Figure 3.1 shows a synthetic example of a color image in which salt and pep-

per noise has been added and also a real example from the dataset where both filters

(Weiner and conservative smoothing) have been applied. Observe the noise reduction

after utilizing this method. Table 3.1 shows statistics about the effect of the non-linear

filter in the images.

3.2 Jitter Removal

In this section, a method to stabilize the images based on statistical cross-correlation

is described. It assumes that consecutive images are highly correlated and have small
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Conservative Smoothing

Average corrections per image 68103

Percentage of total number of pixels 5.19%

Difference between window limit values and central pixel

Mean (px) 2.4742

Standard deviation (px) 2.2411

Table 3.1: Conservative smoothing statistics.

(a) (b)

(c) (d)

Figure 3.1: Conservative Smoothing (a) Lake image with salt and pepper noise added.

(b) Results after applying the conservative smoothing filter. Close up of Forum image

before noise reduction (c) and after using Wiener and conservative smoothing filters

(d).
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changes in their configuration such as the addition of a few elements in the scene and

changes in the weather. In principle, we aim to find the shift between images and then

arrange them in an optimal position. In Figure 3.2 we can see the jitter between two

consecutive frames. A section of the images is enlarged to visualize the phenomenon

which is in this case approximately 5 pixels difference in the vertical direction.

There are different jitter sources which affect the position of the cameras. It is

possible that in our scenario these devices are being affected by strong winds, nearby

machinery or defects in the mounting. As a consequence, the viewpoint is slightly dif-

ferent from frame to frame. These disturbances are noticeable when the video is played

back. An image stabilization mechanism is required to solve this problem and also im-

prove the quality of the image processing because this increases the correspondence

between pixels of consecutive frames.

Figure 3.2: Jitter example between consecutive day images from Corinthian camera

images. Red line shows the vertical movement of the camera.

3.2.1 Statistical Cross-correlation

Different alternatives have been considered to find relationships between images. Some

of them are: (Weighted) Euclidean distance, Mean Squared Error [2], Histogram-based

metric [3], Manhattan distance, etc. For this project, we have chosen Statistical Cross-

correlation (ccor) as an appropriate measure of similarity between images. It is a very

useful tool to find matches because it is robust to noise and invariant to changes in

lightness which makes it suitable for our necessities. This measure has results within a

limited range [−1,1]. The highest cross-correlation is obtained when there is an exact

match between images, this is equivalent to ccor = 1. Images are uncorrelated when

ccor ≈ 0 and they are inversely correlated when ccor =−1. In Figure 3.3 an example

of the estimation of the ccor for three different examples is depicted. The reference is

the landscape image.
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Fisher [Fisher and Oliver, 1995] discusses a method that generalizes the monochrome

image cross-correlation to a multivariate case. Experiments in MRI and RGB color

spaces showed the effectiveness of the approach. The mean of the correlation coef-

ficients of individual channels is a good estimator of similarity for high-dimensional

imagery. We will follow this measure of similarity to find the jitter of the RGB images

from the image database. Subsequently the Cross-correlation of color images A and B

is defined in 3.1 as:

ccor (A,B) = A⊗B =
1

3 · size(A)
· ∑

c∈{r,g,b}
∑

(i, j)∈A

(
Ai, j,c−µA

c
)

σA
c

(
Bi, j,c−µB

c
)

σB
c

(3.1)

where µA
c and σA

c are the mean and standard deviation of image A in color channel c,

size(A) is the number of pixels in image A. We assume that size(A) = size(B). When

normalized data is used, ccor reflects the true linear Pearson correlation.

(a) (b) (c)

Figure 3.3: Cross-correlation values for color images between reference image and :

(a) Landscape image . ccor = 1.0. (b) Landscape negative image. ccor = −1.0. (c)

Forest image. ccor = 0.1216.

One of the advantages about this measure of similarity is that it is insensitive to

color level variations. We have noticed in the images that the lighting levels change

substantially from one day to another and there are additionally effects generated by

the automatic color balance mechanism of the cameras. This approach will neglect

these deviations.

A complete description of the relationship between consecutive frames in terms

of an image projection consists of a series of different transformations such as 3D

translations and rotations. But based on the fact that the elements of the scene are very

far from the camera we can assume that they are close to infinite and the model can be

simplified in this manner:

• The jitter can be described as a two-dimensional translation of the image.
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• No rotation or shear of the image is considered.

3.2.2 Cross-correlation Matrix

A cross-correlation matrix is used to find the optimal location of the images to reduce

the jitter. The process consist of taking a pair of images A and B. These images are

reduced in size by cropping the edges (e.g. 3 pixels o f f set). The reduced image

A is centered with respect to the original and B is shifted horizontally and vertically

according to the vector ∆̃ = (δx,δy) , δ ∈ Z,−o f f set ≤ δ≤ o f f set. The mathematical

description of this matrix is shown in equation 3.2.

C (δx,δy) =
1

3 · size(A)
· ∑

c∈{r,g,b}
∑

(i, j)∈A

(
Ai, j,c−µA

c
)

σA
c

(
B(δx,δy)i, j,c−µB

c

)
σB

c
(3.2)

3.2.2.1 Discrete shift

The position of the matrix element with the highest cross-correlation value is the shift

required to align a pair of images. Figure 3.4 shows two cross-correlation matrices.

This example has been set up manually. The brightest regions symbolize higher cor-

relation. Figure 3.4a is the result of applying ccor () between one image and itself.

In Figure 3.4b the original image has been shifted three positions to the right and one

position down, consequently the matrix is indicating that the highest correlation will

be obtained if the image is moved back to the original position, this is (−3,−1).

(a) (b)

Figure 3.4: Cross-correlation matrix. (a) No shift, maximum ccor in center pixel. (b)

Shift between consecutive frames (−3,−1).
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The cross-correlation is estimated in a limited window, a 7x7 neighborhood. This

has been preferred to reduce the computational cost which increases quadratically with

the window size. In addition we assume that the vibrations of consecutive days are

small and are approximately inside this region. There are just only a few examples

which are outside this range but they can be solved manually or left without modifi-

cations because these shifts are excessively large and corrections might affect the final

video frame size. This will be clarified in section 3.2.3.

3.2.2.2 Accurate Jitter Estimation.

In reality the jitter of the camera is not a discrete value. In fact this value is real

number inside the cross-correlation matrix position boundaries. The values of the cross

correlation matrix can be used to find accurate jitter estimation by assuming that these

values have been generated from a distribution. We could then find the point which

is the maximum of this function. Initially we tried to fit the data to a 2D normal

distribution but the shapes found were not always ’Gaussian’. Moreover the values

of the elements of the matrix were very close to each other suggesting a Gaussian

function with a high variance. Finally we implemented a more robust method based

on bicubic interpolation. This uses information from the pixels of 16 neighbors to

estimate the cross-correlation intermediate values. This technique is commonly used

on image resampling to find color values when the number of the pixels in an image

is increased and it gives more realistic results than simpler methods such as nearest

neighbors and bilinear interpolation [Świerczyński and Rokita, 2008].

In figure 3.5, an example of bicubic interpolation is depicted. Plot 3.5a shows the

cross-correlation matrix in a 3D space where x and y axis are the matrix positions and

z is the ccor value. As can be seen this plot is not smooth. After the interpolation

of the matrix values, we found the intermediate values of the matrix by reducing the

grid size as shown in 3.5b. This result is smoother that the original matrix and it was

found that the maximum cross correlation using the interpolation method was equal to

(−0.1,1.6) instead of using the discrete shift estimation which found a shift of (0,2)

pixels.

This estimation is very useful to find the right amount of movement of the camera

through time. The difficulty with this approach is that it is not possible to carry out

the exact shift of the images without affecting the image data. This would imply the

interpolation of the image pixel values. Subsequently, this will cause problems in the

processing stage because of the weighted blending of the image colors using nearest
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(a) (b)

Figure 3.5: Cross-correlation matrix interpolation example. (a) 7x7 ccor matrix in 3D

space. (b) Bicubic interpolation.

neighborhood data. The accurate method will be only used during the evaluation of

the jitter correction but not for the image stabilization which used the rounded integer

values of the shift.

3.2.3 Image Stabilization.

We have evaluated the jitter of the cameras through time and it was found that the

vibration of the images is different for the three cameras. The highest jitter was found

in the Corinthian camera and this can be easily observed in the rendered videos. Figure

3.7 shows the horizontal and vertical shift relating consecutive images for the complete

set of images. This has been done employing the discrete shift method. The plot also

takes into account the days without image capture to have the real time scale. This is

why the plot reaches 800 days on the time axis whereas the total of available days is

near 600. In these cases the x and y positions are kept constant.

3.2.3.1 Image Alignment

This has been done in two stages. As will be discussed in section 4, we have first to

estimate representative images for each day (day image), then process them to obtain

the final video. We found that the jitter can occur in images from the same day and

certainly from different days. As a result, the jitter correction is applied first to one day

samples to produce day images and then to the resulting image set. The procedure is

similar for both cases and it is detailed as follows:

• The horizontal and vertical shift of the camera is estimated for a given set and
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Figure 3.6: Horizontal and vertical shift of Corinthian camera over the entire building

construction. Red and blue lines correspond to the alignment position with the least

loss of data from image edges.

a (x,y) position is associated to each frame representing the cumulative shift

starting from the first image at (0,0) as depicted on figure 3.6.

• A motion trail is generated from the jitter estimations to describe the camera

displacement through time.

• The mean location of this trail is chosen as the center of the shift (see horizontal

red and blue lines on figure 3.6). This will correspond to the position with the

least loss of data from the image edges.

• All the images are shifted to the center in discrete steps.

• The edges without content are removed. This clearly produces a reduction of the

image. The size reduction is calculated using the maximum shift of the images

with respect to the alignment position.

The process of image alignment is depicted in figure 3.7. Orange bars represent

images of consecutive days. After the jitter estimation they are shifted according to the

cross-correlation matrix and aligned correctly.

3.2.3.2 Manual adjustment.

As was mentioned before, we had assumed only 2D translations of the images. There

are some special cases were the jitter is better described as a rotation rather that a

translation. The current method for jitter estimation finds a reasonable position but
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(a) (b)

Figure 3.7: Jitter correction process. (a) Raw images. The blue squares show the shift

between consecutive frames. (b) Image alignment. Image size is reduced to remove

empty edges.

sometimes a manual adjustment of the image position can produce a perceptually better

result.

Additionally, some other adjustments were done when the jitter exceeded the neigh-

borhood window size. Even though the algorithm reduced the amount of jitter in these

frame it was not enough to correct it entirely. This occurred approximately 2 times for

each camera. When manual movements of the camera were registered, it was not pos-

sible to apply any shift because these were very large and the image size reduction after

alignment would have been inappropriate. These cases were left without shift modifi-

cations, so it will be noticeable during the video playback one or two large jumps in

the camera viewpoint.

3.2.4 Jitter Removal Results

Once the image stabilization is implemented, the jitter level can be measured on the

processed images to find the amount of error. Afterwards we can compare the results

of the approach with the original data. For this, we have used the method based on

bicubic interpolation because it still finds errors in the jitter correction that can not be

sensed using the discrete method.

In Figure 3.8 the results of the jitter correction are depicted. The blue plot is the

Euclidean distance of the shift vector
∥∥(δx,δy)

∥∥ for each image pair of consecutive

days using raw data. Similarly the red color shows the distance of the processed daily

images. These results are for the three cameras and they clearly show an improvement

in the stability of the images and the effectiveness of the method. Additionally, we can

observe that there is still a small amount of vibration which is also perceived in the

final video. As a further improvement, this can be solved for instance by shifting the

images to match the exact position, but this requires interpolation of the pixels. The
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Camera Dataset Mean (px) Std (px) SSE
(

px2)
Corinthian

Original 1.3501 1.0044 1593.17

Processed 0.0869 0.0855 8.37

Doric
Original 0.3944 0.4373 207.21

Processed 0.2524 0.2169 66.21

Ionic
Original 0.8731 0.7715 788.15

Processed 0.31184 0.2012 80.00

Table 3.2: Jitter Removal Results

method can be implemented after the images have been processed and no additional

modifications are required.

Corinthian was the camera with the strongest jitter. This is seen in Figure 3.8a and

in Table 3.2 where the mean, standard deviation, and the sum of squared error (SSE)

of original and processed images are illustrated. Note that the mean jitter is much

higher in Corinthian than in Doric and Ionic. It is clear that some external vibration

was affecting the position of Corinthian camera. After the processing all the cameras

have a small deviation which is no more than 0.22 pixels. This is certainly the effect

that remains on the final video.

3.3 Illumination Change Normalization

Another relevant finding on the raw images is the high range of variations that can be

found in the pixel color values. Apart from the expected normal changes of the con-

struction process such as the addition of new structures, machinery, etc., other factors

affect the images and make them appear very distant from each other even if they are

continuous in time. Some examples of these changes are depicted in Figure 3.9. The

main causes of these variations are described as follows:

• Weather changes. We have captured all types of weather during the entire con-

struction. They include days with sun, fog, snow, rain, clouds, etc. (refer to

Figures 3.9a, 3.9b and 3.9c). This obviously modifies the scene conditions and

the color distribution of the images.

• The previous conditions come together with the emergence of shadows and high-

lights that darken or brighten the images. For instance, the shadow of Appleton



Chapter 3. Image Preprocessing 32

(a)

(b)

(c)

Figure 3.8: Jitter correction results. Blue and red curves show camera jitter before and

after alignment. (a) Corinthian. (b) Doric. (c) Ionic.
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tower over the Forum construction in sunny days occurs regularly and produces

big dark regions in the images. In the rendered video it is possible to see how

the shadow shifts its position depending on the time of the year.

• The cameras have integrated an Automatic White Balancing (AWB) system that

chooses the appropriate gains for each color channel (RGB) to represent more

realistically the images. There are different methods of doing AWB. Examples

of this are using edge detection [Lin, 2006], adjacent RGB channels [Lam et al.,

2004] and neural networks [Chen et al., 2007]. We have no knowledge about the

type of transformation that the camera utilizes to balance the color values. The

main problem is that we have detected many erroneously balanced images which

affect the processing. An example of this problem can be found in Figure 3.9d.

Notice that there are many of these cases in the dataset. Sometimes the images

look more bluish or reddish than expected. A particular point related with this is

that this balancing adjustment is a problem of the three cameras. For instance, in

Figure 3.10, we see how the three cameras have registered simultaneously blue

scenes when the image previously taken was clearly fine.

These aspects have consequences on our implementation. Abrupt color level tran-

sitions from one day to the next causes flicker that makes the video look confusing.

A good video should have gradual changes and stability on the images. Apart from

the different lightness levels, we have color shifts that make strong differences be-

tween consecutive days. These two elements are not suitable in a good TLV. Finally

these differences on the images affect the creation of day images, especially when us-

ing methods such as multivariate median filter. This creates the emergence of ghosts

which be clarified in Section 4.2.

3.3.1 Histogram Based Techniques

To have an idea of what was happening with the images in terms of color variations,

an evaluation of different image properties such as luminosity, color shift, standard

deviation and average color values was implemented. This was done taking samples

images from each day. In theory we expected to find a smooth variation in these values.

Here we assumed that the only change in the images was the addition or subtraction of

elements from the scene.

The Michelson contrast measure [Damera-Venkata et al., 2000] was employed to

evaluate the deviation of the image levels through the dataset. This is defined in Equa-
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(a) (b)

(c) (d)

Figure 3.9: Color changes due to the weather and camera. (a) Sun (shadows and

highlights). (b) Snow. (c) Fog. (d) Automatic White Balancing.

(a)

(b)

Figure 3.10: Automatic White Balancing Problems with the three cameras. (a) 2005-

Nov-02 Images with right color values. (b) after 10 minutes, the images turn bluish

almost simultaneously.
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tion 3.3 where CM is the Michelson contrast, Lmin the minimum and Lmax the maximum

luminance values. The instability of this measure between consecutive frames gives an

idea about the evident flicker in the video. For this, raw images where taken from

each day (the one captured at noon). The Luminance image L(i, j) was calculated by

averaging the RGB channels (R+G+B)/3.

CM =
Lmax−Lmin

Lmax +Lmin
(3.3)

Lmin and Lmax are in our case the lower and upper limits that represent the 10% and

90% of the image histogram values, with this, we wanted to remove outliers with low

and high intensities from the contrast calculation. The results of the contrast measure

for the Ionic camera are shown in Figure 3.11. They show how the light changes ex-

tensively. This is a sample of the instances that makes the time lapse video production

more difficult. All these elements should be reduced at the end of the whole process.

Figure 3.11: Michelson contrast measure for Ionic Images.

Three different methods based on histogram information have been explored to

solve issues with the changes in illumination. They are described as follows:

3.3.1.1 Image Adjustment.

The first approach to color normalization tried to standardize the image assuming that

the histograms distributions were similar but they had different scales and shifts. The

idea was essentially that with one rule it was possible to take all images to a reference

point. The solution was to utilize an image adjustment method which modifies the

histogram in such way that the result makes use of all the available histogram range,

from 0 to 255. This was done in two different ways:
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3.3.1.1.1 Contrast Stretching. Similarly to what we used in Michelson contrast

estimation we assumed that 2% (1% top and bottom) of the data were outliers, we

reduced the percentage to avoid saturation of many pixel intensities after stretching.

These elements were removed to find the appropriate limits of the histogram distribu-

tion. Then, a linear transformation was applied to the images according to Equation

3.4.

I′(i, j) =



0 I(i, j) ≤Vmin

255 · I(i, j)−Vmin
Vmax−Vmin

Vmin < I(i, j) < Vmax

255 I(i, j) ≥Vmax

(3.4)

where I and I′ are the image before and after the stretching respectively; Vmin and Vmax

are the color values equivalent to the upper and lower boundaries of the distribution

1% and 99%. We worked initially in the RGB color space and produced the results

depicted in Figure 3.12b.

One of the issues with this method is that the stretching was performed indepen-

dently for each color channel meaning that it could create eventually color values that

were not originally in the image. The solution for this was to transform the images to

chromaticity coordinates and lightness component (rgs) and implement the histogram

stretching only on the lightness channel, hence the results modified the intensity values

of the color channels simultaneously removing the possibility of the emergence of new

colors. After this, it was possible to return to RGB space. The results of this other

approach are depicted in Figure 3.12c and the relation between RGS and RGB spaces

is shown in Equation 3.5.

r =
R

R+G+B
, g =

G
R+G+B

, s =
R+G+B

3
(3.5)

This approach worked relatively well in many of the images from the set. Note that

the results of the RGB domain are not particularly right. The image in Figure 3.12b has

a purple tone. On the other hand, the other method preserves the original colors and

increases the details. Some issues with this method appeared because some images

had different histogram shapes and the stretching was not really the best solution to

normalize them. For instance, sunny images have a big amount of saturated data on

255 so the approach was not doing any improvement in the right side of the histogram

because more than 1% of the data was already stretched.
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(a) (b) (c)

(d) (e)

Figure 3.12: Image stretching. (a) Original image. (b) Image stretching in RGB domain

(each channel separately). (c) Image after luminosity channel Stretching. (d) Luminos-

ity Histogram of original Image. (e) Luminosity Histogram of stretched Image.
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3.3.1.2 Histogram equalization

The second histogram-based approach to normalize image values consisted of a non-

linear transformation of the image color values to match a reference histogram. This is

very useful when images are being compared and have been captured under different

conditions such as weather and AWB gains. For instance, if we take the histogram of

a reference image Hre f , then we can take a second image and modify each color value

by a factor. This is performed independently on each color channel and it certainly

fixes many differences between the images. An example of this stretching is shown

in Figure 3.13, Notice that the color values of the images now look more similar. An

analysis of image equalization techniques can be found in [Delon, 2004].

One of the advantages of this method is that we can fix the problem of the auto-

matic white balancing of the camera once we have a good reference image. Several

alternatives were implemented to find the reference image. One of them was to obtain

the median histogram given a set of images captured in a reduced gap of time and as-

sume that the variations on the images were not excessive. It is clear that the AWB

problem does not occur in all the images; hence this median histogram can be used as

a reference.

This method was implemented to normalize images from the same day by taking

the median histogram. One difficulty with this is that the lightness conditions for each

day were very different, so the equalization not necessarily works similarly between

equalized images of consecutive days. This problem can be solved by producing im-

ages with information of the neighboring images. This approach will be discussed in

section 4.2.4.

3.3.1.3 Linear Transformation and Corresponding Pixels

We can use apriori knowledge from the images to improve the results of the normal-

ization of the image color values. In this approach we have assumed that consecutive

images have just a small amount of changes and most of the elements in the image stay

without modifications. Hence there might be a transformation between the intensity of

most of the pixels from an image to a consecutive one. Here we also assumed that the

images were already aligned using the jitter removal method.

This third method considers that the relationship between values of an image pair

is a linear transformation. We aim to find a method to take image B and transform it

to match the colors values of image A in the form I′(i, j) = m · I(i, j) +b. This will reduce
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(a) (b) (c)

(d)

Figure 3.13: Image equalization. (a) Reference Image . (b) Target Image (it has white

balancing problems). (c) Equalized target image. (d) Histograms in RGB channels for

the three images, note how the blue histograms which is the equalized images matches

the reference image histogram.
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to some extent the problems when big differences between consecutive frames appear

because the linear transformation is applied to all the elements of the images and it is

not possible to change radically the images (differently to previous method). This can

be seen as a regularization method.

The process is based on the idea that most of the pixels with the same color intensity

in image A will change to the same color intensity in image B. The process is described

as follows:

• For each pixel value v = {1,2, . . . ,255}, the x and y positions I(i, j)of the pixels

with this particular value are obtained.

• Taking into account the no-jitter and image similarity assumptions, most of the

pixel positions values that had the same value on image A, will have the same

value in B (but not necessarily equal to the one in A). So we can link the intensity

of pixels I(i, j) in A to the median of intensity values in B.

• Once the relationship for all levels is known, we can see the problem as an

optimization which can be solved to find the coefficients m and b that reduce

the error between both images. The error criterion was least square error (LSE)

as shown in Equation 3.6.

(m,b) = argmin
(m,b)

255

∑
i=1

(v− (m · f (v)+b))2 (3.6)

where f (v) is the median intensity of all pixels in image B whose corresponding pixels

in image A was value i.

The results of this method are depicted in Figure 3.14. The connections in Figure

3.14a represent the correspondence of the values between the images and Figure 3.14b

shows the result of the linear transformation after applying optimization method. Note

that the position of the new histogram matches better the reference.

3.3.2 Grey World Assumption

Previous histogram-based techniques worked relatively well. The main issue with

these methods was the selection of the reference image. It means that the process

works very accurately when we have identified a pair of images (target and reference).

These alternatives have lack of generalization over the whole dataset. This suggests

that we need a more general approach to find a global solution to the image color
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(a)

(b)

Figure 3.14: Corresponding pixels method. (a) Histogram of red channel of two con-

secutive images A and B, last one with unbalanced whites. The lines that connect the

histograms are the corresponding pixel values. (b) Histogram of reference image A and

transformed image B after the LSE minimization.
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problem. This approach is based on a widespread method that can be applied in this

instance because it satisfies many of its assumptions. It is probable that histogram

based methods work better than this for an image pair but not in the whole set and this

is essentially what we require.

This section describes the Grey World Assumption (GWA) and some variances of

it to normalize the images based on a general idea about the behavior of the data. This

assumption states that given an image with enough amounts of color variations, the

average of the color components should be equal to a common gray value. There are

several algorithms in the market used to do AWB. Some of them are: Using adjacent

channels [Lam et al., 2004] and based on edge detection [Lin, 2006]. They modify the

image color properties using the signal coming directly from CCD or CMOS sensors.

They try to balance the gains for each color channel and make the image look more

realistic. This is because there are different types or light sources with different fre-

quency components such as sunlight, incandescent, fluorescent, etc. hence the gains of

the sensors have to be moved to depict the true color of the elements on the scene. In

our data we are being affected in most situations by solar light. However this changes

with the weather conditions, time of day, number of clouds, etc.

As was shown in Section 3.3, the camera is not doing a proper white balancing and

this is affecting the images quality. One particular difficulty with our data is that we do

not have the complete data from the CCD sensor but only a limited range of intensity

values from 0 to 255. If the values from image are saturated (close to the bounds),

then they are probably outliers whose original position was at a different intensity.

Nevertheless we have taken the GWA assumption as our image normalization method.

There are some characteristics of our images that make it appropriate to be used. These

are:

• The images from the dataset are composed by a large amount of color values.

• The color of several elements in the building is ’grey’ (this mean values near to

V(r,g,b) = (128,128,128))

• It can be applied in a general form to all the images from the database and no

reference image is required.

These assumptions can be clarified better in Figure 3.15b. The pixels of a sample

image have been plotted in RGB space. Because of the large band of pixels lying

near the main diagonal of the cube, they clearly show that the image is composed by
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several color values and that most of them are concentrated in the grey region. Most

of the images have a distribution like this one but shifted in position and scale. The

Grey World Assumption tries to take the clusters of all these images and put them in

the same region. Additionally, taking into account that the images just change slightly

from one frame to the next, this method solves many of the issues with AWB of the

camera.

(a) (b)

Figure 3.15: Validity of GWA in Forum Images. (a) Image sample from Corinthian

Camera. (b) Scatter plot of pixel values in RGB space. Each point of the graph has

associated its true RGB color.

In the GWA the gains of the three color channels (RGB) are adjusted independently

to satisfy the following criteria:

R̄ = Ḡ = B̄ (3.7)

This method does not work appropriately if there is a small amount of colors, but

this does not occur on the images from our database. Generally, the value to which the

means of each channel is shifted is the average of the three color means R̄+ Ḡ+ B̄/3.

In our approach we have considered that this is not really suitable if we want to create a

relationship between the colors of consecutive images. For this, the mean RGB values

to which the histograms are updated is fixed for all the images. The transformation

implemented on the images is described in Equation 3.8.

A′i, j,c =
grey value

Āc
.Ai, j,c (3.8)

where A′i, j,c is the resulting intensity for a given pixel (i, j) and its color channel c.

Ai, j,c is the original image intensity, Āc is the mean of the image values for each color

and grey value is the desired mean intensity.
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Even though this approach is not entirely realistic, it will guarantee a smoother

transition on the color levels of the images. For instance, we could fix the mean to(
R̄, Ḡ, B̄

)
= (128,128,128) but we can also change the proportion of each color chan-

nel to a different value to make the final colors more realistic. For instance, if the

amount of red is increased respect to the blue and green, it will create in the images a

warmer effect.

Figure 3.16 shows the gray world assumption applied to a set of images from the

same day. Some of the original images have a strong imbalance with their color. They

look bluish. After the method is applied all the images have a similar color distribution.

(a) (b)

Figure 3.16: Grey world assumption example. The method is applied to 18 images of

the same day. (a) Raw Images. (b) Images after GWA is applied.

3.3.2.1 Improved Gray World Assumption.

There are some issues with the original GWA that produce unexpected results. The

main reason is that we do not have the data from the camera CCD sensor but from

the images produced by the camera after an unknown AWB and a color normaliza-

tion method was applied. After an inspection of the data in terms of RGB and rgs
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histograms, some patterns were found which can be utilized as prior knowledge with

respect to the camera behavior to improve even further the image values.

The cameras were mostly affected in the estimation of the correct red and blue val-

ues. This was less evident in the green channel. This was noticed after visualizing the

histogram in chromaticity coordinates. The normalized green channel is regularly con-

stant and inside a narrow window. The other two colors change constantly in shape and

position. For instance, when days are very sunny the normalized red histogram shifts

to the left and the blue to the right whereas the green preserves its position. Addition-

ally the R, G, and B histograms have similar shapes but with a different stretching (see

Figure 3.17c). We also saw that the scaling of red values was producing a high number

of saturated elements. Notice in the graph that the red histogram looks like enlarged

when compared to the others, hence after scaling, many pixels will have values above

255 but they are truncated due to the available range. Moreover, some blue values

before scaling are already saturated.

Another conclusion from the data was that there is a high correlation between the

R, G, and B histograms of each image, but it seems not to be true in images with

balancing problem. This observation was utilized to improve the initial GWA and

produce a new method which first uses the green histogram as a reference for the Red

and Blue channels. These two are stretched to match the green channel. Once this has

been done it is possible to apply the GWA.

Moreover the ’grey’ color was modified to a smaller value because the mean of

the images was smaller than (128,128,128) hence every time GWA was applied the

histograms were brightened producing new saturated elements.

The results of the improved method are depicted in Figure 3.17. The final color

normalization algorithm is described as follows:

• Calculate the green histogram Hg from a sample image I.

• Smooth histogram Hg using a moving average filter of span equal to 5 to reduce

its local variance.

• Stretch Red and Blue image channels (Ir and Ib) to match the smoothed green

histogram Hsg using the equalization method described in Section 3.3.1.2.

• Apply the grey world assumption to the image composed of the green channel Ig

and the equalized red and blue channels (Ieqr and Ieqb) using Equation 3.8 and

a greyvalue equal to 115.
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(a) (b)

(c) (d)

Figure 3.17: Improved Grey World Assumption. (a) Original Image. (b) Images after

GWA. (c) RGB histograms. (d) Normalized RGB Histograms.
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Image Processing

In this chapter a general description of the methods implemented to produce time-

lapse videos is presented. Once the raw images were preprocessed according to the

stages described in Section 3, they were available for further processing. The time

lapse video implementation has two main stages. First, day images are created. These

are the most likely background estimation of each day. Then, the process is followed

by the combination of these day images with their neighbors to produce a new set of

frames for the final video. The transition of consecutive video frames is smoother after

this step. For instance, moving obstacles such as vehicles that took more than one day

on the scene can be removed from the video. These were not seen as foreground during

the creation of day images.

We have implemented deterministic and probabilistic approaches to solve the prob-

lem. The deterministic approach uses essentially median filters and the probabilistic

is based on different alternatives. For generating day images, it uses a non-parametric

kernel density estimator and for processing two classifiers: Naive Bayes and a neural

network.

4.1 Traditional Time-lapse

This method is based on the basic idea of time-lapse video generation. Initially we

assumed we had to produce a representation of an event in a shorter period of time. As

was mentioned before, the building blocks of the final video are images that represent

one day. We took one image from each day to be part of the time-lapse video. All these

images were selected at the same time (noon) because the light conditions between

days are similar and generally appropriate. The images were selected from the database

47
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and arranged for the video generation. They were not processed to remove elements

equalize colors, align frames, etc.

We evaluated the time required for the video representation. The selection of the

time rate was influenced by the number of frames and also by the desired video play-

back time. The standard transmission rate in Europe is 25 fps. With this reference

and taking into account that we have around 540 images for the video (this number

is slightly different for each camera and does not consider images with the mesh), the

final video will take 21.6 seconds. The length of the video can be changed to slower

frame rate to produce longer videos. Sometimes this is a suitable solution because it is

possible to watch in more detail the transition of events during the building construc-

tion. The duration of the video given by the number of images and the frame rate is

length = num images/ f ramerate, where length is in seconds and f ramerate in fps.

An example 6 consecutive images using the traditional approach is shown in Figure

4.1. Notice how the images look very distinct from one day to the next. Snow, solar

glares and problems with the colors are clearly visible. The playback of this video will

shows a confusing transition of images, and it is for this reason that further processing

is required to improve the video quality. We have applied other techniques. The final

frame rate of the videos was changed to 15 fps to visualize better the details of the

construction. This is equivalent to a 36-second video sequence.

Figure 4.1: Traditional time-lapse video. Segment of 6 frames.
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4.2 Deterministic Approaches

The techniques discussed in this section show how to improve time-lapse videos with

information from several images. One of the purposes is to do a cleaning of all the

elements that can be noise for the observers and that are not real objects of the building.

These are machines, people, and weather transitions.

Day image generation is the most computationally expensive part of the processing

because it requires processing a set of 18 images to create a single one and this has to

be done for each day. In Section 2.4 we clarified that even with a high number of

images available we could not take them all because the processing would have been

unmanageable. The solution for a faster processing was to take several computers in

parallel (8) to run the same process for different days and then combine the resulting

data. Day image processing was faster than the first stage so this just required a single

processor to produce the final TLV.

4.2.1 Median Filter

The median (m) in probability theory is the number that divides the population of

elements in two groups of equal size. It is also the value that minimizes the average

of absolute deviations E(|X−m|). The idea with this measure is that given a set of

values we could be able to estimate a representative value that should be robust in the

presence of outliers. The mean as an arithmetic average of the elements in a dataset

is not useful for this case. Outliers in our data are the elements that appear in the set

that have small occurrence. For instance, if a person appears in the scene for a short

period of time and it is captured by the camera in one or two frames, it is clear that

this element is not part of the building and should be discarded from the background

estimation.

The concept of median is then applied to image processing. Given a set of images

Ik,{k = 1,2, ...,N} we have to find an image Im which is the median of the entire set.

The median filter is applied to each pixel’s RGB color which is a 3D vector as shown

in Equation 4.1. Notice that this is implemented separately for each color channel.

Im(i, j,c) = argmin
m

∑
N
k=1

∣∣∣xk
(i, j,c)−m

∣∣∣
N

 . (4.1)

where N is the number of images, (i, j) is the row and column position of the pixel in

the image and (c) the color channel.
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This is a pixel by pixel approach and no information from the adjacent pixels is

used for the estimation. This method was previously employed in [Ferguson., 2007]

and was reproduced to have a comparison point for the evaluation of the results. One

of the biggest issues with this method is that each channel is worked independently and

this can generate unwanted results such as the emergence of colors that are not part of

the dataset because the R, G and B medians can be located in a position different from

the data cluster. This is generally true when the number of elements in the data is small

and also when the data is concentrated in distant clusters. This effect is called color

bleeding [Davies, 2004] because it gives the impression of new colors appearing in the

image. In the next section a comparison of this and other methods will be depicted.

4.2.2 Multivariate Median Filter.

This approach starts with the idea that we cannot estimate the median independently for

each channel each color because there is a relationship between channels. The concept

of the minimization of the average of absolute deviations in the median definition is

extended to the multidimensional space by employing the Euclidean distance between

the RGB values. The method will always produce a median value within the dataset

without the possibility of bleeding and it is also most robust to outliers that taking the

mean. The mathematical description of the multivariate median (MVM) is shown in

Equation 4.2.

Im(i, j) = argmin
M∈{X}


√

∑
3
k=1(X

k
i, j−Mk)2

N

 (4.2)

An example of applying the method to a set of 18 images from one day is depicted

in Figure 4.2. Most of the moving objects, the sun have disappeared and the final image

looks clean.

In Figure 4.3 a comparison between the mean, median and multivariate median

filters is depicted. A set of 176 1 pixel color values from a fixed spatial position but

different images from the same day is plotted in a RGB space (each point has its true

color). In this particular example, the pixel was most of the time capturing the color

of the ground floor of the construction and in a shorter period of time a yellow vehicle

was parked in the same position (see yellow cluster). The grey cluster has an elongated

shape due to the fog which was present during the morning making the ground color

1During early stages of the experiments we worked with a larger number of images.
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(a) (b)

Figure 4.2: Multivariate median example. (a) Set of 18 input images. (b) Day image

after applying the filter.

(a) (b)

Figure 4.3: Comparison between median methods. (a) Sample images from 04-Jul-

2006. The circles show the test region. Notice the yellow truck. (b) Color values from

sample pixel (r,c) = (105,711). Magenta = mean, red = median, green = multivariate

median.
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brighter. It is reasonable to think that the best color to represent the cluster is the one

in the center of the grey cluster and to not take into account the yellow values, which

can be considered in this case as an outlier. The mean, median and multivariate median

of this dataset are plotted. Note that the mean has been biased by the yellow cluster

the same as the median but in a smaller proportion. On the other hand the multivariate

median remains as part from the dataset and it is located in the grey cluster which is

close to what we expected.

The same technique was implemented in different color spaces such as LUV which

attempts perceptual uniformity of the colors [Comaniciu and Meer, 2002b]. We did

not find any particular improvement in these spaces and additionally we found that the

method of transforming the image to one space and then taking it back to the original

one might induce noise on the images. Finally we preferred to apply MVM in RGB

space.

4.2.3 Multivariate Median Results

4.2.3.1 Temporary Foreground Removal

One of the notable improvements of this method over the traditional technique is the

complete removal of wandering objects in the scene. This includes: people (pedes-

trians and workers), construction tools and passing vehicles. The position of these

objects is generally changing in the scene and they are considered as outliers on the

images. As an example refer to Figure 4.4 where it is shown the multivariate median

image of one day when there were many working people. Notice in the results there is

no vestige of them.

In general, many of the issues regarding to weather changes in the image as the

appearance of sunlight during short periods of time, fog during the first images of the

days and some shadows disappeared. Anyhow not all were removed. Especially days

when the sun was constantly falling on some region of the image and then moving in a

direction during the whole day. These types of problem were not totally removed but

reduced in some proportion.

4.2.3.2 Ghosting.

Some of the images had traces of elements that were partially removed from the orig-

inal images. It was possible to detect some shadows with the shapes of the removed

elements. We called this effect ghosting. There were two main reasons for this result.
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(a) (b)

Figure 4.4: Temporary foreground removal. (a) Image Sample with moving objects

closed on red squares. (b) Day image after applying multivariate median filter .

One was related with a bias of big outliers when the multivariate median filter was

applied and the other was a problem with white balancing.

A big outlier refers to an object that appears in the scene for a considerable number

of frames. If, for instance, in a set of 18 images we have an element that appears 7-8

times, then it is very likely that the MVM will choose one element from the biggest

cluster but this value will be biased by the other cluster. In the example shown in Figure

4.3 the yellow cluster is affecting the estimation and making the region look brighter

than if it was not there. Also an example of the median filters is shown in Figure 4.5.

Notice that the ghost is less visible with the MVM estimation than with the median for

each channel (there is no bleeding).

The second source of ghosts was the problems with the AWB discussed in Section

3.3 and weather changes. We initially tried to estimate the multivariate median from the

raw images and noticed some color changes such as the one depicted in Figure 4.6d.

This was mainly because some of the images in the data were unbalanced creating

patches of different tones in the same image. Hence it was necessary to solve this

before applying the filter (refer Figure 4.6e). The true colors of the images had to be

adjusted because otherwise even the regions with no change were going to appear as

a cluster with high variance. This problem in combination with real outliers would

create more error in the processed images. Figures 4.6a, 4.6b and 4.6c show how

the sun appearing in some regions of the image for long periods produced unwanted

results.

Another alternative to improve the quality of the results was to increase the number

of images from each day, so that the real background elements would appear more
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(a) (b)

(c) (d)

Figure 4.5: Ghosting. (a) and (c) are image segments with vehicles that cause the

ghosting. (b) Independent color channel median. (d) Multivariate Median. Bounded

regions show the defects. They are less evident in when MVM is used

(a) (b) (c)

(d) (e)

Figure 4.6: Ghosting. (a) and (b) are sample images of a partial sunny day. (c) The re-

sults of applying a MVM filter of these images. (d) MVM of images with AWB problems.

(e) MVM after color normalization.
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often than outliers. This is always linked with the computational cost of the algorithm.

4.2.3.3 Semi-stationary objects

Another problem was in regions of high activity or where vehicles like cranes, which

have a stationary body and a flexible arm, create the wrong representation of the back-

ground. The results are generally a clear body with an unclear reconstruction of the

arm in different locations. These effects can be lessened once the day image processing

has been implemented because generally these objects change position from one day

to the next, and posterior processing of day images can remove them. Refer Figure 4.7

for examples of these objects.

(a) (b)

(c) (d)

Figure 4.7: Semi-stationary objects. (a) and (c), Images before processing. (b) and (d)

Images after applying MVM

4.2.4 Multivariate Median of Temporally Neighboring images

Once the day images have been created, they are processed based on information of

temporally neighboring images. The concept behind this approach is that neighbors

can help to find foreground elements from the day images. Then, if there are elements
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that appear for a short period of time and their color values are distinct from the real

background then they can be removed and replaced with the data coming from the

same position of adjacent images. For instance, assume that a vehicle is located on the

scene for one day. The most reasonable idea would be to remove that element from the

scene and fill its space with information coming from nearby images.

A multivariate median filter was applied at each pixel to a subset of images coming

from consecutive days. It was required to determine the right number of images to take,

the smallest value will be a 3 size neighborhood which was not really good because

the multivariate median of only 3 RGB pixel values is not meaningful. This temporal

neighborhood size cannot be increased too much because then information from distant

times is going to interfere in the estimations and produce a blending effect. We chose

a neighborhood size of 5 images for the processing.

Figure 4.8: Multivariate median of five consecutive days. Note that objects inside yellow

circles in the image at time t have been removed.

Figure 4.8 shows how the general approach works. Each image Ik is replaced by the
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multivariate median of itself and the two previous and two subsequent neighbors. Note

that the foreground elements appearing in the image at time t were removed after the

filtering. Similarly to the process implemented in the Day image generation, a mean

filter would have blended all the frames in an unrealistic way.

Given the set of images G =
{

It−2, It−1, It , It+1, It+2} we can compute the multi-

variate median image Ji, j at time t using Equation 4.3.

Ji, j = argmin
M∈{Gi, j}


∥∥∥It+δ

i, j −M
∥∥∥

N

 (4.3)

where It+δ

i, j is the RGB color intensity of pixel (i, j) from image I at time t +δ, δ =

{−2,−1,0,1,2}.

4.3 Probabilistic Methods

This section describes the image processing methods for the generation and processing

of day images based on a probabilistic approach. This is divided in two parts. The first

one describes a filter based on non-parametric kernel density estimation that is used for

creating day images. This exploits the idea of finding the regions with higher density

given the image data to find the best representation of a day image. Then a technique

for foreground detection and removal is implemented. This uses day images and local

information of consecutive frames rather than only pixel color values. A Naive Bayes

and a neural network classifier are evaluated in this part of the processing.

4.3.1 Non-parametric Kernel Density Estimation

One of the problems found in the multivariate median was the ghosting. This was due

to the bias produced by outliers when they took place for a considerable number of

frames. The final effect seemed like a blending of the images. It would be better to

choose a value that represents better one of the clusters than an intermediate value of

the whole set. In this approach we start with the assumption that the pixels Pi, j of a set

of images from the same day are generated from a probability density function (pdf).

Then, we can find the region with the highest density and then take the value (part

of the set) with the maximum value as the best estimate of whether it is foreground

or background. This approximately estimates the mode of multivariate data. We are

trying to find the value that occurs more frequently in the pdf.
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The pixel color values in our images and can be distributed in several forms. Hence,

we can not always fit the data to a known shape such as Gaussian, or mixture of Gaus-

sian (in which case we would have to find the number of clusters). For this reason

we have employed a non-parametric kernel density estimation (KDE) to produce an

empirical description of the data. Each kernel will be generated with all the pixel RGB

color values (xk, k = {1,2, ...,N}) at location (i, j) of the N images from the same day.

The pdf is constituted by 3D Gaussian distributions K() centered on each of the data

samples. The bandwidth (h) of the Gaussians is defined by the ’Rule of Thumb’ [Sil-

verman, 1986]. The formula of the probability density function is given in Equation

4.4.

p(x) =
1

N ·h
·

i=1

∑
N

K
(

x− xi

h

)
(4.4)

Once the pdf is obtained, we can find the color value with the highest probabil-

ity density. The computation of the day image Ik(i, j) based on KDE is obtained by

applying the following equation:

Ik(i, j) = argmax
xk

(
pi, j(xk)

)
(4.5)

An example of the results after applying non-parametric kernel density estimation

in the images is depicted in Figure 4.9. A comparison between the multivariate median

filter and the KDE shows how the ghosting problem is reduced. Notice that now it can

be seen that some noise appears on the image. This corresponds to the colors of the

truck that was located in that position, rather than taken an intermediate color value

between the ground and the truck. The filters choose the one that appears more often.

There is actually no prior knowledge about what is or what is not background. As a

result, elements that might not be the right background can appear in the filtered image.

If the number of images is increased then the accuracy of the results will be higher.

Another approach that we tested to solve the problem was to increase not the number

of images but the number of elements in the dataset. This was done by including for

each pixel of the original dataset, its neighbors (3x3 size). The number of elements of

the set changed from 18 to 162 increasing the accuracy of the distribution. The results

showed a loss of detail in the images but the ghosting was even less evident. The

algorithm implementation utilized functions extracted from the Matlab Kernel Density

Estimation KDE toolbox.
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(a) (b)

(c) (d)

Figure 4.9: Non-parametric kernel density estimation results. (a) Day images obtained

after applying MVM and KDE respectively. (b) Close ups of these images to show the

details of the methods. Note that there is no blending with KDE. (c) and (d) Are the

results of MVM and KDE of the ghost truck previously evaluated in Section 4.2.3.2.
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4.3.2 Neighborhood Classification

By using KDE filter we produced the day images. These still have foreground elements

from the scene that can be removed. For instance, elements that remains in the scene

for periods longer than one day. In the day images they are identified as background

but seen from a sequence of consecutive days, they can be detected as temporary ele-

ments. This brings the necessity of working with images of different days to improve

single day images. In Section 4.2.4 we utilized 5 days neighborhoods and applied the

multivariate median filter in a bounded window. For the probabilistic approach we

take just the adjacent images. We will call them It+1, It , It+1representing the previous,

current and next day respectively.

Rather than working with a pixel by pixel approach this method works at a neigh-

borhood level to improve the processing. This gives more information about the data

structure. We will work with these images to detect different types of events. Figure

4.10 shows five cases that have been considered to appear in the images. Each circle

represents a neighborhood from the image at the three possible times, and a change in

color (for instance from white to black) means that neighborhoods have are not similar.

Figure 4.10: Five neighborhood cases at three times.

Case A represents no change in the neighborhood, Case B is when a temporary

change occurred at time t. Case C shows that a new event will occur in time t+1 and

that a permanent change is over, similarly, case D shows that an event can be probably

permanent appears in the last two frames. Case E occurs when each neighborhood is
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different from the others. These are all the possible cases that can be found in a set of

three images. Once we know this we can think about utilizing a model to classify these

cases based on local information from the neighborhood.

There are some constraints that are considered for the classification of these events:

• Foreground and background regions have spatial connectedness. This explains

that the detection of a pixel as foreground might have some physical connection

with other pixels with the same characteristics. Objects in the scene have a

minimum size (at least a couple of pixels) and can be bounded in a region, so

the detection of isolated pixels in regions where the neighborhoods are classified

differently might say that there is a mismatch in the classification. This suggests

posterior processing of the classifier results.

• A measure of similarity is required to detect differences between neighborhoods

and consequently do the classification. This should be independent of changes

such as lighting, wetness, color tone, etc. Some measures of similarity will be

discussed in the following section.

• We assume that images are aligned after the jitter removal (Section 3.2) and there

is a right correspondence between the pixels of consecutive images.

• The images have been preprocessed and also the color levels have been normal-

ized using the grey world assumption.

• The removed FG detection region can be slightly larger than the original fore-

ground but this will not be harmful for the image quality because the spaces will

be filled with background information from neighboring images. These changes

in the size can be due to procedures such as dilation and erosion with the result-

ing data.

4.3.2.1 Naive Bayes Classifier

We defined the inputs as the neighborhoods at three different times and the output

of the model which were the five possible cases. We can adapt the approach as a

classification problem. A Naive Bayes classifier is the first approach implemented to

solve it. This supervised learning method makes strong independence assumptions of

the cases given the observations that in our case are a measure of similarity between
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the neighborhoods. It will be shown later that this simplified approach can be useful

for the foreground detection.

Initially it is required to determine the apriori probabilities for the five cases. They

were estimated manually by taking samples from the day images database and find-

ing the frequency of appearance of each case. Experimentally we have obtained the

following values: P(A) = 0.37,P(B) = 0.15,P(C) = 0.14,P(D) = 0.13,P(E) = 0.21.

These five probabilities must sum up to one.

Now lets define s(A,B) as a measure of similarity between consecutive frames,

where A and B are neighborhoods with RGB color data. Let Vt−1, Vt and Vt+1 be the

neighborhoods at three different times. We can measure the similarity between pairs

of them as:

d−0 = s(Vt−1,Vt)

d0+ = s(Vt ,Vt+1) (4.6)

d−+ = s(Vt−1,Vt+1)

We can estimate p(X | d−0,d0+,d−+), the posterior probability of a class X ∈
{A,B,C,D,E} given the observations di j by Bayes Rule:

p(X | d−0,d0+,d−+) =
p(d−0,d0+,d−+ | X) · p(X)

p(d−0,d0+,d−+)
(4.7)

The denominator (evidence) can be ignored because it is common for all cases.

The resulting case for each sample is the one with the highest posterior probability.

To evaluate the likelihood we can use two models. One assumes that there is full

independence between the measures of similarity given the observation and other that

assumes high dependence. We have evaluated the first option. This is described in

Equation 4.8.

p(d−0,d0+,d−+ | X) = p(d−0 | X)p(d0+ | X)p(d−+ | X) (4.8)

Finally according to the five cases. Only case B can be considered as the detection

of a foreground on the scene. Let Ω be all causal factors (observations) then the classi-

fication condition is: if p(B |Ω) > p(A∨C∨D∨E |Ω) = p(A |Ω)+ p(C |Ω)+ p(D |
Ω)+ p(E |Ω) then the pixel can be classified as foreground FG.
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4.3.2.2 Cross-correlation

The model previously described can be implemented by utilizing different types of

similarity measures between neighborhoods d(A,B). Some of them might be more

suitable for this particular application. Some common approaches are the Euclidean

distance between images, mean squared error and histogram-based distances [Wang

et al., 2000] and cross-correlation. A suitable measure for this research should be

perceptually meaningful and independent of changes such as lightness and small shifts.

For instance, the Euclidean distance performs poorly if it is applied in a shifted image

such as the ones that we have due to the jitter problem. These requirements are needed

because the data was classified manually and is very likely that the similarities found

by the observer could not be really similar for a particular method, In addition, One

of the main purposes of this algorithm is to create a reasonable representation for the

observer who is eventually the final evaluator of the system performance.

Statistical cross-correlation which was also utilized for the jitter removal will be

used as a measure of similarity between image neighborhoods. Its calculation is shown

in Equation 4.9. We keep calculating it as the average of the cross-correlation of the

three color channels. A second measure of similarity will be described in the next

section.

Given two image neighborhoods A and B of size NxN,

ccor (A,B) =
1

3 ·N2 · ∑
c∈{r,g,b}

∑
(i, j)∈A

(
Ai, j,c−µA

c
)

σA
c

(
Bi, j,c−µB

c
)

σB
c

(4.9)

where µA
c and σA

c are the mean and standard deviation of image A in color channel c.

The definition of cross-correlation is shown in Equation 3.1. There is no change

with the original approach except that the input now is different. Hence, s(A,B) =

ccor(A,B) = ρAB. Remember that ccor is highly independent of lightness and use-

ful for matching objects with similar texture. Something that is appropriate for our

experiments.

Training procedure: To create a model of the data we utilized images from the

dataset to extract samples with the five cases. Each one consisted of three consecutive

day images neighborhoods, its associated case A,B,C,D,E and the location (row and

column) of the sample in the image. Then the cross correlation was estimated for im-

age pairs ρ−0, ρ0+ and ρ−+ for each sample with different neighborhood sizes (from

3x3 to 21x21). Additional samples were automatically generated by assuming that

neighboring pixels to the ones already selected were the same case (spatial connected-
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ness). Finally the cross-correlation histograms for each case and each neighborhood

pair were calculated. The results are depicted in Figure 4.11. Each plot is the histogram

for different neighborhood size and the three colors are the possible pairs.

(a)

(b)

Figure 4.11: Cross correlation histograms for 5 cases (A,B,C,D,E) and two different

neighborhood sizes. (a) 3x3 window. (b) 7x7 window.

Note that the smoothing of the histogram increases with the neighborhood size.

For small sizes such as 3x3 the histogram shapes are very unclear and it is not possible

to see a real relationship between the data values but when size increases it starts to

get better. The shapes of the histograms can be approximated to a probability density

function. They seem to be smooth enough and also seem to give some information

about the behavior or the data.

The plots suggest that a pdf that can be used to represent the data distribution
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on the histograms. Note that most of the distributions are bell shaped and the data

is concentrated near zero similar to a normal distribution. This occurs with all the

similarity measures between different neighborhoods. On the other hand, when the

neighborhoods are similar, the histogram shape does look skewed to the right. It is

clear that the maximum value that can be obtained from the cross correlation is one.

According to this we have decided to fit the data to an exponential distribution as the

shown in Equation 4.10. A gamma distribution was also taken into account but this

distribution has a small value near to the edge (near to 1) which makes it unrealistic

because the region of highest correlation has to be considered and can not have a low

density.

p(x) =

{
λe−λ(1−x) , x≤ 1,

0 , x > 1.
(4.10)

Considering all these factors, we have two types of distributions. Gaussians for

the ones where the neighborhoods are uncorrelated and exponential when there is high

correlation. Figure 4.12 shows the estimated pdfs for all the cases after fitting the data.

The estimation of these elements was obtained by maximum likelihood estimation.

Figure 4.12: Estimated probability density functions for 7x7 neighborhoods.

Notice that the ρ−+ histogram for the B case is not as well defined as the other cases

where the cross-correlation is high. It seems that the shape is not very clear and that

does not fit correctly an exponential distribution. There are some reasons regarding

these results. The selection of samples of B case was not as easy as other types of

data, so it required more time to find the appropriate samples. As was mentioned,
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these were selected manually and the considerations are biased by human perception.

It seems that some of the selections might have been incorrect. Additionally it is very

likely that when foreground was located on the scene, it modified the scene itself. Such

as vehicles when they were parked in the ground modifying the terrain and leaving the

imprints of tires.

The cross-correlation method worked well for samples of case A. The three ccor()

shapes matched and the curves are clearly smooth. Something similar happened with

C and D cases. This is likely because it was easier to detect the same attribute on the

image of consecutive images than when an object was in the middle. Case E histograms

show correctly the lack of correlation between neighborhoods and examples of this

were very easy to find on the dataset.

(a) (b)

Figure 4.13: Naive Bayes Classifier. (a) Hinton graph of confusion matrix for a 15x15

window. (b) Accuracy of classification according to the neighborhood size.

The accuracy of the classification was estimated using a test set. This was created

in a similar manner to the training data by taking neighborhood samples from the image

database and their associated case. The number of elements was equal to 3750. 150

of these were obtained manually and the rest were automatically generated assuming

that nearby pixels had the same class (5x5 Neighborhood). The results show that the

method employed is not the best approach for this type of data. Figure 4.13a shows the

confusion matrix of the classification for a 7x7 window. Notice that the highest num-

ber of misclassification occurred with class E. Figure 4.13b shows how the accuracy

increases with the neighborhood size. This means that this similarity measure is not

suitable for small windows. Furthermore, we can not either take large neighborhood

sizes because the local information will be lost and combined with other elements of

the scene.
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Once the pdfs that define the likelihoods were obtained it was possible to test the

model. It was done using real images and also using synthetic images. Synthetic

images were generated by taking a real image from the data and then modifying it

by inserting and removing objects using an image editor, so it was possible to create

samples of all the five available cases.

Figure 4.14 shows an example of the results of the implemented model on synthetic

data. The first part is the original image which was modified in the parts indicated by

the squares. The second image shows the results according to the classification; the

color table is also shown. Notice that the results match the five cases properly. Case

E is the one that seems more unclear because it has some errors in the classification

confirming the results of the confusion matrix.

(a) (b)

Figure 4.14: Naive Bayes Classifier tested on synthetic data. (a) Sample Image at

three different times. Red boxes show the edited regions to generate the five cases. (b)

Classification results. Color map is shown in bottom right corner.

After experimenting with real data we found that the results were really noisy and

many misclassifications were obtained. Figure 4.15 shows the results of a series of

images which have been labeled according to the five cases (same colormap as previous

Figure). Notice the frames where the snow appears, the classification is able to detect

it as foreground. This is not accurate enough to be applied to the entire video. The

results suggested that a different classification method could be evaluated. This will be

described in next section.

Some of the problems found with the cross-correlation were:

ccor() is independent to lightness but it is also independent to color. This oc-

curs because the color information is partially lost when the cross-correlations of each

channel are averaged.

The estimation of the cross correlation requires normalization of all the images.

This divides the pixel values by the standard deviation of the neighborhood. And

because we were working with very small neighborhoods, some images had the same
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Figure 4.15: Naive Bayes classifier in real data. An example of an inaccurate classifi-

cation can be seen in the first three images. The orange region which represents class

E is incorrectly predicted because the ground of the scene did not change. However

the images in the second row, show how the model detects properly the appearance

of snow as class B (light blue) in the third image. One day before, these regions are

classified as class C and the fourth day as D.

color value in all pixels producing neighborhoods with zero std which do not allow

normalization. Examples of this are saturated regions where the sun is pointing and

flat elements such as truck containers. A provisional solution was to take these cases

only shift them to zero mean only and do not divide by the std. In any case, this showed

that for an appropriate cross correlation estimation it is required to have images with

high std and size. This was certainly true for the images from the dataset for the jitter

estimation but not in this case.

4.3.2.3 Neural Network Classifier

A different approach to solve the classification problem was to implement a neural

network. It is likely that the distribution of the similarity measures can not be accu-

rately represented as a mixture of Gaussian and exponential distributions. Hence the

implementation of a Naive Bayes model might give unwanted results. It was possible

to visualize the data in a 3D space to have an idea of the shapes of the cluster of each

case. In Figure 4.16 this can be seen. Notice that there are 5 clusters, each one is

represented by a different color. There are also some data samples that seem located



Chapter 4. Image Processing 69

Neural Network

Input type ρ−0,ρ0+,ρ−+

Image Window size 15x15

Number of inputs 3

Number of hidden units 4

Number of outputs 5

Hidden units activation function tanh()

Output units activation function so f tmax

Regularization term 6

Test data accuracy 0.6932

Table 4.1: Neural network specifications for 5 neighborhood cases classification

in the wrong place and mixed with incorrect classes. The central cluster is case E and

is the one with the highest interference of other classes. This might explain why the

worst classification was obtained with case E when it was tried with the synthetic data.

Nevertheless the scatter plot suggests that a neural network approach might be suitable

for the classification of the five cases.

(a) (b)

Figure 4.16: 3D scatter plot of 5 cases samples from two different views.

The implementation of this method consisted of a neural network with three in-

puts, each one corresponding to the similarity measure between neighborhood pairs.

A hidden layer of 4 units which was experimentally estimated (this procedure will be

described below) and five outputs each one corresponding to one of the five classes.

Table 4.1 shows the specifications of the neural network.

We utilized the same training data from the Naive Bayes approach. The activation
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function of the output units is a softmax where the sum of all outputs must sum up to 1

and the one with highest value defines the class. The activation function of the hidden

units is a sigmoid function. The procedure of estimating the right parameters of the

neural network is described as follows:

• The cross-correlation of neighborhood pairs is a 3D vector input of the neural

network.

• Each sample have an associated target {A,B,C,D,E}. (5 outputs)

• 50% of the data was utilized for training, 50% for validation and regularization

term estimation.

• The weights of the NN were optimized using the Netlab toolbox for Matlab [513,

2002]. The optimization method was scaled conjugate gradients.

• Different networks configuration were tested. The number of hidden layers, the

random seed and the regularization term were modified to obtain the least sum

of squares error. Early stopping was not considered in the training, hence the

number of cycles was enough to guarantee convergence (200).

The confusion matrix for the test data is depicted in Figure 4.17. It can be seen that

the number of misclassifications is reduced when compared to the first method (Figure

4.13a) but most of the inaccuracies still occur in case E.

Figure 4.17: Hinton graph of confusion matrix for a 15x15 window using a Neural net-

work as a predictor

The main goal of having 5 different cases was to be capable to replace the unwanted

elements with the most probable background information. It is clear that all elements
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of size B were going to be removed form the image dataset, but then the resulting

empty spaces had to be filled with some data. We decided to replace these spaces

according to the classification of the surrounding areas of the foreground. For instance,

if a foreground element was next of a case C region, then it made sense to replace the

holes with data from time t−1. A similar idea was with neighborhoods of type D.

The results showed that a neural network approach was a better method to solve

the classification problem than the Naive Bayes classifier. As a different alternative,

we decided that the process could be focused only on the detection of elements of

case B and assume all other cases as B’. We needed to build again the NN model

with two outputs. We also changed the similarity measure because we had found some

difficulties with the cross-correlation such as the normalization, neighborhood size and

perceptual similarity. This measure is herewith explained and then the final model of

foreground removal using two classes is depicted the following section.

4.3.2.3.1 Euclidean distance of scaled neighborhoods in Principal Component

space Another suitable similarity measure which is perceptually meaningful and is

not excessively expensive in terms of computational cost is the Euclidean distance of

scaled neighborhoods in Principal Component space. It is a variant of the technique

proposed in [Li et al., 2005]. This process consists of a combination of image resam-

pling, a PCA transformation and Euclidean distance metric. The general process is

described as follows:

• Take neighborhood samples and scale them to a smaller resolution. For instance,

take 15x15 neighborhoods and rescale them to 3x3. Each new pixel is the result

of averaging the values of a 5x5 window from the sample. This process re-

duces local noise and variance. In our case, the jitter problem does not affect

this estimation (something that can be critical in the cross-correlation for small

neighborhoods).

• The resulting elements are 27 dimensional vectors. This corresponds to (3x3x3),

the window size and the three color channels which are considered separately.

This vector is then transformed by PCA to 10 dimensions which correspond to

the highest principal components of the covariance matrix of the data.

• Finally the Euclidean distance of the vectors for each transformed neighborhood

is calculated. This similarity equation for a given neighborhood pair is given in

Equation 4.11 taken from [Li et al., 2005].
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s(A,B) = ‖T (D(A))−T (D(B))‖ (4.11)

where D is the image resampling of the neighborhood to a smaller size and T is the

PCA transformation.

The PCA transformation matrix was calculated by taking sample neighborhoods

from the whole dataset. For each day, two images were selected and 10 neighborhood

samples were chosen. This is equivalent to 12,000 samples. Hence we had enough

data to find the appropriate transformation. The data was normalized to zero mean

and one std before finding the covariance matrix. Then the eigenvectors were found

and arranged according to their eigenvalues. Figure 4.18 shows the curve of the eigen-

values found. Note that most of the energy of the data is concentrated in the first 10

eigenvalues (98%). These were the ones selected for the transformation. Note that

the first eigenvalue is much higher than the rest of the values. Variations of this value

produce in reconstructed data samples from 10-dimensional eigenspace to a 3x3 RGB

neighborhoods changes in color intensity. The cross-correlation is not very sensitive

to changes in this property and this could probably explain the reasons of having poor

results in the first approach.

(a) (b)

Figure 4.18: Eigenvalues of image neighborhoods after scaling and PCA. (a) Classified

in decreasing order. (b) Cumulative graph.

We used a Similar procedure to visualize the distribution of the data like with the

cross-correlation method. Notice in Figure 4.19 that two clusters representing each

class are clearly defined and have only a small overlapping region. This shows that

some other features of the data were captured with this metric that were not with the

ccor.
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(a) (b)

Figure 4.19: Distribution of foreground and background samples using Euclidean dis-

tance of scaled neighborhoods. The blue cluster is constituted by all the samples clas-

sified as foreground (class B) and the red cluster represents the background.

4.3.3 Foreground Detection and Removal using Temporally Neigh-

boring images

Foreground elements in image at time t can be detected given the information from the

previous and subsequent images. This approach works at neighborhood level and the

measure of similarity used is the Euclidean distance in PCA space as described in the

previous section. Each pixel is classified as background or foreground. If the latter is

true, then the pixel values are replaced by the ones from the image at time t−1. This

decision was heuristically made assuming that any of the consecutive frames could be

used to replace the foreground and the video frame rate was fast enough to make this

operation undetectable for the observer.

A neural network was trained to solve the classification problem. The training and

test data was the same utilized with the cross-correlation measure. Its difference was

that the cases different to class B were included in a single class (B’). The training

process was similar to the one explained in Section 4.3.2.3. The number of outputs

changed to two (BG and FG) and the number of hidden units was equal to three. Table

4.2 shows the final configuration of the neural network and Figure 4.20 shows the

confusion matrix for the test data. The accuracy of the best neural network was equal

to 0.8902, which is much higher that the values obtained with the first method. This

improvement is related with the reduction of number of cases and the utilization of the

new measure of similarity.

The model was tested in real data. The example in Figure 4.21 show its operation:
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Neural Network

Input type s−0,s0+,s−+

Image Window size 15x15

Number of inputs 3

Number of hidden units 3

Number of outputs 2

Hidden units activation function tanh()

Output units activation function so f tmax

Regularization term 10

Test data accuracy 0.8902

Table 4.2: Neural network specifications for foreground and background detection.

A binary image is the result of the classification of each image pixel. Pixel values equal

to 1 (white) are foreground and 0 (black) are background. Assuming that foreground

pixels are spatially connected we process the binary image to remove small regions

which might be wrong classifications. The image is cleaned up using two morpholog-

ical operations: erosion to remove small regions and dilation to expand the foreground

and connect nearby pixels. The final step is the infilling of the foreground regions with

the data of the previous day. Note in the figure example that a large proportion of the

white crane appearing in the image at time t is removed after this process. However

some of the parts of the blue arm were not detected.

Figure 4.20: Hinton graph of confusion matrix for foreground and background detection.

1 is equivalent to foreground and 2 background.
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(a) (b) (c)

(d) (e) (f)

Figure 4.21: Foreground Detection and Removal using Temporally Neighboring images.

(a), (b) and (c) are sample day images at times t − 1, t and t + 1 respectively. (d) is

the BG and FG classification image at time t. (e) is obtained after a processing previ-

ous image to remove small foreground regions and noise. (f) is the result of replacing

foreground elements in image t with the values taken from image t−1.
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4.4 Illustrative Comparison

One difficulty in the evaluation of the video outcome was that we did not have a real

background of the scene. This is an image that represents only the building without

considering other elements. This image should also change constantly according to the

project evolution. We tested the creation of background using segments selected man-

ually from different images and placing them together with a graphics editing program

(Photoshop) but the results were not really appropriate for the comparison. Another

possible solution was to create artificial scenarios in laboratory conditions with a va-

riety of elements, lighting conditions and capture devices similar to the ones used in

the project. However it was not easy to create such variety of conditions to match real

situations.

All the produced time-lapse videos are available online at [Reyes and Fisher, 2008].

The videos and processed images were utilized to evaluate and compare the perfor-

mance of the methods. Our ability to understand visual images and videos was used

to make a better assessment of the results rather than taking hand made background

images that were not representing accurately the background.

The methods utilized in the processing stage received as input the preprocessed im-

ages. Both methods, the probabilistic and the deterministic, performed better than the

traditional approach in terms of a reduction of artifacts in the scene. It was found that

the most relevant problem with the MVM filter was the ghosting which is related to the

presence of a high number of outliers in the data and the reduced number of elements

in the set. Enlarged regions of images show the differences between both methods in

Figure 4.22. The samples were taken from day images after implementing MVM and

KDE. Notice that foreground objects seem blended with the building structure in the

first case. In contrast, with the kernel density method the samples look like spots with

sharp edges that separate the foreground with the real scene background. The reason

for this behavior is that this last model does not have prior knowledge about the char-

acteristics of the data and it only chooses elements that appear more often in the image

whether it is background or foreground.

Figure 4.23 shows the stages of the multivariate median method for three consec-

utive days. The first row show preprocessed images. The second row shows the result

of processing 18 images from one day to obtain the background representation (day

image). The last process applied was the MVM of temporally neighboring images

with span equal to five days. Similarly, Figure 4.24 depicts the probabilistic approach.
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(a) (b)

Figure 4.22: Enlarged day image segments for comparing processing methods. (a)

Multivariate median filter. (b) Non-parametric Kernel density estimation filter.
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Initially the kernel density estimation filter is applied to create day images, then the

foreground detection and removal using neighboring images method is computed. Fi-

nally, the last frames are created using MVM of neighboring images. This last step was

added to have a comparison point with the deterministic method. The results show that

both techniques produced time-lapse videos perceptually better than the traditional ap-

proach and that can be useful in the processing of cluttered consecutive images. Further

improvements in the results could be done if more assumptions about the source of the

data are considered. An example of this is the weather prediction in each image. This

will be described in section 5.2.1.

Depending on the application, it might be preferable to utilize a Kernel density

estimation filter rather than a multivariate median filter. For instance, The foreground

detection method would perform poorly if we use the multivariate median filter. KDE

makes more visible the differences between background and foreground. Hence if we

need to compare neighborhoods of consecutive days using any of the similarity mea-

sures (e.g. cross-correlation), it is better to find a high or low differences between them

rather than intermediate values which are uncertain. Ghosting is not easily detected

with our similarity measures because the color values in those regions are an interme-

diate color between the dataset values. This can create confusion between an pixel

being background or foreground. Then KDE facilitates the detection of foreground

when applied before the foreground detector using three consecutive frames.

4.5 Video Rendering

The last stage of the process is the generation of the video files using the frames pro-

duced after the processing. It was required to define some of their characteristics such

as the number of frames per second, the resolution and the compression. These ele-

ments had to be considered for the rendering. The number of frames of our videos

was given by the number of days of construction. Rather than choosing the frame

rate (e.g. 25 fps), we defined the playback time. This was 30 seconds. In addition, we

chose a standard resolution equal to 720x480 pixels of the images and Windows Media

Video (WMV) as the compressed video file format. Table 4.3 shows the most relevant

characteristics of the time-lapse videos.
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(a)

(b)

(c)

Figure 4.23: Deterministic processing approach. Sample of three consecutive days.

(a) Raw Images. (b) Multivariate median filter. (c) Multivariate Median of Temporally

Neighboring images.

Video Characteristics

Frame rate 15 fps

Resolution 720x480

Compression Format WMV

Table 4.3: Time-lapse video characteristics.
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(a)

(b)

(c)

(d)

Figure 4.24: Probabilistic processing approach. Sample of three consecutive days. (a)

Raw Images. (b) Non-parametric kernel density estimation filter. (c) Foreground De-

tection and Removal using Temporally Neighboring images (3 images) (d) Multivariate

Median of Temporally Neighboring images (5 images).
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Conclusions.

5.1 Contribution

Time-lapse video is a useful tool for the visualization of events, such as the construc-

tion of a building. However, the capture process, which generally takes a long time, is

susceptible to many disturbances that affect the quality of the images. This work has

dealt with these problems to produce videos of higher quality and improved the user’s

perception of the scenes.

The preprocessing of the images was an appropriate solution to improve the results

of the time- lapse video. It was the necessary primary stage before the image pro-

cessing. More control could have been taken during the capture period to preserve the

image data quality. For instance, by providing the video cameras with a better fixation

mechanism to isolate them from external vibrations. In addition, an evaluation of the

camera settings could have reduced problems with the color deviations. The white bal-

ance could have been left fixed rather than in automatic mode and the jpg compression

could have been reduced (the latter produces an increment in the size of files). One of

the principal aims of this piece of work is to reduce the number of artifacts that were

present in our data

The jitter was one of the artifacts that deteriorated the video quality. It was reason-

able to align the spatio-temporal volume before applying image processing methods

that required pixel-to-pixel correspondence. Even though the jitter removal process

reduced the shift between images to a value less than one pixel (0.1% of image size) ,

it is possible to detect this small vibration during the video play back. This shows that

human vision is very sensitive to this kind of effect.

Changes in the lighting conditions and colors were also partially solved in the im-

81
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age preprocessing. The methods evaluated in this project showed the difficulties in

finding a single approach from which is it possible to generalize for all the input cases.

The assumptions that we used for the methods, such as the grey world, were suitable

for most of the data samples and ultimately depicted a good normalization of the image

colors. The images with AWB problems were almost totally corrected since the lack

of balance of the color channels due to the camera was resolved. Normal images had

a high correlation between the RGB histograms as opposed to imbalanced images. In

addition, changes in illumination due to the weather were better normalized in normal

images and sunny images with uniform distribution than in days with snow or fog.

Images after the color normalization had a similar balance concerning pixel intensities

and provided a better starting point for the processing of day images.

We developed two methods for producing time lapse videos. The deterministic

model, consisting of the multivariate median filter works well to estimate the back-

ground of day images and remove most of weather changes and mobile objects. This

included problem of ghosting which is related with the susceptibility of the algorithm

to outliers. The same filter was used to work with consecutive day images within a

local area. The amount of data available for this was very small for an accurate image

improvement since it consisted of only five frames. Furthermore, taking into account

that the jitter was not completely corrected, the results could be worse in this pixel-by-

pixel approach. However, in the final reproduction of the video at 25 fps these types of

artifacts are not easily perceived by the observer.

The probabilistic model for day background estimation based on KDE solved the

problem of ghosting.. Nevertheless, due to the lack of knowledge about the source of

the data, this method was prone to choosing elements that were not part of the build-

ing (background), and consequently these had a higher appearance rate in the images

Therefore,, selecting elements from high density regions is not the only condition for

their classification as background or foreground. It is also important for a local evalua-

tion of the data (at the neighborhood scale) to make good use of the knowledge related

to the scene behavior. The evaluation of the data showed that this particular set of

images is very variable and that probabilistic approaches would improve any further

processing technique on the data.

The neural network classifier was a reasonable approach to find foreground ele-

ments in the scene. The selection of small image regions is a better approach than

using single pixels because it utilized information from the local variance of the im-

ages. The initial proposal , where five different cases were considered, was not suitable
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for this application. The reason could be related to a number of training elements, a

similarity measure that does not capture the features of interest or the wrong selection

of training samples biased by the user’s interpretation of the scene. The classifica-

tion of two types of elements was simpler than the multi-class system. An important

methodological concern is related to the number of images required to detect the ap-

pearance of foreground. Only three images were used and this should be increased in

order to make the methodology more robust.

One of the disadvantages of the algorithm implementation is the time needed to

produce a complete video. This requires about two days of processing with five com-

puters running simultaneously to create a complete video sequence. The most expen-

sive stage is the day image generation, followed by the jitter removal and the day image

processing. A possible solution to this could be to execute the algorithm in a different

programming language. Matlab was the computing environment used to conduct all

the experiments of this project. Languages such as C++ and Java provide a faster plat-

form which can be a more suitable option since it improves the processing speed. A

reduction in the processing time allows the addition of more images from the database.

As a result, better background images can be obtained. Furthermore, they should be

taken at hours outside the current range to provide more information about the real

background and to reduce to probability of finding foreground elements in the same

region.

5.2 Further Work.

5.2.1 Weather Classification

The images of the set can be better preprocessed by increasing prior knowledge about

them. This approach seeks for the classification of images according to weather con-

ditions. During the experiments it was observed that the preprocessing of the images

worked better for some images than others and it was clear that this was related with

the weather in the images. One proposal to improve the results of the TLV generation

is to classify the images according to the weather changes and then apply dedicated

processes to the data. For instance the images could be classified as: Cloudy,, fair,,

fog, snow and rain.

Procedures that can be applied according to the class are for instance:

• Sunny days: Patches that are large and bright can be removed from the scene.
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This means that if there is a region receiving direct sunlight and the values are

saturated (seen as white), these regions could be discarded from the processing.

Some of the flicker found in the video is due to the appearance of these patches

for small time intervals. The images would be composed of pixels without values

on these patches. These can eventually be infilled after posterior processing with

data from other images. Some experiments were carried out to test the idea.

Figure 5.1 shows examples of images where the bright spots were removed after

looking for regions covering a large area and with pixel values close to the upper

intensity value (255). Note that the process works very well when the images

are sunny; however when this is not the case it will not necessarily take regions

that are not bright. This confirms the need to classify these images.

• Snowy days. After their detection, these days can be automatically removed

from the set. If the purpose of the time lapse is to show a gradual depiction of

the building evolution, without sudden transitions of events, then these images

should not be included in the set. One idea regarding the difference between

normal and snowy images that was found during the jitter removal process, was

the cross-correlation between them was negative.

• Foggy days. A common characteristic of the images with fog is that they have

low contrast. There are some available techniques for ’defogging’ such as the

one described in [Sun et al., 2004] which can be utilized to enhance images

quality and make them look like bright days.

A suitable alternative to solve this problem is to implement a classifier similar to

the one described in the processing section (4.3.2.3.1). The input would be a transfor-

mation of each image such as its histogram, or a combination of an image scaling and

a linear transformation in PCA space. Even by simple inspection of the histograms it

is possible to have an approximation of the weather in the scene, hence a method such

as support vector machines or neural networks could be used in this approach.

5.2.2 Image Segmentation

Images can be divided into multiple segments to find a more meaningful way of under-

stand the data. We can find several regions in the images using segmentation and then

determine precisely using groups of images (such as the ones from one day) if these

regions represent background or foreground. Here we are concentrating on the idea of
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(a)

(b)

(c)

Figure 5.1: Processing of sunny images. The bright patches are segmented from the

images (black regions in right side images). Samples (a) and (b) are from sunny days.

The same method is applied in (c) which is not a sunny image and the algorithm fails.
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spatial connectedness of the objects in the scene. The objects (for instance stationary

objects) can be tracked to see if they appear, or disappear, in the scene. Subsequently

if it is detected that the object is foreground, then the algorithm for the estimation of

the day background need not consider the image regions where the object was present.

This method works with multiple shape regions rather than pixels or squared neigh-

borhoods.

Additionally some of the elements in the scene such as trucks and cranes can be

easily identified because of their color and shape. This information can also be taken

into consideration when deciding whether an element is foreground. In this case, they

can be easily removed from the data from the first stages of the image processing.

5.2.3 Background Model

Even though a model of the background is very difficult to obtain due to the variability

of the scene, we can make an improvement in the background estimation if we take in-

formation from past days for the creation of day images. If the rate of change of image

regions is small, then we can create a local background model. For instance, when the

walls of the building were built, no relevant further changes occurred in the scene. In

some of these images elements such as arms of cranes and sunrays appeared. These

can be easily detected because the variability of those regions (walls) was small and

these elements can be removed. Additionally we can use the model of previous days

in order to make decisions about what is background when there is a high uncertainty;

this will solve problems such as the ones found with the KDE where the decisions were

based solely on the mode of the pixel values.

5.2.4 Grey World

In this project, ’gray world assumption’ assumed that there was only a fixed RGB value

representing the mean of color intensities in each image. A more realistic approach is

to consider that this value changes progressively over time. Therefore, we can obtain

a better color estimation of the images if we evaluate the mean of red, green and blue

components directly from the images. For instance we can sample the means from

image subsets and then define a variable ’grey’ value for each day. This method must

guarantee smoothness in the color transition and the values for each color channel are

not required to be equal.
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[Świerczyński and Rokita, 2008] Świerczyński, Z. and Rokita, P. (2008). Increasing

resolution of digital images using edge-based approach. Opto-Electronics Review,

16:76–84.

[Tappen, 2005] Tappen, M. F. (2005). Recovering intrinsic images from a single im-

age. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1459–1472. Member-William

T. Freeman and Member-Edward H. Adelson.

[Taycher et al., 2005] Taycher, L., Fisher, J.W., I., and Darrell, T. (2005). Combining

object and feature dynamics in probabilistic tracking. Computer Vision and Pattern

Recognition. IEEE Computer Society Conference on, 2:106–113 vol. 2.

[Wang et al., 2000] Wang, Y., Liu, Z., and Huang, J.-C. (2000). Multimedia content

analysis-using both audio and visual clues. Signal Processing Magazine, IEEE,

17(6):12–36.

[Washizawa and Yamashita, 2006] Washizawa, Y. and Yamashita, Y. (2006). Non-

linear wiener filter in reproducing kernel hilbert space. Pattern Recognition, 2006.

ICPR 2006. 18th International Conference on, 1:967–970.



Bibliography 91

[Weiss, 2001] Weiss, Y. (2001). Deriving intrinsic images from image sequences.

pages 68–75.

[Wren et al., 1997] Wren, C., Azarbayejani, A., Darrell, T., and Pentl, A. (1997).

Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19:780–785.

[Yael Pritch and Peleg, 2008] Yael Pritch, A. R.-A. and Peleg, S. (2008). Video syn-

opsis and indexing. http://www.vision.huji.ac.il/video-synopsis/.

[Yang et al., 2006] Yang, X., Li, H., and Zhou, X. (2006). Nuclei segmentation using

marker-controlled watershed, tracking using mean-shift, and kalman filter in time-

lapse microscopy. Circuits and Systems I: Regular Papers, IEEE Transactions on,

53(11):2405–2414.


